合成孔径雷达目标检测及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来合成孔径雷达(SAN)在许多方面得到了应用,其技术能够用来检测
     杂波背景中的感兴趣目标。一些学者和研究机构研究了SAR目标检测和识别,
     在这方面比较有影响的研究机构是MIT的Lincoln实验室。该实验室在DARP
     (国防高级研究计划署)的支持下展开了自动目标识别(ATR )研究,该课题己
     在发展和完善中。
     本文在国防科工委支持下研究了SAR目标检测技术,以及与之有关的如噪
     声抑制,边缘提取等方法。针对这些技术和方法的不足之处,提出了一些新的方
     法和算法。其内容如下:
     1.研究了相干斑噪声抑制技术,提出了门)增强小波软阈值相干斑噪声抑
     制方法。考虑SAN杂波复杂情况,不同类型的区域滤波要求不同,本文将小波
     软阈值滤波方法与 SAR杂波特点结合。(2)增强小波维纳相干斑噪声抑制方法。
     基于合成孔径霄达图像杂波结构,结合小波变换和自适应维纳滤波提出了新的抑
     制 SAR图像相干斑噪声方法,该方法能够较好保留杂波边缘和点目标。方法(2)
     同方法门)比较,利用自适应维纳滤波的优点,避兔了小波阈值的选取,克服
     了方法(1)的不足之处。实验表明这两种相干斑噪声抑制方法能够获得比较满
     意的效果,并且增强小波维纳方法略优于增强小波软阈值方法效果。
     2.分析了 SAR目标检测技术,提出了u)根据 SAR统计分布特性的鲁棒恒
     虚警目标检测方法,在Gaona分布条件下研究了SAR目标检测,得到了阈值系数
     与恒虚警关系,提出了阈值选择理论及其简单实现方法,优化了杂波均值估计并
     给出了其鲁棒算法。在方法(3)中,相干斑噪声的存在影响了杂波均值的估计,
     中值具有较好的抗噪特性,但是中值往往是均值的有偏估计,对于Ganun分布而
     言,中值与均值具有比例关系。(4)抑制相干斑后的增强目标检测方法,分析了
     抑制SAR图像相于斑噪声后的多分布特性,研究了相应的SAR目标检测,提出了
     一种新的 SAR图像目标检测方法及其实现。在方法(4)中,去噪后的 SAR图像
     中有三种不同的统计分布,即:高斯分布、Gamma分布、高阶Gamma分布,因此
     要针对不同的统计分布分别作出相应的检测方法,最后采用区域掩膜得到检测后
     的SAR目标。实验表明鲁棒恒虚警目标检测方法和增强目标检测方法均具有较好
     检测性能。
     3.研究了SAR边缘提取,提出了鲁棒比例边缘提取方法o人在经典比例边
     缘提取方法中,需要进行均值估计,这要受到相干斑的影响,相干斑噪声是边缘
     提取的障碍,采用传统的抑制方法会损害边缘,而增强相于斑抑制技术事先对边
     缘作了某种假定。是否有这样一种边缘检测方法,它不考虑噪声抑制问题,而又
     IV
    
    
    要避兔噪声的干扰?这里利用了第四章目标检测的研究成果,提出了中值比例边
    缘提取的鲁棒方法。实验表明鲁棒比例边缘法是一种效果较好的边缘提取方法。
     4.研究了SAR数据的地物和目标分类。分类也是一种描述SAR中目标、
    地物和地貌的常用手段,本文叙述了常用的适合SAn的一阶和二阶纹理特征,
    用大量的实验结果来描述这些特征的相对贡献,从而获得有用特征集:分析了常
    用的分类器,采用最小距离分类法,最大似然分类法,C均值聚类法,学习矢量
    量化神经网络聚类法来对SAR地物分类。同时本文研究了利用将小波结合恒虚
    警技术来表示SAR目标方法。小波变换适合信号多分辨分析,小波滤波后其方
    差特征能有效地表示信号。将SAR图像经过恒虚警处理后通过小波滤波器,用
    不同频段的方差矢量能够有效地表示目标特征。实际SAR数据的测试结果也表
    明了该研究方法的有效性。
     本文在目标检测,相干斑抑制,边缘提取方面完成了大量的新算法验证,其
    结果表明它们都优于常用的经典方法。
In recent years, Synthetic Aperture Radar (SAR) has been used in many fields. SAR technology can be used to detect radar targets of interesting, which embedded in strong ground clutter. Some researches and institutes have studied target detection and recognition for SAR. Lincoln Lab of MIT has produced much important influence in the field, which is support by DARPA (Defense Advanced Research Projects Agency) to study automatic target recognition (ATR). The project has been processing and finishing.
    This thesis has studied methods of target detection and its related technologies such as speckle suppressing and edge extracting for SAR by support of institute of science and technology of national defense. Some technologies and algorithms are proposed according to shortcoming of recent methods.
    1. Technology of speckle noise suppressing is studied, first new method of enhanced wavelet soft-threshold for speckle noise suppressing is proposed (1). This method combines wavelet soft-threshold and scene heterogeneity of SAR, because the different scene needs different filter method. Second new technology of enhanced wavelet Wiener for speckle noise suppressing is proposed (2), which combines wavelet transform and adaptive Wiener filter according to SAR image scene heterogeneity. It can better preserve clutter edge and point target. Method (2) has advantage because it adopts adaptive Wiener filter so the method don' t select wavelet threshold. Real SAR image testing satisfies the validities of these two methods and method (2) is better than method (1).
    2. Technology of Target detection for SAR is studied. A first new method of robust constant false alarm rate for target detection according to statistic of SAR image is proposed. The relationship between threshold coefficient and constant false alarm probability (CFAR) is obtained after SAR target detection is analyzed according to Gamma distribution. The theory and simple realizing approach of selecting threshold coefficient are proposed. The robust way of optimizing clutter' s mean is given, which has de-noising ability without processing of de-noising in target detection. The mean value is influenced due to speckle, the middle value has better performance in the field of anti-noise, but middle value is error estimate to mean, which is corrected by a coefficient. Another new method of target detection is proposed (4), in which enhanced speckle noise suppressing is applied, so multi-statistical has appeared, it' s
    
    
    
    
    Gaussian distribution, Gamma distribution and high Gamma distribution. Different methods of target detection are applied for different statistical. The final result is obtained by area combining. Experiments show the two methods are valid and they have better behavior.
    3. A new robust edge extracting (5) is proposed after the edge extracting for SAR image is studied. Edge extracting is influenced by speckle noise, because mean need to estimate in the traditional ratio edge method. Speckle noise is harmful to edge extracting, traditional ratio edge fltethod isn' t better, and enhanced speckle suppressing has an edge suppose. Is a method for edge extracting existed, in which speckle is no harmful without suppressing speckle noise? A new middle value robust appeared according to result of chapter four. The validity of the methods is proved by experiments for real SAR image.
    4. Classification of Ground scene and target for SAR image is studied in the thesis. Method of classification is always a technology for SAR. Some one scale and two scale texture features are described and useful features are selected by testing relatively contribution according to much experiment result. Some classifier such as minimum distance classifier, maximum likelihood classifier (ML), and learning vector quantify (LVQ) classifier and c-mean classifier. Target' s describer by combining wavelet transform and constant false alarm rate is studied, wavelet transform is suitable to multi-distinguish analysis and its variance of wavelet field can represent signal. So that the
引文
[19] Rohling H. Radar CFAR thresholding in clutter and multiple target situation. IEEE Transactions on Aerospace and Electronic Systems, AES-19,(My 1983) .
    [20] Vassilis Anastassopoulos, George Lampropoulos, A New and Robust CFAR Detection Algorithm, IEEE Transactions on Aerospace and Electronic Systems ,VOL.28, NO.2, April 1992.
    [21] Vassilis Anastassopoulos, George A.Lampropoulos, Optimal CFAR detection in Weibull clutter, IEEE Transactions on Aerospace and Electronic Systems ,VOL.31,NO.1, Jan.,1995.
    [22] Weiss, M. Analysis of some modified cell-averaging CFAR processors in multiple-target situations. IEEE Transactions on Aerospace and Electronic Systems, AES-18(Jan. 1982) .
    [23] Hansen, V.G.,and Sawyer, J.H,, Detectability loss due to greatest of selection in a cell-averaging CFAR. IEEE Transactions on Aerospace and Electronic Systems, AES-16(1980) ,115-118.
    [24] Trunk, G.V. Range resolution of targets using automatic detectors, IEEE Transactions on Aerospace and Electronic Systems, AES-14(Sept. 1978) .
    [25] Marco Lops,Peter Willett, LI-CFAR:A Flexible and Robust Alternative, IEEE Transactions on Aerospace and Electronic Systems ,VOL.30,N0. 1, Jan.,1994.
    [26] Ernesto Conte, Marco Lops, Clutter-Map CFAR Detection for Range-Spread Targets in Non-Gaussian Clutter. Part 1:System Design, IEEE Transactions on Aerospace and Electronic Systems ,VOL.33,NO.2,April 1997.
    [27] Gerald W.Lank, Nancy M.Chung, Mark Resources, CFAR for Homogeneous Part of High-Resolution Imagery, IEEE Transactions on Aerospace and Electronic Systems ,VOL.28,NO.2, April 1992.
    [28] R.S.Ragliavan, Analysis of CA-CFAR Processors for Linear-Law Detection, IEEE Transactions on Aerospace and Electronic Systems ,VOL.28,NO.3,July,1992.
    [29] Maurizio Guida, Maurizio Longo, Marco Lops, Biparametric CFAR Procedures for Lognormal Clutter, IEEE Transactions on Aerospace and Electronic Systems ,VOL.29,NO.3, July 1993.
    [30] Maurizio Guida, Maurizio Longo, Marco Lops, Biparametric Linear Estimation for CFAR Against Weibull Clutter, IEEE Transactions on Aerospace and Electronic Systems ,VOL.28,NO.1, Jan., 1992.
    [31] R.Rifkin, Analysis of CFAR performance in Weibull clutter, IEEE Transactions on Aerospace and Electronic Systems ,VOL.30,NO.2, April 1994.
    [32] Prashant P.Gandhi, Data Quantization Effects in CFAR Signal Detection, IEEE Transactions on Aerospace and Electronic Systems ,VOL.32,NO.4, October 1996.
    [33] Novak,L.M., Burl, M.C.. and Irving, W.W, Optimal polarimetric processing for
    
    enhanced target detection, IEEE Transactions on Aerospace and Electronic Systems, AES-29(Jan. 1993) .
    [34] 马颂德,张正友著,《计算机视觉--计算理论与算法基础》,科学出版社, 1998年1月。
    [35] R. Touzi ,A. Lopes, and P. Bousquet, "A statiscal and geometrical edge detector for SAR images",IEEE Transaction on Geosci. Remote Sensing, 1988. 26(6) :764-773.
    [36] Roger Fjortoft, Armand Lopes, Philippe Marthon ,and Eliane Cubero-Castan,"An optimal multiedge detector for SAR image segmentation", IEEE Transaction ou Geosci. Remote Sensing, 1998,36(3) :793-802.
    [37] Florence Tupin, Henri Maitre, Jean-Francois Mangin, Jean-Marie Nicolas and Eugene Pechersky, Detection of Linear Features in SAR Images: Application to Road Network Extraction, IEEE TRANSACTIONS ON Geoscience and Remote Sensing, 1998,30(2) :pp434-453
    [38] Ronald Caves, Shaun Quegan and Richard White, Quantitative Comparison of the Performance of SAR Segmentation Algorithms, IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998,7(11) :pp1534-1546.
    [39] 罗希平,田捷,诸葛婴,王靖,戴汝为,图像分割方法综述,模式识别与人 工智能,1999,12(3) :300-312.
    [40] 刘文萍,吴立德,图像分割中阈值选取方法比较研究,模式识别与人工智能, 1997;10(3) :271-277.
    [41] Victor S.Frost, Josephine Abbott Stiles, K.S.Shanmugan, Julian C.Holtzman, A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,1982,4(2) :ppl57-166.
    [42] Darwin T. Kuan, Alexander A.Sawchuk, Timothy C. Strand, Pierre Chavel, Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,1985,7(2) :ppl65-177.
    [43] Jong-Sen Lee, Digital Image Enhancement and Noise Filtering by Use of Local Statistics, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTTELLIGENCE,1980,2(2) :pp165-168.
    [44] Armand Lopes, Nezry E., Touzi R., Laur H. Maximum A Posteriori Speckle Filtering and First Order Texture Models in SAR Images, IGARSS'90,PP2409-2412.
    [45] Armand Lopes,Ridha Touzi and E.Nezry, Adaptive Speckle Filters and Scene Heterogeneity, IEEE Transaction on Aerospace and Electronic Systems,1990,28(6) :992-1000
    [46] Valentin V. Zaitsev, Vladimir V. Zaitsev, Analysis of the Speckle Suppression
    
     Algorithms Based on the MAP Approach.EUSAR’96, Konigswinter,Germany,1996,pp159-162.
    [47] Lim,Jae S.Two-Dimensional Signal and Image Processing.Englewood Cliffs, NJ:Prentice Hail,1990.
    [48] David L.Donoho,De noising by soft thresholding,IEEE Trans on information theory,1995. 41(3) :613-627.
    [49] 唐健,王贞松,利用小波分析来抑制合成孔径雷达图象的相干斑噪声,电子 科学学刊,1997(7) :451-458。
    [50] Jinhao Yang,Jianguo Wang,Shunji Huang,Speckle filtering for SAR images based on orthonormal wavelet transform,European conference on synthetic aperture radar,March,1996,Gemlany.pp151-154.
    [51] 王延平著,信号复原与重建,南京:东南大学出版社,1992.
    [52] 李朝晖,抑制数字图象中乘性噪声的方法,电子科学学刊, 1993,15(3) :pp235-241.
    [53] Maurits Malfait and Dirk Roose, Wavelet-Based Image Denoising Using a Markov Random Field a Priori Model, IEEE TRANSACTIONS ON IMAGE PROCESSING,1997,6(4) :pp549-565.
    [54] Tien D. Bui and Guangyi Chen, Translation-Invariant Denoising Using Multiwavelets, IEEE TRANSACTIONS ON DIGNAL PROCESSING,1998,46(12) :pp3414-3420.
    [55] Alberto Moreira, Improved Multilook Techniques Applied to SAR and SCANSAR Imagery, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991,29(4) :pp529-534.
    [56] Jean M.Durand, Bernard J. Gimmnet and Jacqueline R. Perbos, SAR Data Filtering for Classification, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1987,25(5) :pp629-637.
    [57] Hamid Krim and Irvin C. Schick, Minimax Description Length for Signal Denoising and Optimized Representation, IEEE TRANSACTIONS ON INFORMATION THEORY, 1999,45(3) :pp898-908.
    [58] Pierre Moulin and Juan Liu, Analysis of Multiresolution Image Denoising Schemes Using Generalized Gaussian and Complexity Priors. IEEE TRANSACTIONS ON INFORMATION THEORY,1999,45(3) :pp909-919.
    [59] Quentin.A.Holmes, Daniel R.Nuesch, Robert A.Shuchman,"Texture analysis and real time classification of sea-ice types using digital SAR data",IEEE Trans on Geosciences and Remote Sensing,Vol.22, No.2,1984: pp113-120.
    [60] S.P.S.Kushwaha,S.Kuntz,G.Oesten, "Applications of image texture in forest classification",. International Journal of Remote Sensing, Vol.15, No.11, 1994: pp2273-2284.
    [61] O.Dikshit, "Textural classification for ecological research using ATM
    
    
    images",International Journal of Remote Sensing, Vol.17, No.5, 1996: pp887-915.
    [62] G.Palubin Skas, R.M.Lucas, "An evaluation of fuzzy and texture-based classification approaches for mapping regenerating tropical forest classes from Landsar-TM data", International Journal of Remote Sensing, Vol.16,No.4, 1995:pp747-759.
    [63] H.Anys, D.C.He,"Evaluation of texural and multiporization radar features for crop classification",IEEE Trans on Geoscience and Remote Sensing, Vol.33, No.5,1995:pp1170-1181.
    [64] M.Beauchemin, K.P.B.Thomson,"Edge detection and speckle adaptive filtering for SAR images based on a second-order textural measure." International Journal of Remote Sensing ,Vol.17, No.9,1996: pp1751-1759.
    [65] Fawwaz T.Ulaby, "Textural information in SAR images", IEEE Trans on Geoscience and Remote Sensing,Vol.24, No.2,1986: pp235-245.
    [66] K.Sam Shanmugan, Venkatesh Narayanan, "Textural feature for radar image analysis", IEEE Trans on Geosciences and Remote Sensing, Vol.19, No.3, 1981: pp153-156.
    [67] Andren Baraldi,Flavio Parmiggian,"An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters", IEEE Trans on Geoscience and Remote Sensing,Vol.33, No.2,1995: pp293-304.
    [68] Marijke F.Augasteijn, Laura E.Clens,"perfermance evalution of texture measures for ground cover identification in satellite images by means of a neural network classifier", IEEE Trans on Geoscience and Remote Sensing , Vol.33, No.3, 1995:pp616-626.
    [69] E.Sali,H.Wolfson,"texture classification in aerial photographs and satellite data", International Journal of Remote Sensing,Vol.13, No. 18,1992 :pp3395-3408.
    [70] S.E.Franklin,D.R.Peddle, "Classification of SPOT HRV imagery and texture feature". International Journal of Remote Sensing, Vol.11, No.3, 1990:pp551-556.
    [71] A.Freeman,J.Viuasenor, J.D.Klein, "On the use of multi-frequency and polarimetric radar backscatter feature for classification of agricultural crops".
    [72] S.Baronti, F.Del Frate, "SAR polarimetric features of agricalture areas",International Journal of Remote Sensing, Vol.16, No.14, 1995:pp2639-2656.
    [73] Yoshihisa Kara, "Application of Neural Networks to Radar Image Classfication", B.S. MTT,1992.
    [74] J.D.Paola, R.A.Schowengerdt, "A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use
    
    classification",IEEE Trans on Geoscience and Remote Sensing, Vol.33, No.4, 1995:pp981-996.
    [75] N.B.Venkateswarlu, R.P.Singh "A fast maximum likelihood classifier". International Journal of Remote Sensing, Vol.16, No.2,1995 :pp313-320.
    [76] M.Schale, R.Furrer, "Land surface classification by neural networks", International Journal of Remote Sensing, Vol.16 ,No.l6,1995:pp3003-3031.
    [77] Liu Jian Guo, J.D.Haigh, "A three-dimensional feature space iterative clustering methed for multispectral image classifications",International Journal of Remote Sensing, Vol.15, No.3,1994:pp633-644.
    [78] M.B.Mccullo, W.B.Yates, "Crop classification from C-band polarimetric radar data",International Journal of Remote Sensing, Vol.15, No. 14, 1994:pp2871-2885.
    [79] N.B.Venkateswarlu, P.S.V.R.Raju, "Technical note : A new fast classfier for remotely sensed imagery", International Journal of Remote Sensing, Vol.14, No.2,993:pp383-389.
    [80] C.C.Hung, S.Ogata, "competitive learning networks for unsupervised training", International Journal of Remote Sensing, Vol.14, No.12,1995 :pp2411-2415.
    [81] Y.Inomata, S.Ogata, "supervised and unsupervised classificaion by histogram overlay techriques", International Journal of Remote Sensing, Vol.14, No. 14, 1993:pp2605-2616.
    [82] J.D.Wilson, "A comparison of procedures for classifying remotely-sensed data using simulated data sets". International Journal of Remote Sensing, Vol.13, No.2,1992:pp365-386.
    [83] J. J. Van Zyl, C.F.Burnette,"bayesian classfication of polarimetric SAR imeges using adaptive a priori probabilities", International Journal of Remote Sensing, Vol.13, No.5,1992:pp835-840.
    [84] T.O.Hammond, D.L.Verbula, "optimistic bias in classification accuracy asessment", International Journal of Remote Sensing, Vol.17, No.6, 1996:1261-1266.
    [85] Z.K.Lin, J.Y.Xiao, "classification of remotely-sensed image data using artifical neural networks",International Journal of Remote Sensing, Vol.12, No. 11, 1991:pp2433-2438.
    [86] 李金宗,《模式识别导论》,高等教育出版社,1994年7月.
    [87] 傅京孙,《模式识别应用》,北京大学出版社,1982年.
    [88] 焦李成,《神经网络计算》,西安电子科技大学出版社,1993年9月.
    [89] 张大鹏,数字图像纹理分析及其识别系统的研究,哈尔滨工业大学博士论文, 1985.
    [90] 刘小平.彭嘉雄,“基于FBM分形向量特征的图象匹配”《宇航学报》第 一期,1997:pp55-60.
    
    
    [91] Jong-Sen Lee, Mitchell R. Grimes, Thomas L. Ainsworth, Li-Jen Du, Dale L. Schuler and Shane R. Cloude, Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999,37(5) :pp2249-2258.
    [92] Dengru Wu and James Linders, A New Texture Approach to Discrimination of Forest Clearcut, Canopy, and Burned Area Using Airborne C-Band SAR, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,1999,37(l):pp555-563.
    [93] Takashi Kurosu, Seiho Uratsuka, Hideo Maeno and Toshiaki Kozu, Texture Statistics for classification of Land Use With Multitemporal JERS-1 SAR Single-Look Imagery, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999,37(l):pp227-235.
    [94] Seisuke Fukuda and Haruto Hirosawa, A Wavelet-Based Texture Feature Set Applied to Classification of Multifrequency Polarimetric SAR Images, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999,37(5) :pp2282-2286.
    [95] James R. Carr and Fernando Pellon de Miranda, The Semivariogram in Comparison to the Co-Occurrence Matrix for Classification of Image Texture, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998,36(6) :pp1945-1952.
    [96] Leen-Kiat Soh and Costas Tsatsoulis, Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999,37(2) :pp780-795.
    [97] Anil Jain and Douglas Zongker, Feature Selection: Evaluation. Application, and Small Sample Performance, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997,19(2) :pp153-158.
    [98] Joseph P. Hoffbeck and David A. Landgrebe, Covariance Matrix Estimation and Classification With Limited Training Data, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996,18(7) :pp763-767.
    [99] Roger Fj(?) toft, Armand Lopès, Jérome Bruniquel and Philippe Marthon, Optimal Edge Detection and Edge Localization in Complex SAR Images with Correlated Speckle, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999,37(5) :pp2272-2281.
    [100] 张晓玲,干涉合成孔径雷达成像处理技术研究,电子科技大学博士论文, 2000年
    [101] 汤志伟,合成孔径雷达原始数据模拟及其应用研究,电子科技大学博士论 文,2000年
    [102] M.W.Long著,薛德镛译,王福山校,陆地和海面的雷达波散射特性(雷达
    
     遥感的理论与实践),科学出版社,1981年11月
    [103] 王宏禹,随机数字信号处理,科学出版社,1988年5月
    [104] G.Strang,T.Nguyen,Wavelets and Filter Banks,Wellesley-Cambridge Press,1996.
    [105] 段凤增,信号检测理论,哈尔滨工业大学出版社,1988年10月
    [106] H.L.Van Trees著,毛士艺,周荫清,张其善译,《检测、估计和调制理论》, 国防工业出版社,1983年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700