钢制变齿厚平面蜗轮包络环面蜗杆传动的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密蜗轮副作为精密分度或精密运动机构,主要用于齿轮加工机床、具有精密分度功能的加工中心、精密转台及仪器仪表等场合。研究一种精密动力型蜗杆传动,使之能够满足更高的输入转速、更大的输出转矩、更小的齿侧间隙、更好的刚性及更长的精度寿命等要求,具有重要的现实意义。钢制变齿厚平面蜗轮包络环面蜗杆传动能够满足对“精度”和“动力”有双重要求的场合,如何合理地设计、制造并确保其摩擦学性能是能否成功实现该传动的关键。论文围绕钢制平面蜗轮传动的关键技术,系统地进行啮合原理推导、参数分析、齿面接触分析、精密加工、润滑分析、材料配伍试验及加工试制等方面的研究。
     应用微分几何及共轭曲面原理给出平面蜗轮传动啮合原理;考察母平面倾角、压力角、模数等参数对接触线分布、蜗杆根切及蜗轮齿厚的影响,为合理设计蜗轮副提供了参考。在啮合分析及加工、装配工艺过程分析基础上,建立包含误差的齿面模型及装配模型;利用齿面间隙法对平面蜗轮传动进行齿面接触分析;考察各个误差对传动副齿面接触状态的影响,根据影响程度的不同提出误差干预的一般建议,为误差控制及合理修缘、修形提供指导。
     在阐述平面包络环面蜗杆形成原理基础上,运用刚体平面运动知识论证虚拟回转中心原理;通过实例验证了该原理的可行性。应用虚拟回转中心原理加工环面蜗杆,能够实现用小中心距的机床加工大中心距环面蜗杆的目的;应用该原理设计的机床,通用性强,适合于各种蜗杆类零件的加工。探讨平面蜗轮的制齿方法:通过加工方法分析及工艺试验,对比研究用于平面蜗轮齿面加工的铣削、插削、飞削、滚削、磨削加工法。着重考察连续分度飞削加工法,运用活动标架建立飞削加工的数学模型;并进行误差分析、优化设计、模拟仿真及工艺试验等研究。给出各种加工方法的优缺点及适用场合。
     在弹性流体动压润滑理论和钢制平面蜗轮传动啮合特点研究基础上,提出该传动的弹性流体动压润滑模型。通过计算整个接触区内的最小弹流膜厚,揭示最小膜厚的分布规律;分析速度、载荷、母平面倾角、压力角及蜗杆分度圆直径对该传动润滑性能的影响。结果表明:蜗杆啮入端的润滑状况优于啮出端,蜗杆齿顶的润滑状况优于齿根;改善平面蜗轮传动润滑性能较为有效的方法是优化压力角和增大蜗杆分度圆直径。改善润滑性能的同时,要综合考虑上述变量对传动效率和摩擦磨损等的影响。
     在分析钢制平面蜗轮传动摩擦学系统特性基础上,建立钢-钢线接触滑动摩擦模型,通过试样试验模拟传动副上任意接触点处的摩擦学系统。考察诸多因素对摩擦系统性能的影响,结果表明:极压剂的含量高、活性强的车辆齿轮油最适合于钢-钢滑动摩擦副;滑动摩擦高副宜选用粘度较高的润滑油;稳定工况下,摩擦系数随诱导法曲率半径的增大而减小;摩擦系数随润滑角的增加而减小;膜厚较薄时,表面光洁度的影响尤其重要;氮化层能有效地避免过度磨损;推荐的材料处理工艺为氮化-氮化或氮化-渗碳淬火;氮化层较深为宜;两偶件的表面硬度高、硬度差较小时,耐磨性能较好。
     以前述研究内容为指导,设计变齿厚平面蜗轮副;采用两种材料组合分别制造两套蜗轮副,验证了前述研究的结果,为开发该传动奠定基础。
     本文研究得到了国家自然科学基金的资助(50075089).
The precision worm gears, which is used as a precision indexing or a fine motion mechanism, mainly uses in gear cutting machine, accuracy machine tool with indexing function, precision rotary table or instruments, and so on. Researching on the precision-power worm drives which can satisfy the higher input speed, the greater output torque, the smaller teeth clearance, the better rigidity, the longer accuracy life, etc, has the vital practical significance. The steel variational-tooth-thickness planar wormgear enveloping hourglass worm drive can satisfy the dual requirements of“precision”and“power”. How to design, manufacture and guarantee its tribology performances are the key technologies to achieve this transmission successfully. This dissertation investigates the key technologies such as meshing theory, parametric analysis, tooth contact analysis, precision machining, elastohydrodynamic lubrication (EHD) analysis, material combinations test, trial manufacture, and so on.
     The mesh theory of the planar worm gears is presented based on the differential geometry and the conjugate curved-surface principle. Influences of main parameters such as slope angle of generitix, pressure angle, axial module, etc. on distribution of contact lines, undercut of worm, and tooth thickness of wormgear, are studied on considering the characteristics of the new transmission. On the basis of engagement analysis together with technology analysis of machining and assembling, tooth surfaces models and assembly model containning errors are established. The tooth contact analysis of the driven are carried on by using the teeth-surface-clearance method. Effects of errors on teeth contact state are studied. General suggestions are proposed to minimizing the disadvantage effects of errors, and modifying the profile of the worm.
     Based on explaining the generating theory of planar enveloping hourglass worm, the principle of dummy gyration center is demonstrated by the knowledge of plane kinematics of rigid body. Machining test is carried out and the feasibility of the new principle is identified further. The results show that the dummy gyration center can be used in machining the hourglass worm completely, and the numeric control machine tool with the function of the dummy gyration center has versatile characteristic to processing all kinds of worm components.
     Through the processing method analysis and processing test, the cutting methods of planar wormgear such as milling, slotting, fly-cutting, grinding, and hobbing are discussed. The fly cutting method is studied further and the mathematical model of fly cutting is established by the method of moving coordinate. Error analysis, optimization design, analog simulation and technique test are carried out. The suitable situation, merits and faults of the cutting methods are presented.
     Based on study of EHD and mesh theory of the steel planar worm gears, EHD model for the drive is proposed. Minimum film thickness on the whole contact area is calculated. The distributions of film thickness are analyzed. Influences of velocity, load, slope angle of generitix, pressure angle and reference diameter of worm on lubrication performance are investigated. The results show that, the EHD status during entry engagement is better than that during exit engagement, and EHD state of worm addendum area is better than that of dedendum area. Optimizing pressure angle and increasing worm reference diameter have effect on improving lubrication performance. The influences of the variable on the transmission efficiency, frictional wear should be considered too during improving lubricantion.
     Based on study of tribology performances of the drive, the steel-steel line-contact sliding-friction model is established to simulate the tribology system of arbitrary contact point. Influencing factors along with their effects are analyzed. The results show that, extreme pressure gear oil containing more additive is suitable for steel-steel sliding friction pair, lubrication oil with high viscosity is beneficial to sliding friction higher pair, the larger relative curvature radius of sliding pair leads to lower friction coefficient in smooth conditions, the larger lubrication angle has higher advantageous to minimizing friction factor, the roughness of surfaces is vital in thin oil film conditions, nitration case can avoid excessive wear effectively, the recommended techniques of heat treatment are nitrogen treatment vs nitrogen treatment and nitrogen treatment vs carbonization, the friction pair which have high surface hardness and low difference of hardness has excellent wear resisting property.
     Steel variational-tooth-thickness planar worm gears is designed on considering the mentioned above findings. Two pairs of worm gears are trial manufactured using two material combinations.
     The dissertation is supported by National Natural Science Foundation(50075089).
引文
[1] G.尼曼, H.温特尔著.张海明译机械零件(Vol.3)[M].第二版.北京:机械工业出版社, 1991, 99-101.
    [2]张光辉.侧隙可调式平面包络环面蜗杆传动[P].中国, ZL99117383.X , 2003- 04-16.
    [3]齿轮手册编委会编.齿轮手册(上册)[M].第二版.北京:机械工业出版社, 2000, 6-31.
    [4]机床设计手册编写组编.机床设计手册(第二册上)[M].北京:机械工业出版社, 1979, 374-376.
    [5] B. ORLOWSKI, W. RATH. Backlash-free high-ratio reduction drive- has worm gear output stage preceded by one with belt drive[P]. Germany, DE3937834(A1), 1991-05-16: 1-4.
    [6]曹西京,张淳,刘昌祺,等.双蜗杆传动在精密数控分度中的应用[J].陕西科技大学学报, 2003, 21(1):1-2.
    [7] Zahnradfertigung OTT GmbH & Co. KG. Type G1 Catalogue[EB/OL]. http://www.zahnrad-ott. de , 2009-05-03/2010-08-10.
    [8] TANSHING.大型CNC电脑数控分度盘[EB/OL]. http://www.tanshing.com/taiwan/p_ specifi/mrnc-1650.htm, 2010-09-10.
    [9]世圣精机股份有限公司. CNC电脑数控分度盘[EB/OL]. http://www.exactmachinery.com/ products-NCT.htm, 2009-12-23/2010-09-10.
    [10] TSUDAKOMA. NC Rotary Tables[EB/OL]. http://www.tsudakoma.co.jp/mta/english/ technology/index.html, 2010-06-16/2010-09-10.
    [11] Troyke. Rotary Tables Catalog[EB/OL]. http://www.troyke.com/pdf/troyke_catalogWEB.pdf, 2008-08-20/2010-09-10.
    [12] Demmeler. NC Rotary tables[EB/OL]. http://www.demmeler.com/en/ products/ nc-rotary-tables. html, 2010-09-10.
    [13] ALLYTECH. Worm geared-rotary tables[EB/OL]. http://www.allytech.eu/index_ fichiers/ WGrotarytable.htm, 2010-09-10.
    [14]重庆机床集团. TKG13520B型高精度数控回转工作台产品说明[EB/OL]. http://www. cqmtw.com/tabid/71/ProductId/28/Default.aspx, 2009-07-13/2010-09-10.
    [15] NIKKEN. CNC Rotary table series[EB/OL]. http://www.nikken-world.com/en/rotary-tables, 2010-09-07/2010-09-10.
    [16] E. BUCKINGHAM. Analytical mechanics of gears[M]. London: McGrew-hill Book Company, INC, 1949.
    [17] (美)厄尔·白金汉.重庆大学机械系蜗杆传动科研组译.威尔德哈卜(Wildhaber)蜗轮传动[J].蜗杆传动文集(一), 1976, 1-2.
    [18]齐麟,张亚雄,胡松春,等.蜗杆传动设计(下册)[M].北京:机械工业出版社, 1987, 3-6.
    [19]张光辉.侧隙可调式平面包络环面蜗杆传动研究[J]. (内部资料), 2003, 2-3.
    [20]祝熙俊.侧隙可调式变齿厚平面蜗轮包络环面蜗杆传动副的有限元分析及性能试验研究[D].重庆:重庆大学, 2004: 1-10.
    [21]郑宏伟.侧隙可调式变齿厚平面蜗轮包络环面蜗杆传动在电梯曳引机上的应用[D].重庆:重庆大学, 2005, 1-9.
    [22]张光辉,罗文军,邱昕洋.变齿厚平面蜗轮包络环面蜗杆传动[C]. 2008全国小模数齿轮制造技术宁波研讨会论文集.宁波. 2008.宁波: CGMA, 2008:40-41.
    [23]姚玉泉,韩绍忠,银成好,等.钢蜗轮传动研究[J].中国机械工程, 1993, 4(1): 36-37.
    [24]石维佳,姚玉泉,臧岐.钢蜗轮传动的试验研究[J].沈阳建筑工程学院学报, 1993, 9(4):380-386.
    [25]夏延秋,田世新,马先贵,等.论钢-钢蜗轮传动的巨大潜力[J].润滑与密封, 1998, (2):50-52.
    [26]张会臣,朱均.跑合脂在钢-钢蜗杆传动中的应用[J].机械传动, 1993, 17(3):51-54.
    [27]石维佳,刘黎.防止及减小钢蜗轮胶合倾向的探讨[J].沈阳建筑工程学院学报, 1995, 11(3):229-232.
    [28]田世新,张会臣,夏延秋.蜗轮以钢代铜的实验研究与理论分析[J].沈阳工业大学学报, 1994, 16(1):29-33.
    [29]石维佳,刘黎,田凤云.钢蜗轮摩擦副边界润滑状态判断及润滑油添加剂选择[J].润滑与密封, 1999(5):52-54.
    [30]何韶君,姚玉泉.钢蜗轮传动润滑剂的试验研究[J].润滑及密封, 1996, (3):24-25.
    [31]何韶君,刘俏.钢蜗轮传动齿面润滑的理论与实践[J].润滑与密封, 2000, (3):17-18.
    [32]何韶君,何邵伟,吴斌.齿面硬度差对钢蜗轮传动性能影响的试验研究[J].大连民族学院学报, 1999, 1(1):36-38.
    [33]何韶君,李文龙,刘晓东.钢蜗杆副传动承载能力的试验研究[J].煤矿机械, 2006, 27(11):39-41.
    [34] LI Z J, SHAO M, ZHANG D T, et al. Effect of hardness on wear behavior of friction pair for steel worm gear[J]. Science Technology and Engineering, 2008, 8(24):6473-6477.
    [35]李助军,张大童,邵明.硬度对钢蜗轮副材料磨损特性的影响[J].材料导报, 2009, 23(3):54-56.
    [36] N. HATTORI, T. YAMADA, I. MORIYAMA, et al.Fundamental studies on the cermet worm[J]. Nippon Kikai Gakkai Ronbunshu C Hen, 1991, 57(541)2991-2995.
    [37] D. ARUNKUMAR, M. SURYANARAYANA, M. M. MAYURAM. Durability and performanceevaluation of surface treated worm drives of similar material pair[J]. Tribology International, 1998, 31(7):385-392.
    [38] SHI W K, QIN D T, HU M H, et al. Investigation on thin coating for generally steel worm wheel[J]. VDI Berichte, 2005, N1904 ?:55-63.
    [39] XIA Y Q, WANG S J, HU J H, et al. Tribology character of steel Archimedes worm gear[C] //2005 World Tribology CongressⅢ, Sep 12-16, 2005, Washington, D.C., United states: American Society of Mechanical Engineers, 2005:227-228.
    [40]孙月海,张新,郑惠江.蜗杆传动用摩擦副材料在滑动干摩擦条件下的摩擦磨损性能研究[J].摩擦学学报, 2005, 25(3):279-282.
    [41]李国云,姜宏伟,陈勇,等.表面改质钢蜗轮副的传动性能[J].兰州理工大学学报, 2009, 35(5):32-35.
    [42]李助军,邵明,张大童,等.钢蜗轮副磨损过程的实验研究[J].华南理工大学学报, 2009, 37(9):108-111.
    [43]石万凯,姜宏伟,秦大同,等.新型涂层钢蜗杆副传动机理研究与传动性能评价[J].机械工程学报, 2010, 46(5):22-29.
    [44] QIN D T, YAN J, ZHANG G H, et al. Precise manufacture of hourglass worm based on coordinate measurement[J]. American Society of Mechanical Engineers, Design Engineering Division(Publication)DE, 1996, 88:257-268.
    [45]吴大任,骆家舜著.齿轮啮合原理[M].北京:科学出版社, 1985.
    [46]秦大同.平面二次包络弧面蜗杆传动的参数分析与优化设计[D].重庆:重庆大学, 1984.
    [47]秦大同.二次包络环面蜗杆失配啮合传动的研究[D].重庆:重庆大学, 1993.
    [48]董学朱.环面蜗杆传动设计和修形[M].北京:机械工业出版社, 2004.
    [49]贾鹏,许洪斌.齿轮齿面接触分析TCA技术及发展动态[J].长春大学学报, 2006, 16(2):39-41.
    [50]徐戊娇.制造误差与承载变形耦合条件下平面二次包络环面蜗杆的啮合分析与啮合控制研究[D].重庆:重庆大学, 2005.
    [51]吴大任编.微分几何讲义[M].第3版.北京:人民教育出版社, 1979.
    [52]张光辉.平面二次包络弧面蜗杆传动的研究与应用[J].重庆大学学报, 1978, 4:1-18.
    [53]张彦钦.平面包络环面蜗杆传动设计计算及其软件开发[D].重庆:重庆大学, 2006.
    [54]机械工程手册,电机工程手册编辑委员会编.机械工程手册(第1卷)[M].北京:机械工业出版社, 1982, 2-63.
    [55] (日)佐藤申一.重庆大学机械系蜗杆传动科研组译.弧面蜗杆的接触面之性质[J].蜗杆传动文集(一), 1976, 26-30.
    [56] (日)下河边明,铃木勇夫.重庆大学机械系蜗杆传动科研组译.弧面蜗杆蜗轮的性质[J].蜗杆传动文集(一), 1976, 33-36.
    [57]《齿轮制造手册》编辑委员会.齿轮制造手册[M].北京:机械工业出版社, 1997:907-911.
    [58]张光辉,黎亚元.虚拟回转中心的环面蜗杆数控机床:中国, ZL 200820100105.4[P]. 2009-07-08.
    [59] F. L. LITVIN, I. GONZALEZ-PEREZ, K. YUKISHIMA, et al. Generation of planar and helical elliptical gears by application of rack-cutter, hob, and shaper[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41/44):4321-4336.
    [60] LIN C, QIU H, QIN D T, et al. Study for simulation analysis and experiment on high-speed dry gear milling by flying cutter[J]. VDI Berichte, 2005, 1904(1):795-808.
    [61]罗文军,张光辉.单齿飞刀连续分度加工平面齿蜗轮方法的研究[J].中国机械工程, 2006, 17(3):277-278.
    [62]邱昕洋,张光辉,秦大同.平面蜗轮连续分度飞削加工及工艺试验研究[J].西安交通大学学报, 2010, 44(7):95-99.
    [63]成大先主编.机械设计手册(第3卷)[M].第五版.北京:化学工业出版社, 2008: 14-367.
    [64] LUAN X F, ZHANG T, ZHAO C X. Theorytical mechanics[M]. Harbin: Harbin Institute of Technology Press, 2007.
    [65]齿轮手册编委会.齿轮手册(下册)[M].北京:机械工业出版社, 1990: 14-35.
    [66]梅向明,黄敬之.微分几何[M].第2版.北京:高等教育出版社, 1988:149-163.
    [67] H. YANN, G. MICHAEL, P. V. JEAN. Numerical simulation and optimization of worm gear cutting[J]. Mechanism and Machine Theory, 2006, 41(9):1090-1110.
    [68] M. D. IBRAHIM, C. V. STEPHEN. Off line simulation system of machining process[J]. Journal of the Franklin Institute, 2007, 344:565-576.
    [69]彭东林,张光辉,郭晓东,等.传动链运动特性检测分析系统FMT的研制[J].重庆大学学报, 1993, 16(1):52-57.
    [70] M. AMARNATH, C. SUJATHA, S. SWARNAMANI. Experimental studies on the effects of reduction in gear tooth stiffness and lubricant film thickness in a spur geared system[J]. Tribology International, 2009, 42(2):344-345.
    [71]许立忠,杨育林,黄真.超环面行星蜗杆传动弹流润滑状态研究[J].机械工程学报, 2002, 38(9):114-116.
    [72]张有忱,孟惠荣,张立仁.蜗杆传动的弹流润滑研究[J].机械设计, 1999, (10):24-25.
    [73]张有忱,康凯,张立仁.圆弧圆柱蜗杆传动弹流润滑分析[J].北京化工大学学报, 2001, 28(2):52-55.
    [74]张有忱.可展环面蜗杆传动齿面瞬温及弹流润滑研究[D].北京:中国矿业大学, 1995.
    [75]唐劲松.平面二次包络环面蜗杆传动齿面承载能力及润滑研究[D].北京:中国矿业大学,1993.
    [76]温诗铸,黄平.摩擦学原理[M].第3版.北京:清华大学出版社, 2008.
    [77] D. DOWSON, G. R. HIGGINSON. Elsatohydrodynamic Lubrication[M]. London: Pergamon Press, 1977.
    [78]杨沛然,温诗铸.线接触热弹流润滑膜的最小膜厚公式[J].青岛建筑工程学院学报, 1991, 12(3):1-8.
    [79] T. MURAT, A. METIN. Determination of surface temperature rise with thermo-elastic analysis of spur gear[J]. Wear, 2006, 261(1/2):656-665.
    [80]邱昕洋,张光辉,秦大同.钢制平面蜗轮传动弹流润滑分析[J].重庆大学学报, 2010, 33(3):24-29.
    [81]张光辉,王朝晋.活动标架的应用及对Baxter诱导法曲率公式的改进[J].重庆大学学报, 1983, (2):1-12.
    [82] QIN D T, QIN D X. Load sharing and contact of hourglass worm gearing[J]. Chinese Journal of Mechanical Engineering, 1999, 12(4):260-265.
    [83]于红华,张光辉.平面二次包络环面蜗杆传动齿间载荷分配的简化计算[J].机械科学与技术, 2002, 21(6):921-922.
    [84] M. B. PETERSON, W. O. WINER. Wear Control Handbook[M]. New York: ASME, 1985.
    [85] ZHANG Y X, MA K J, LIU Y, et al. Analysis of the wear features of worm gear tooth flanks[J]. Tribology International, 1988, 21(5):281-285.
    [86]秦大同,张光辉,岛地重幸.蜗杆传动发热及齿面摩擦与润滑研究的调查[J].机械传动, 1994, 18(3):40-43.
    [87] (日)丰山晃.重庆大学机械系蜗杆传动科研组译.弧面蜗杆蜗轮的基础知识(2)[J].蜗杆传动文集(一), 1976, 44-51.
    [88]王进戈,向中凡,戴跃洪,邓明.滚锥包络环面蜗轮副材料的摩擦磨损试验[J].现代机械, 1998, (1):40-41.
    [89] Yamada Takasuke, Ueno Taku, Noguchi Takayo. Study on surface durability of worm wheels[J]. Journal of Japan Society of Lubrication Engineers, 1984, 29(6):443-450.
    [90] SHI W K, QIN D T, ZHANG Q W. Thermal analysis and optimization on steel-worm wheel with the coating[C] //Proceedings of the International Conference on Mechanical Transmission, Sep 26-30, 2006, Chongqing, China, Beijing: Science Press, 2006:1155-1160.
    [91] LI Z J, SHAO M, ZHANG D T, et al. Effect of hardness on wear behavior of friction pair for steel worm gear[J]. Science Technology and Engineering, 2008, 8(24):6473-6477.
    [92]赵永武,刘家,郑林庆.润滑条件下钢/钢滑动摩擦副P-V图的研究[J].清华大学学报, 1989, 29(5):41-46.
    [93]严立.混合摩擦状态下表面层的耐磨性试验[J].武汉水运工程学院学报, 1982, (3):27-34.
    [94] P. L. WONG, P. HUANG, W. WANG and Z. ZHANG. Effect of geometry change of rough point contact dut to lubricated sliding wear on lubrication[J]. Tribology Letters, 1998, 5:265-274.
    [95] Ksenija Topolovec-Miklozia, T. Reg Forbus and Hugh A. Spikes. Film thickness and roughness of ZDDP antiwear films[J]. Tribology Letters, 2007, 26(2):161-171.
    [96] A. C. Rennie, P. L. Dickrell and W. G. Sawyer. Friction coefficient of soft contact lenses: measurements and modeling[J]. Tribology Letters, 2005, 18(2):499-503.
    [97] A. Martini, D. ZHU, Q. WANG. Friction reduction in mixed lubrication[J]. Tribology Letters, 2007, 28:139-147.
    [98] L. XIAO, S. BJORKLUND, B. G. ROSEN. The influence of surface roughness and the contact pressure distribution on friction in rolling/sliding contacts[J]. Wear, 2007, 40:694-698.
    [99] B. JACOD, C. H. VENNER, P. M. LUGT. Influence of longitudinal roughness on friction in EHL contacts[J]. Tribology, 2004, 126(3):473-481.
    [100]Ueno Taku, Yamada Takasuke, Ishizu Toshihiro. Effects of inclination of contact line on friction and wear of worm gears[J]. Bulletin of the JSME, 1975, 126(18):1481-1488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700