中国地区极端气温变化的模拟评估及其未来情景预估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用1961-2006年中国中东部台站极端气温指数,分析了近46年中国中东部极端气温事件时空情况;应用IPCC-AR4提供GCM模拟极端气温指数结果对我国模拟能力评估并对未来21世纪不同排放情景下极端事件变化情况进行预估,同时利用统计(SDSM)和动力(LMDZ)方法对中国中东部极端气温变化进行降尺度模拟和评估,并采用评估效果较好的LMDZ区域降尺度方法预估中国中东部极端气温指数在21世纪中期变化情况。得到如下结论:
     1、IPCC-AR4提供的7个海气耦合模式对极端气温指数都具有一定的模拟能力,模式平均的模拟效果比单独用某一个模式要好。在年际的变化特征方面,模式平均的暖夜指数和霜冻日数相关系数最大分别为,0.74、0.68;生长季指数和温度年较差与观测数据的相关性较差。空间分布的评估结果表明,在全国范围内,以110°E为界,东部地区模拟效果较好,西部地区的模拟效果较差,对青藏高原地区的模拟效果最差。在极端气温指数中,模拟效果最好的是温度年较差,暖夜指数最差。综合评价表明GFDL-CM2.0和MIROC3.2(hires)对大多数指数的模拟效果都比较好。在未来21世纪A2情景下,霜冻日数、温度年较差呈减少趋势,其他气温指数均呈明显的增加趋势,热浪指数的增加趋势最明显,趋势系数达到90.2d/100a。从空间尺度变化发现,极端气温指数基本上是由北向南变化率逐渐增大,其中西北的极端指数变化率高于东北。
     2、中国中东部地区近46年以来夏日天数、年最低气温、年最低气温、暖夜指数、暖日指数和热浪指数均呈上升趋势,而霜冻日数、冷夜指数和冷日指数均呈下降趋势。区域平均的年最高气温、热浪指数变化趋势最小,分别为-0.063℃/10a、0.08%/10a,区域平均的霜冻日数变化趋势最明显,为-3.3d/10a。在年代际变化方面,表现出极端最低气温事件明显减少,极端高温事件有增多的趋势,但幅度要小于极端低温事件。极端气温事件在冬季和夏季变化的趋势明显,在春季和秋季变化幅度较小。在极端气温空间分布方面,霜冻日数的下降趋势最为明显,其中江苏和安徽地区变化最大,中心值达到-8天/10a。年最高气温、冷日指数、暖日指数的变化较小,在全区范围内通过显著性检验的主要为陕西和江浙沿海地区。
     3、SDSM-had同所嵌套的Hadcm3相比,在数值上更加接近实况,SDSM-had模拟区域平均极端气温误差均小于Hadcm3的模拟结果。在年际变化(时间序列相关系数)和空间分布特征(空间相关系数)方面SDSM-had模拟精度均强于Hadcm3,其中空间相关系数最好,均超过0.98。在SDSM-had模拟能力方面,SDSM-had模拟均方差小于观测值,这表明了SDSM-had极端值出现的频率小于实测资料。SDSM-had对武汉和南京的模拟效果较好。SDSM-had对中国中东部地区极端最高和最低气温空间分布具备很好的模拟能力,但存在明显的系统误差,其中SDSM-had对冬季最低气温的模拟(误差均值2℃)好于夏季最高气温(误差均值-2.8℃)。30年重现期极端气温结果表明,SDSM-had对重现期最低气温的模拟效果很差,误差平均在6℃以上,误差最大值为12℃。4、LMDZ区域气候模式的模拟效果要明显好于全球模式的模拟结果。区域气候模式模拟中国中东部地区季节和逐月平均最高和最低气温的误差均小于全球模式。变网格区域气候模式对极端气温的年际变化和空间分布均高于LMDZ-gcm,最高气温时间相关系数超过0.60,最低气温空间相关系数在0.90以上。变网格气候模式模拟代表站的结果表明,LMDZ-era40对极端气温均值、均方差和时间相关系数模拟效果好于LMDZ-reg,对武汉和南京模拟的效果最好。空间分布特征评估发现,两种方案对江苏、安徽、湖北有较好的模拟效果,而陕西是模拟效果最差的地区,其次是闽浙地区,LMDZ-reg比LMi)Z-era40与观测值误差更大。两种方案对30年重现期极端气温模拟有基本相同的空间分布特征,LMDZ-reg的模拟30年重现期最高气温误差相对较大。
     5、在未来21世纪中期A2情景下,中国中东地区平均的各月极端最高和最低气温呈增加趋势。最高气温增加最多的月份是2月,幅度达到2.81℃;增加最少的是5月,只有1.2℃。最低气温增加最多的月份是秋季11月份,增加最少的月份也发生在春季4月份,增加幅度为1.02℃。A2情景下未来21世纪中国中东部极端最低气温在各季节表现出由北向南变化一致减少的趋势,基本上(夏季除外)变化幅度最大的地区在江淮流域北部,变化幅度最小的地区一般在南部的广东和福建。而极端最高气温各季节则是在长江中下游流域存在变化的最大区域,而沿海的福建一带始终是变化最小的区域。30年重现期极端气温均有所升高,平均增加2℃左右,其中广东和福建地区存在重现期最高气温增加的高值区,中心值为7℃,在A2情景下,暖夜指数增加最显著,增幅最大的地区在广东、广西以及福建南部,增加幅度在85%以上,热浪指数变化最小。
This paper has evaluated the simulation ability of seven coupled General Circulation Models (GCM) supplied by the Intergovernmental Panel on Climate Change's 4th Assessment Report (IPCC-AR4) which are applied into climate simulations for the extreme temperature indices in China, followed by forecast on the changes in extreme events in the 21st century on different emissions scenarios. Then variations in the extreme temperature events over mid-east China during 1961-2006 are investigated by the extreme temperature indices therein. Last, SDSM and LMDZ down scaling methods are used in the simulation and evaluation of extreme temperature over mid-east China. As the LMDZ method has better results, it is utilized to forecast the variations of the extreme temperature indices over mid-east China in the 21st century.
     The main results are as follows:
     1. Based on the 1961~2000 extreme temperature observations in China, we have evaluated the simulations and predictions of products such as frost days (FD), growing season length (GSL), extreme temperature range (ETR), warm nights (TN90), and heat wave duration index (HWDI) from seven coupled General Circulation Models (GCM) supplied by the Intergovernmental Panel on Climate Change's 4th Assessment Report (IPCC-AR4). Results indicate that all the seven models are able to simulate the extreme temperature indices of China in a certain degree, while their ensemble acts better than any single one. For each index, most of the models can present linear trends of the same positive/negative signs as the observations but for weaker intensities. The simulation effects are different on a nationwide basis, with 110°N as the division, east (west) of which the effects are better (worse) and the worst over the Qinghai -Tibetan plateau. The predictions for the 21st century on emissions scenarios show that except decreases in the FD and ETR, other indices display significant increasing trend, especially for the indices of notable extreme climate such as HWDI and TN90, indicating that the temperature-related climate is moving towards the extreme. Under different kinds of emissions scenarios as SRES A2, SRES A1B, and SRES B1, the extreme temperature indices are always increasing (decreasing) consistently in the 21st century, with decrease (increase) in the FD and ETR (GSL, HWDI and TN90) . In the high emissions scenarios (A2), trends of the indexes are most significant, with the least in the low emissions scenarios (B1). Among the five indices, the largest changing ranges are in the HWDI and TN90, FD and GSL as the second, and least in the ETR. Except the GSL, the distributions of other four indices' trends are almost the same throughout China, with the variability rising gradually from north to south, and greater changes in northwest than northeast for indices of FD, ETR and HWDI, as different from the TN90 whose trends are more significant in southwest and south China.
     2. In the recent 46 years, the summer days (SU), yearly maximum and minimum temperature, warm nights (TN90), warm days (TX90) and heat wave duration index are increasing, as opposed to the FD, cold nights (TN10) and cold days (TX10), in which the yearly minimum temperature and TN90 have the largest rising trends. As respect to the inter-decadal variations, the extremely cold events are reduced significantly, while the extremely warm events are increased but with smaller ranges. The change of extreme temperature events are more distinct in the winter and summer rather than in the spring and autumn. As for the spatial distributions, the temperature indices have the positive or negative tendencies all over the study area, with national increasing (decreasing) trends in the SU, yearly minimum temperature , TN90 and HWDI (the FD , TN10 and TX10).
     3. SDSM-had simulations are better than the General Circulation Model Hadcm3 not only for the number of modeling products, but also for the simulated precision of the interannual variations (indicated by the connection coefficient between the temporal series) and the spatially distributions (indicated by the spatially connection coefficients). The SDSM-had can simulate the normal distribution of daily maximum and minimum temperatures for the stations, but with smaller frequency of the extreme values than the observations. The simulation effects of SDSM-had for the inter-decadal variations are better in the minimum temperature of winter than in the maximum temperatures of summer for the typical stations. The SDSM-had method are able to simulate the spatial distributions of extremely maximum/minimum temperatures over mid-east China and display the primary distribution characteristics of the real stations, but with significant systematic error, while the simulation effects are better for the minimum temperature in winter than maximum temperatures in summer. Extreme temperature return value evaluations indicate that the simulation capability of SDSM-had method are weak for the extreme minimum temperature.
     4. The simulations of LMDZ regional model are better than the GCM. The zoomed regional model can improve the simulating precision in the inter-decadal variations and spatial distributions of regional maximum and minimum temperatures. The zoomed climate model LMDZ-era40 and LMDZ-reg have the simulating capability for the maximum and minimum temperatures in mid-east China to some extent. Modeled results of typical stations show that the frequencies of the minimum temperature in winter and the maximum temperatures in summer are almost the same between the LMDZ-era40 and LMDZ-reg simulations, but better for the minimum temperature in winter than the maximum temperature in the summer. Mean square deviation, spatial/temporal connection coefficients indicate that the simulations of LMDZ-era40 are better than the LMDZ-reg. Evaluation of spatial distributions show that both the tests can simulate the main spatial distributions of the minimum temperature in winter and the maximum temperature in the summer with similar characteristics. Both are better over Jiangsu, Anhui, and Hubei provinces, while LMDZ-reg is less close to the observations than the LMDZ-era40. And both have the stable effects for extreme temperature return value evaluations, while the effects of minimum temperature return value evaluations are more stable than the maximum one.
     5. The LMDZ-reg simulations of the extreme temperature of mid-east China in the mid- 21st century under SRES A2 show that the monthly maximum and minimum temperatures may rise consistently but with different changing ranges. The maximum (minimum) temperatures increase greatest in the winter and autumn (winter and summer), least in the summer (spring). Generally, the frequency of extreme warm (cold) events is increasing (decreasing) notably. Variations in the GEV probability density functions are also show the significant warming of the extremely maximum and minimum temperatures, while the later increases more than the former. For annual and seasonal distributions (except the summer), the tendency of extremely minimum temperature are decreased from north to south in mid-east China, with the largest (smallest) change in the north Yangtze-Huaihe river valleys (Guangdong and Fujian). The annual and seasonal distributions of the extremely maximum temperature's trends are most significant in the mid-lower Yangtze River valleys, and least in the coastal regions in Fujian. The TN90 indicates the largest changing range among the study indices; the FD is the second, and the HWDI as the least.
引文
[1]Easterling D R,Evans J L,Groisman P Y,et al.Observed variability and trends in extreme climate events:A brief review[J].Bulletin of the American Meteorological Society,2000,8 1(3):417-425.
    [2]Beniston M,Stephenson D B,et al.Future extreme events in European climate:An exploration of regional climate model projections[J].Climatic Change,2007,81(Supplement 1):71-95.
    [3]IPCC.Climate Change 2001:The Scientific Basis.Houghton J T,et al.eds.Cambridge,Cambridge University Press,2001:1-881
    [4]IPCC,2007:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[Solomon,S.,D.Qin,M.Manning,Z.Chen,M.Marquis,K.B.Averyt,M.Tignor and H.L.Miller(eds.)].Cambridge University Press,Cambridge,United Kingdom and New York,NY,USA,996 pp.
    [5]胡宜昌、董文杰、何勇、21世纪初极端天气气候事件研究进展,地球科学进展,2007,22(10):1067-1075
    [6]Alexander L V,Zhang X,Peterson T C,et al.Global observed changes in daily climate extremes of temperature and precipitation[J].Journal of Geophysical Research,2006,111(3):D05109.
    [7]Kiktev D,Sexton D M H,Alexander L,et al.Comparison of modeled and observed trends in indices of daily climate extremes[J].Journal of Climate,2003,16(22):3560-3570.
    [8]Brabson B B,Palutikof J P.The evolution of extreme tempera-lures in the central England temperature record[J]Geophysical Research Letters,2002,29(24):2163-2166.
    [9]Tank A,Kunnen G P.Trends in indices of daily temperature and precipitation extremes in Europe,1946-1999[J].Journal of Climate,2003,16(22):3665-3680.
    [10]Nogaj M,Yiou P,Parey S,et al.Amplitude and frequency of temperature extremes over the North Atlantic region[J].Geophysical Research Letters,2006,33(5):L10801.
    [11]Vincent L A,Mekis.Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century[J].Atmosphere Ocean,2006,44(2):177-193.
    [12]Manton M J,Della-Marta P M,Haylock M R,et al.Trends in extreme daily rainfall and temperature in southeast Asia and the south Pacific:1961.1998[J].International Journal of Climatology,2001,21(3):269-284.
    [13]Griffiths G M,Chambe-L E,Haylock M R,et al.Change in mean temperature as a predictor of extreme temperature change in the Asia Pacific region[J].International Journal of Climatology,2005,25(10):1301-1330.
    [14]Peterson T C,Taylor M A,Demeritte R,et al.Recent changes in climate extremes in the Caribbean region[J].Journal of Geophysical Research,2002,107(21):4601-4609.
    [15]翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化[J].地理学报,2003,58(增刊):1-10.
    [16]Zhai P M,Pan X H.Trends in temperature extremes during 1951-1999 in China[J].Geophysical Research Letters,2003,30(17):1913-1916.
    [17]龚道溢,韩晖.华北农牧交错带夏季极端气候的趋势分析[J].地理学报,2004,59(2):230-238.
    [18]Qian W H,Lin X.Regional trends in recent temperature indices in China[J].Climate Research,2004,27(5):119-134.
    [19]周秀杰,张桂华,郑红,等.黑龙江省气候变暖对极端天气气候事件的影响[J].气象,2004,30(11):47-50.
    [20]王鹏祥,杨金虎.中国西北近45年来极端高温事件及其对区域性增暖的响应[J].中国沙漠,2007,27(7):649-655.
    [21]Kunkel K E,Easterling D R,Redmond K.Hubbard K.Temporal variations of extreme precipitation events in the United States:1895-2000[J].Geophysical Research Letters,2003,30(17):1900.
    [22]Goswami B N,Venugufal V,Sengupta D,et al.Increasing trend of extreme rain events over India in a warming environment[J].Science,2006,314(5804):1442-1445.
    [23]Haylock M R,Peterson T C,Alves L M,et al.Trends in total and extreme south American rainfall in 1960-2000 and linkswith sea surface temperature[J].Journal of Clinutte,2005,19(8):1490-1512.
    [24]Zhai P M.Zhang X B,Wan H,et al.Trends in total precipitation and frequency of daily precipitation extremes over China[J].Journal of Clinutte,2005,18(7):1096-1108.
    [25]Wang Y Q,Zhou L.Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation[J].Geophysical Research Letters,2005,32(5):L09707.
    [26]Qian W,Lin X.Regional trends in recent precipitation indices in China[J],meteorology and Atmospheric Physics,2005,90(2):193-207.
    [27]赵庆,张武,王式功,等.西北地区东部干旱半干旱区极端降水事件的变化[J].中国沙漠,2005,25(6):904-909.
    [28]孙风华,吴志坚,杨素英.东北地区近50年来极端降水和干燥事件时空演变特征[J].生态学杂志,2006,25(7):779-784.
    [29]许吟隆,中国21世纪气候变化的情景模拟分析,南京气象学院学报,2005,28(3):324-329
    [30]陈起英、俞永强、郭裕福,温室效应引起的东亚区域气候变化,气候与环境研究,1996,1(2):114-123
    [31]姜大膀、王会军、郎咸梅,全球变暖背景下东亚气候变化的最新情景预测,地球物理学报,2004,47(4):591-596
    [32]姜大膀、王会军、郎咸梅,SRES A2情景下中国气候未来变化的多模式集合预测结果,地球物理学报,2004,47(5):777-784
    [33]高学杰、赵宗慈、丁一汇等,温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化:气象学报,2003,61(1),30-38
    [34]高学杰、赵宗慈、丁一汇等,Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate model,Advances in Atmospheric Sciences,2001,18(6),1225-1230
    [35]高学杰、赵宗慈、丁一汇等,温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化:气象学报,2003,61(1),21-28
    [36]徐影、丁一汇、赵宗慈,近30年人类活动对东亚地区气候变化影响的检测与评估,应用气象学报,2002,13(5):514-525
    [37]Jiang Dabang,WANG Huijun,and LANG Xianmei,Evaluation of East Asian Climatology as Simulated by Seven Coupled Models,ADVANCES IN ATMOSPHERJC SCIENCES,2005,VOL.22,NO.4,479-495
    [38]许吟隆,中国21世纪气候变化的情景模拟分析,南京气象学院学报,2005,28(3):324-329
    [39]许吟隆,黄晓莹,张勇,等.中国21世纪气候变化情景的统计分析.气候变化研究进展,2005,1(2):80—83
    [40]赵宗慈,全球气候变化预估最新研究进展,气候变化研究进展,2006(2):69-70
    [41]赵宗慈、王绍武、罗勇,IPCC成立以来对温度升高的评估与预估,气候变化研究进展,2007(3):183-184
    [42]赵宗慈、罗勇,21世纪中国东北地区气候变化预估.气象与环境学报,2007,23(3):162-166
    [43]Gao X J,Zhao Z C,Ding Y H,et al.Climate change due to greenhouse effects in China as simulated by a regional climate model.Adv.Atmos.Sci.,2001,18(6):1224-1230
    [44]高学杰,周广庆,陈嘉滨.仅引入质量守恒律的T63模式对全球大气环流和中国气候的模拟.气候与环境研究,2003,8(3):339-347
    [45]高学杰,林万涛,Fred Kuchars等.实况海温强迫的CCM3模式对中国区域气候的模拟能力.大气科学2004,28(1):78-90
    [46]王淑瑜.5个海气耦合模式模拟东亚区域气候能力的初步分析.气候与环境研究,2004,9(2):240-250
    [47]Phillips,T.J.,and P.J.Gleckler,Evaluation of Continental Precipitation in 20th-Century Climate Simulations:The Utility of Multi-Model Statistics.Water Resource Research,2006 VOL.42,W03202,doi:10.1029/2005WR004313
    [48]Sun,Y.,S.Solomon,A.Dai,and R.Portmann.How often does it rain? J.Climate,2005,19:916-934
    [49]Frich,P.,Alexander,L.V.,Della-Marta,P.,Gleason,B.,Haylock,M.,Klein Tank,A.M.G.,and Peterson,T.,(2002),Observed coherent changes in climatic extremes during the second half of the twentieth century.Clim.Res.,19,193-212
    [50]Claudia Tebaldi,Katharine Hayhoe et al,Going to the extremes-An intercomparison of model-simulated historical and future changes in extreme events,Climatic Change,2006,79,185-211
    [51]高学杰,中国地区极端事件预估研究.气候变化研究进展,2007,3(3):162-166
    [52]Houghton,J.T.,Y.Ding,D.J.Griggs,M.Noguer,P.J.van der Linden,and D.Xiaosu,Eds.,2001:Climate Change 2001:The Scientific Basis:Contributions of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,881 pp.
    [53]符淙斌,苏炳凯.区域环境系统集成模式的发展和应用研究[M].北京:气象出版社,2004.
    [54]Ding Y H,Shi X L,liu YM,et al.Multi2year simulations and experimental seasonal predictions for rainy seasons in China by u2 sing a nested regional climate model(RegCM_NCC)Part Ⅰ:Sensitivity study[J].Advances in Atmospheric Science,2006,23(3):323-341.
    [55]Ding Y H,liu YM,Shi X L,et al.Multi2year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model(RegCM_NCC)Part Ⅱ:The experiment seasonal prediction[J].Advances in AtmosphericScience,2006,23(4):487-503.
    [56]Liu YM,Johnny C L Chan,Chow K C,et al.Ten2year climatology of summer mosoon over South China and its surroundings simulated from a regional climate model[J].International Journal of Climatology,2006,26:1412157.
    [57]Lee D K,SuhM S.Ten2year EastAsian summermonsoon simulation using a regional climate model (RegCM2)[J].Journal of Geophysical Research,2000,105(24):29 565-29 577.
    [58]刘一鸣,丁一汇,李清泉.区域气候模式对中国夏季降水的10年回报试验及其评估分析[J].应用气象学报,2005,16(增刊):41-47.
    [59]Department of Energy(DOE).1996.The 1996 Baseline Environmental Management Report.DOE/EM-0290.Volume Ⅰ.Office of Environmental Management.June.
    [60]Mearns et al.,1996 L.O.Mearns,C.Rosenzweig and R.Goldberg,The effect of changes in daily and interannual climatic variability on CERES-Wheat:a sensitivity analysis,Climate Change 32(1996),pp.257-292
    [61]Xu,C.-Y,1999b,Climate change and Hedrologic models:A review of Existing Gaps and Recent Research Developments,Water Resources Management,13,369-382
    [62]Sen O L,WangB,Wang YQ.Impacts of re2greening the desertified lands in Northwestern China: Implications from a regional climate model experiment[J].Journal of the Meteorological Society Japan,2004,82(6):1679-1693.
    [63]李巧萍,丁一汇.植被覆盖变化对区域气候影响的研究进展[J].南京气象学院学报,2004,27(1):131-140.
    [64]ChenM,Pollard D,Barron E J.Regional climate change in East Asia simulated by an interactive atmosphere soil vegetation model[J].Journal of Climate,2004,17:557-572.
    [65]钱云,钱永甫,张耀存.末次冰期东亚区域气候变化的情景和机制研究[J].大气科学,1998,22(3):283-293.
    [66]郑益群,于革,王苏民.区域气候模式对末次盛冰期东亚季风气候的模拟研究[J].中国科学:D 辑,2002,32(10):871-880.
    [67]王世玉,钱永甫.P2σ九层区域气候模式对东亚区域气候季节与年际变化的模拟[J].大气科学,2003,27(5):798-810.
    [68]Wilby,R.L.and T.M.L.Wigley(1997):Downscaling general circulation model output:a review of methods and limitations.Progress in Physical Geography 21:530-548.
    [69]李巧萍,丁一汇.区域气候模式对东亚季风和中国降水的多年模拟与性能检验[J].气象学报,2004,62(2):140-153.
    [70]李巧萍,丁一汇.区域气候模式对东亚冬季风多年平均特征的模拟[J].应用气象学报,2005,16(增刊):30-40.
    [71]Leung L R,Zhong S Y,Qian Y,et al.Evaluation of regional climate simulations of the 1998 and 1999East-Asia summer monsoon using the GAME/HUBEX observational data[J].Journal of the Meteorological Society Japan,2004,82(6):1695-1713.
    [72]Liu Y Q,Avissar R,Giorgi F.Simulation with the regional climate model RegCM2 of extremely anomalous precipitation during the 1991 east Asian flood:An evaluation study[J].Journal of Geophysical Research,1996,101(21):26 199-215.
    [73]刘永强,丁一汇,赵宗慈,1991年江淮特大异常降水的区域气候模拟[C]赵宗慈编.中国短期气候预测的模式研究.北京:气象出版社,1996:106-120.
    [74]罗勇,赵宗慈.NCAR RegCM2对东亚区域气候的模拟试验[J].应用气象学报,1997,8(增刊):124-133.
    [75]刘一鸣,丁一汇.修正的质量通量积云对流方案及其模拟试验研究第一部分:方案介绍及对1991年洪涝过程的模拟[J].气象学报,2001,59(1):10-22.
    [76]刘一鸣,丁一汇.修正的积云对流质量通量方案及其模拟试验研究第二部分:三种积云方案的积云对流活动及MFS方案相关参数的敏感性试验[J].气象学报,2001,59(2):129-142.
    [77]Leung L R,Ghan S J,Zhao Z C,et al.Inter2comparison of regional climate simulations of 1991summer-monsoon in eastern Asia[J].Journal of Geophysical Research,1999,104:25-454.
    [78]Wei H L,WangW C.A regional model simulation of summer-monsoon over East Asia:A case study of 1991 flood in Yangtze-Huai River valley[J].Advance in Atmospheric Science,1998,15(4):489-508.
    [79]Gong W,Wang W Q.A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai river valley.Part Ⅱ:Model bias[J].Journal of Climate,2000,13:93-108.
    [80]龚威,李维亮.中国区域气候模式对1991年江淮流域特大暴雨过程的模拟[J].应用气象学报,1997,8(3):325-334.
    [81]Wang W Q,Gong W,Wei H.A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai river valley.Part Ⅰ:precipitation and circulation statistics[J].Journal of Climate,2000,13:73-92.
    [82]Liu YM,Ding Y H.Simulation of heavy rainfall in the summer of 1998 over China with regional climate model[J].Acta Meteorology Sinica,2002,16(3):348-362.
    [83]刘华强,钱永甫,郑益群.P2σ坐标系区域气候模式与GCM的嵌套试验[J].高原气象,2002,21(2):113-118.
    [84]Wang Y Q,Sen O L,Wang B.A highly resolved regional climate model(IPRC-RegCM)and its simulation of the 1998 severe precipitation event over China.Part Ⅰ:Model description and verification of simulation[J].Journal of Climate,2003,16:1721-1738.
    [85]Lee D K,Cha D K,Kang H S.Regional climate simulation of the 1998 summer flood over East Asia [J].Journal of the Meteorology Society of Japan,2004,82(6):1735-1753.
    [86]Hsu H H,Yu Y C,KauW S,et al.Simulation of the 1998 East Asian Summer-Monsoon using the Purdue Regional Model[J].Journal of theMeteorological Society Japan,2004,82(6):1715-1733
    [87]Giorgi F,Hewitson B.Regional climate information-Evaluation and Projection[C]// Houghton J T,Ding Y,GriggsD J,et al.eds.Climate Change:The Scientific Basic.Cambridge,UK:Cambridge University Press,2001:5852638.
    [88]Kato H,Hirakuchi H,Nishizawa K.Performance ofNCAR RegCM in the simulation of June and January climatesover eastern Asia and the high2resolution effect of the model[J].Journal of Geophysical Research,1999,104(D6):6455-6476.
    [89]Giorgi F,Huang Y,Nishizawa K,et al.A seasonal cycle simulation over East Asia and its dependency on radiative transfer and surface process[J].Journal of Geophysical Research,1999,104:6403-6423.
    [90]Emori S,Nozawa T,Numaguti A,et al.Importance of cumulus parameterization for precipitation simulation over East Asia in June[J].Journal of the Meteorological Society Japan,2001,79(4):939-947.
    [91]Kato H,Nishizawa K,Hirakuchi H,et al.Performance of RegCM2.5/NCAR2CSM nested system for the simulation of climate change in East Asia caused by global warming[J].Journal of the Meteorological Society Japan,2001,79(1):99-121.
    [92]Giorgi F,Mearns L O.Introduction to special section:Regional climate modeling revisited[J].Journal of Geophysical Research,1999,104:6335-6352.
    [93]Hong S Y,Juang H M H,Lee D K.Evaluation of a regional spectral model for the East Asian monsoon case studies for July 1987 and 1988[J].Journal of the Meteorological Society Japan,1999,77:553-572.
    [94]黄安宁,张耀存.海温季节和年际变化对东亚区域气候变率模拟的影响[J].南京大学学报:自然科学版,2004,40(3):319-329.
    [95]Luo Yong,Zhao Zongci,Ding Yihui.Ability ofNCAR RegCM2 in reproducing the dominant physical processes during the anomalous rainfall episodes in the summer of 1991 over the Yangtze-Huaihe river[J].Advance in Atmospheric Sciences,2002,19(2):236-254.
    [96]Wilby,R.l.,1998.Modelling low-frequency rainfall events using airflow indices,weather patterns and frontal frequencies,Journal of Hydrology,212-213:380-392
    [97]Hewitson,B.C,Crane,R.G,1996.Climate downscaling:techniques and application Climate Research,7:85-95.
    [98]Sailor D J,Li X.A semiempiral downscaling approach for predicting regional temperature impacts associated with climatic change[J].Journal of Climate,1999,12:103-114.
    [99]Julie A Winkler,Jean P Palutikof,Jeffrey A Andresen,et al.The simulation of daily temperature time series from GCM output.Part Ⅱ:Sensitivity analysis of an empirical transfer function methodology[J].Journal of Climate,1997,10:1514-1532.
    [100] Schubert, Sascha. Downscaling Local Extreme Temperature Changes in South - eastern Australia From the CSIRO MARK2 GCM [J] . International Journal of Climatology , 19 98, 18 : 1419 -1438.
    
    [101]Oshima Naoko, Hisashi Kato , Shinji Kad okura. An application of statistical downscaling to estimate surface air temperature in Japan [J] .Journal of Geophysics Research, 2002 , 107 ( D10 ) : 14-1-14-10.
    
    [102]SchoofJ T, Pryor SC . Downscaling Temperature and Precipitation: A Comparison of regression - based Methods and Artificial Neural Network s [J] . International Journal of Climatology , 2001, 21: 773-790.
    [103] Wilby R L, Wigley T M . Precipitation Predictors for downscaling : Observed and General Circulation Model Relationships [J]. International Journal of Climatology , 2000, 20 (5): 641-661.
    [104]Fuentes U , Heimann D . An improved statisitical- dynamical downscaling scheme and its application to the Alpine precipitation climatology [J]. Theoretical & Applied Climatology, 2000, 65 : 119-135.
    
    [105]Hellstr m Cecilia , Deliang Chen , Christine Achberger , et al .Comparison of climate change scenarios for Sweden based on statistical an d dynamical downscaling of monthly precipitation [J] .Climate Research, 2001 , 19 : 45-55.
    
    [106]Kilsby CG , Cowpertwait PSP , O'Connell P E , et al. Predicting Rainfall Statistics in England and Wales Using Atmospheric Circulation Variables [ J] . International Journal of Climatology , 2000 , 18 : 523-539.
    
    [107] Busui ocAristita , DeliangChen , Cecilia Hellstrm . Preformance of statistical downscaling models in GCM validation and regional climate change estimate : Application for Swedish precipitation [J] . International Journal of Climatolog y , 1999 ,2 1: 557-578.
    [108]Enke W , Spekat A . Downscaling clim ate model outputs into local and regional weather elements by classification and regression [J] . Climate Research , 1997 , 8 : 195-207.
    [109]Huth R. Potential of continental- scale circulation for determination of local daily surface variables [J] . Theoretical and Applied Climatology, 1997, 56 : 165-18 6.
    [110] Burger G . Expanded downscaling for generating local weather scenarios [J] .Climate Research , 1996, 7:111 -128.
    [111]Cui M, Von StorchH , Zorita E . Coastal sea level and the large scale climate state: A downscaling exercise for t he Japanese Is lands [J] . Tellus, 1995 , 47 : 132-144.
    [112]Wilby R L , Hassan H, Hanaki K . Statistical downscaling of hydro-meterological variables using general circulation model output [J] . Journal of Hydrology, 1998 , 2 05 : 1-19.
    [113]Blenckner T, Chen D . Comparison of the impact of regional and north - Atlantic atmospheric circulation on an aquatic ecosystem [J] . Climate Research, 2003, 23: 131-136.
    [114] Omstedt A , Chen D . Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea [J] . Journal of Geophysics Research , 2001 , 106 (C3) : 4493-4500.
    [115]Bergant K, Kajfez- Bogataj J, Crepinsek Z . Statistical downscaling of general circulation model simulated average monthly air temperature to the beginning off lowering oft he dandelion (Tarax-acum officinale) in Slovenia [J] . International Journal of Biology, 2001, 46: 22-32.
    [116] 么枕生,丁裕国.气候统计[M].北京:气象出版社,1990.
    [117]Mears L O , Katz R W, Schneider S H. Extreme h igh temperature events: changes in their probabilities with changes in mean temperature [J ]. J Climate App Meteor, 1984, 23 (4): 1601-1613
    [118] Katz, R. W, B.G.Browns, Extreme events in a changing climate: Variability is more important than averages,Climatic Change,21,289-302,1992.
    [119]Smith R L,Tawn J A,Co les S G.M arkov chain models for threshold exceedances[J].Biometrika,1997,84(1):249-268.
    [120]孟庆珍,张杏敏,成都地面最低气温年极值的渐近分布[J].成都气象学院学报.1997,12(2),130-138
    [121]王柏均,陈刚毅.渐近极值理论在气候极值降水预测中的应用[J].成都气象学院学报,1994,9(2).
    [122]丁裕国,刘吉峰,张耀存.基于概率加权估计的中国极端气温时空分布模拟试验[J].大气科学,2004,28(5):770-782.
    [123]Zwiers,F.W.,and V.V.Kharin,1998:Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling.J.Climate,11,2200-2222.
    [124]Hosking,J.R.M.,1990:L-moments:Analysis and estimation of distributions using linear combinations of order statistics.J.Roy.Stat.Soc.,B52,105-124.—,1992:Moments or L-moments? An example comparing the two measures of distributional shape.Amer.Stat.,46,186-189.—,J.R.Wallis,and E.F.Wood,1985:Estimation of the generalized extreme-value distribution by the method of probability-weighted moments.Technometrics,27,251-261.
    [125]Kharin,V.V.,and F.W.Zwiers,2000:Changes in the extremes in an ensemble of transient climate simulation with a coupled atmosphere-ocean GCM.J.Climate,13,3760-3788.
    [126]Kharin,V.V.,and E W.Zwiers,2005,Estimating extremes in transient climate change simulations,J.Clim.,18,1156-1173.J
    [1]赵宗慈,全球气候变化预估最新研究进展,气候变化研究进展,2006,2(2):69-70.[ZHA0 Zongci,Latest Advances in Global Climate Projections,2OO6,Advance in Climate Change Research,2(2):69-70]
    [2]IPCC.Climate Change 2001:The Scientific Basis.Houghton J T,et al.eds.Cambridge:Cambridge University Press,2001.1-881
    [3]徐影、丁一汇、赵宗慈,近30年人类活动对东亚地区气候变化影响的检测与评估,应用气象学报,2002,13(5:514-525.[XU Y,Ding YH,Zhao ZC.2002.Detection and evaluation of effect of human activities on climatic change in EastAsia in recent 30 years.Journal of Applied Meteorological Science 13(5):514-525.]
    [4]许吟隆,中国21世纪气候变化的情景模拟分析,南京气象学院学报,2005,28(3):324-329.[XU YL.2005.Analyses on scenario simulations of the 21st century climate change in China,Journal of Nanjing Institute of Meteorology,28(3):324-329.]
    [5]许吟隆,黄晓莹,张勇,林万涛,林而达,中国21世纪气候变化情景的统计分析,气候变化研究进展,2005,2(1):81-83.[XU Yinlong,HUANG Xiaoying,ZHANG gong,et al,Statistical Analyses of Climate Change Scenarios over China in the 21~(st)Century,Advance in Climate Change Research,2005,2(1):81-83]
    [6]陈起英、俞永强、郭裕福,温室效应引起的东亚区域气候变化,气候与环境研究,1996,1(2):114-123.[CHEN QY,Yu YQ,GU YF.1996.Climatic change in East Asia induced by greenhouse effect,Climatic and Environmental Research,1(2):114-123]
    [7]姜大膀、王会军、郎咸梅,全球变暖背景下东亚气候变化的最新情景预测,地球物理学报,2004,47(4):591-596.[JIANG DB,Wang HJ,Lang XH.2004a.East Asian climate change trend under global warming background.Chinese Journal of Geophysics 47(4):591-596.]
    [8]姜大膀、王会军、郎咸梅,SRES A2情景下中国气候未来变化的多模式集合预测结果,地球物理学报,2004,47(5):777-784.[JIANG DB,Wang H J,Lang XH.2004b.Multimodel Ensemble Prediction for Climate Change Trend of China under SRES A2 Scenario.Chinese Journal of Geophysics 47(5):777-784.]
    [9]高学杰、赵宗慈、丁一汇等,温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化:气象学报,2003,61(1),30-38.[GAO XJ,Zhao ZC,Ding YH,Huang RH,Giorgi F.2003.CLIMATE CHANGE DUE TO GREENHOUSE EFFECTS IN CHINA AS SIMULATED BY A REGIONAL CLIMATE MODEL PART Ⅱ:CLIMATE CHANGE.Acta Meteorologica Sinica(in Chinese)61(1),30-38.]
    [10]Gao XJ,Zhao ZC,Ding YH,Huang RH,et al,Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate model,Advances in Atmospheric Sciences,2001,18(6),1225-1230
    [11]高学杰,中国地区极端事件预估研究,气候变化研究进展,2007,3(3),163-165.[GAO Xuejie,Researches in Projection of Extreme Events in China,Advance in Climate Change Research,2007,3(3),163-165]
    [12]赵宗慈、王绍武、罗勇,IPCC成立以来对温度升高的评估与预估,气候变化研究进展,2007,3(3),183-184.[ZHAO zongci,WANG Shaowu,LUO Yong,Assessments and Projections of Temperature Rising Since the Establishment of IPCC,Advancein Climate Change Research,2007,3(3),183-184]
    [13]许崇海、沈新勇、徐影,IPCC-AR4模式对东亚地区气候模拟分析,气候变化研究进展,2007,3(5),287-292.[xu Chonghai,SHEN Xinyong,XU Ying,An Analysis of Climate Change in East Asia by Using the IPCC AR4Simulaions.Advance in Climate Change Research,2007,3(5),287-292]
    [14]周天军,赵宗慈20世纪,20世纪气候变暖的归因分析,气候变化研究进展,2006,2(1),29-31.[ZHOU Tinjun,ZHAO zongci,Attribution of the Climate warmingin China forthe 20~(th)Century,Advancein Climate Change Research,2006,2(1),29-31]
    [15]Zhou Tianjun,Yu Rucong.Twentieth century surface air.temperature over China and the globe simulated by coupled climate models.Journal of Climate.2006.19(22):5843-5858
    [16]孙颖 用于IPCC第四次评估报告的气候模式比较研究简介,气候变化研究进展,2005(4):162-163.[SUN Ying,Introduct ion to Anal yses of Climate Model Simulat ions for the IPCC AR4,Advance in Climate Change Research, 2005(4): 162-163]
    [17] Claudia Tebaldi, Katharine Hayhoe et al, Going to the extremes-An intercomparison of model-simulated historical and future changes in extreme events, Climatic Change ,2006,79, 185-211
    [18] Salas y M'elia, D., Chauvin, F., D'equ'e, M., Douville, H., Gueremy, J. F., Marquet, P., Planton, S., Royer J. F., and S., T.: Description and validation of the CNRM-CM3 global coupled model, Climate Dyn.,2006, 26: 199-214
    [19] Delworth, T. L, Broccoli, A. J., Rosati, A., Stouffer, R. J.,etc: GFDLs CM2 global coupled climate models - Part 1: Formulation and simulation characteristics, J. Climate, in press, 2006, 19 (5) : 643-674
    [20] Gnanadesikan. A., and Coauthors, 2006: GFDL's CM2 global coupled climate models. Part II: The baseline ocean simulation J. Climate, 19,675-697.
    [21] Diansky, N. A., and E. M. Volodin, 2002: Simulation of presentday climate with a coupled atmosphere-ocean general circulation model. Izv. Atmos. Oceanic Phys., 38,732-747.
    [22] Marti, O. et al.: The new IPSL climate system model: IPSLCM4,Tech. rep., Institut Pierre Simon Laplace des Sciences del' Environnement Global, IPSL,Case 101,4 place Jussieu, Paris,France, 2005.
    [23] Hasumi, H., and S. Emori, 2004: K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, Center for Climate System Research, University of Tokyo, 34 pp.
    [24] Thomas C. Peterson and Christopher Folland Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs 1-143
    [25] Frich, P., 1999: REWARD - A Nordic Collaborative Project. Annex of "Meeting of the Joint CCI/CLIVAR Task Group on Climate Indices, Bracknell, UK, 2-4 September 1998, Folland, C. K., Horton, E. B. and Scholefield, P. R. (Eds), World Climate Data and Monitoring Programme, WCDMP-No. 37, WMO-TD No. 930. WMO (1999).
    [26] Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B .et al.:2005, 'Global observed changes in daily climate extremes of temperature and precipitation', Geophys. Res, 2006,111:1-22.
    [1]Plummet N,Salinger M J,Nicholis N,et al.Changes in climate extremes over the Australian region and New Zealand during the twentieth centuries[J].Climate Change,1999,42:183-202
    [2]IPCC.Climate Change 2001:The Scientific Basis[M].Cambridge,UK:Cambridge Urtiversity Press,2001:1-785.
    [3]IPCC.Climate Changes 1995:The Science of Climate Change[MJ.New York:Cambrige University Press,1996:141-193.
    [4]江彤,苏布达,王艳君等,四十年来长江流域气温、降水与径流变化趋势[J].气候变化研究进展,2005,1(2):65-68
    [5]Su B D,Jiang T,Shi Y F,et al.Observed precipitation trends in the Yangtze River Basin from 1951-2002[J].Journal of Geographical Science,2004,14(2):204-218.
    [6]苏布达,江彤,施雅风等,1990长江流域降水趋势分析[J],湖泊科学,2003,15(增刊):38-48.
    [7]PANMAO ZHAI,Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China,JOURNAL OF CLIMATE,2005,vo1(18):1096-1108
    [8]梅伟、杨修群,我国长江中下游地区降水变化趋势分析,南京大学学报,2005,41(6):577-589
    [9]田红、李春、张士洋,近50年我国江淮流域气候变化,中国海洋大学学报,2005,35(4):539-544
    [10]Yuqing Wang and Li Zhou,Observed trends in extreme precipitation events in China during1961—2001 and the associated changes in large-scale circulation,GEOPHYSICAL RESEARCH LETTERS,2005,VOL(32):1-4
    [11]龚道溢、王绍武、朱锦红,1990年代长江中下游地区多雨的机制分析,地理学报,2002,55(5):567-573
    [12]杨宏青、陈正洪、石燕等,长江流域近40年强降水的变化趋势,气象,2005,31(3):66-88
    [13]龚道溢、朱锦红、王绍武,长江流域夏季降水与前期北极涛动的显著相关,科学通报,2002,47(7):546-549
    [14]龚振淞、何敏,长江流域夏季降水与全球海温关系的分析,气象,2006,32(1):56-61
    [15]Li Xiaodong,Zhu Yafen,Qian Weihong.Spatiotemporal variations of summer rainfall over Eastern China during 1880—1999 Adv Atmos Sci,2002,19(6):1055-1068.
    [16]张永领、程炳岩、丁裕国,黄淮地区降水极值统计特征的研究,南京气象学院学报,2003,26(1):71-75
    [17]汪方、丁裕国、范金松,江苏夏季逐日降水极值统计特征诊断研究,气象科学,2002,22(4):436-443
    [18]刘小宁,我国暴雨极端事件的气候变化特征,灾害学,1999,14(1):55-59
    [19]张永领、高全洲、丁裕国、姜彤长江流域夏季降水的时空特征及演变趋势分析,热带气象学报,2006,22(2):162-168
    [20]陈辉、施能、王永波,长江中下游气候的长期变化及基本态特征,气象科学,2001,21(1):45-53
    [21]苏布达、姜彤、任国玉等,长江流域1960-2004年极端强降水时空变化趋势,气候变化研究进展,2006,2(1):10-14
    [22]North G R,Bell TL,Cahalan R F.Sampling errors in the estimation of empirical orthogonal functions[J].Mort Wea Rev,1982,110(7):699-706.
    [23]Weng,H.,A.Sumi,Y.N.Takayabu,M.Mimoto,and C.-Y.Li(2004),Interannual-interdecadal variation in large-scale atmospheric circulation and extremely wet and dry summers in China/Japan during 1951-2000.part Ⅱ:Dominant timescales,J.Meteorol.Soc.Jpn.,82,789-804.
    [1]Wilby R L,Hassan H,Hanaki K.Statistical downscaling of hydrometeorological variables using general circulation model output.J Hydro,1998,205:219
    [2]Wilby R L,Dawson C W,Barrow E M.SDSM—A decision support tool for the assessment of regional climate change impacts.Environ Model Soft,2002,17:147-159
    [3]Winkler J A,Palutikof J P,Andresen J A,et al.The simulation of daily temperature time series from GCM output:Part Ⅱ:Sensitivity analysis of an empirical transfer function methodology.J Climate,1997,10:2514-2535
    [4]Hay L E,Wilby R L,Leavesley G H.A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States.J Amer Water Resour Assoc,2000,36(2):387-397
    [5]Palutikof J P,Godess C M,Watkins S J,et al.Generating rain-fall and temperature scenarios at multiple sites:examples fromthe Mediterranean.J Climate,2002,15:3529-3548
    [6]施小英,徐祥德,徐影.中国600个站气温和IPCC模式产品气温的比较.气象,2005,31(7):49-53
    [7]赵芳芳,徐宗学,统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析,气象学报,2007,65(7):654-662
    [8]Wilby R L,Charles S P,Zorita E,et al.IPCC-TGCIA,2004:Guidelines for use of climate scenarios developed from statisticaldownsealing methods.Intergovernmental Panel on Climate Change,Task Group on Scenarios for Climate Impact Assessment,2004:27pp
    [9]徐影,丁一汇,赵宗慈.近30年来人类活动对东亚地区气候变化影响的检测与评估.应用气象学报,2002,13(5):513-525
    Emanuel,K.A.(1993) model:A cumulus representation based on the episodic mixing model:The importance of mixing and microphysics in predicting humidity.AMS MeteoroL. Monogr., 24:185-192.
    Hourdin,F., Musat,I., Bony, S., et al, The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn., 27(7) :787-813.
    Le Trent, H.,Li, Z.X.,and Forichon, M.(1994). Sensitivity study of the LMD GCM to greenhouse forcing associated with two different cloud water parametrizations.J.Clim., 7:1827-1841.
    Le Trent, H., Forichon, M., Boucher, O., and Li, Z. X. (1998).Sulfate aerosol indirect effect and CO_2 greenhouse forcing: equilibrium response of the LMD GCM and associated cloud feedbacks. J. Clim.,11:1673-1684.
    Li, Z. X. (1999).Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J. Clim., 12(4):986-1001.
    Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S., et al. (2005). The new IPSL climate system model: IPSL-CM4. Institut pierre Simon LapLace, Paris, 86pp
    Sadourny, R. and Laval, K. (1984).January and July performance of the LMD general circulation model, pages 173-197. New perspectives in climate model-ing. Amsterdam.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700