甘肃省极端气温近30年气候特征及其对WRF模式陆面参数化方案的敏感性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据甘肃省81个地面气象站1982-2011年逐日极端气温资料,分析了甘肃省日极端气温的时空分布特征和突变状况,同时初步探讨了极端气温产生突变的原因。另外,选取甘肃省东南部、西北部两个地区,分别分析在这两个地区WRF模式极端气温模拟对三种陆面参数化方案的敏感性,试验模拟时段为2005年1月25日08时到29日02时(北京时),共15个6小时气温预报。所做工作得到如下主要结论:
     (1)EOF分析表明,甘肃省夏季极端高温频数、冬季极端低温频数和冬季极端高温频数有着非常高的一致性变化特征,其中夏季和冬季的极端高温频数EOF第一特征向量的方差贡献率达到70%以上,二者的时间系数变化也呈现明显的上升趋势;而冬季极端低温频数方差贡献率为59.3%,一致性特征小于极端高温频数,其时间系数变化呈波动上升趋势。甘肃省夏季日极端高温在80年代末期出现明显突变,冬季日极端低温和日极端高温突变现象不明显,夏季极端高温突变与西风环流指数呈正相关关系。
     (2)WRF模式三种陆面方案在不同地区对气温的模拟都有比较好的一致性,对气温的数值范围和分布形式也都有合理统一的模拟效果。整体上,三种方案对甘肃东南地区气温的模拟一致好于甘肃西北地区气温的模拟效果,对14时气温模拟一致好于对02时气温的模拟效果。对于西北地区,NOAH方案表现最好,RUC方案次之,SLAB方案再次之;对于东南地区,SLAB方案最优,RUC方案次之,NOAH方案再次之。
     (3)三种陆面方案对14时气温模拟的差异主要来自于不同陆面方案对地表温度和感热、潜热通量模拟的不同,对地表温度的模拟基本上决定了气温模拟的走势,感热通量的模拟亦是影响气温模拟的重要因素。
Based on the daily extreme temperature (ET) data observed by81stations in GanSu Province from1982to2011, the spatio-temporal evolution characteristics of extreme air temperature were analyzed. The moving cut data-approximate entropy(MC-ApEn) and the moving t test to be used to detect the climate abrupt change of the high-ET in summer and low-ET in winter, as well as discussing the probable reasons of it. At the same time three land surface schemes(SLAB,NOAH and RUC)in WRF model are used to simulate2m temperature of the Southeast and Northwest in Gansu.The results shows that:
     (1)The first EOF eigenvector of the frequency of the high-ET in summer and winter shows the consistent change all over Qansu, and over70%of total variance is explained. The time coefficient indicates that the frequency of extreme maximum temperature increases obviously;The first EOF eigenvector of the frequency of low-ET in winter explains59.3%of total variance, which also shows consistent change.The time coefficient indicates that the extreme minimum temperature frequency increases. The high-ET in summer have climate abrupt change and it occurred at the end of1980s.At the same time We can proved the change of zonal index is the primary cause of abrupt change in high-ET.
     (2)The simulated2m temperature generally is sensitive to different land surface schemes and agree with the scope and the number of observations in different regions.Generally, three schemes are more reasonable in simulating the High-ET than simulating he Low-ET,and more reasonable in Southeast of Gansu.SLAB scheme is better than the other land surface scheme in the Southeast, NOAH scheme presents best in northwest of Gansu,and there are no more different in simulating the high-ET at daytime and the low-ET at nighttime.(3)The reasons of the model performance difference with difference Land surface scheme is the prediction of meteorological variables--surface skin temperature, upward heat flux and latent heat flue at the surface.The distributed of surface skin temperature decided the tendency of2m temperature,the value of upward heat flux is a very important factor to decide the temperature.
引文
[1]气候变化2007:自然科学基础[J].世界环境.2007(2):13-22.
    [2]Basu R, Samet J M. Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence[J]. Epidemiologic Reviews.2002,24(2): 190-202.
    [3]Knowlton K, Miriam, Rotkin-Ellman, et al. The 2006 California Heat Wave:Impacts on Hospitalizations and Emergency Department Visits[J]. Environ Health Perspect. 2009,1(117):61-67.
    [4]张尚印,宋艳玲,张德宽,等.华北主要城市夏季高温气候特征及评估方法[J].地理学报.2004(3):383-390.
    [5]Van Winkle W, Rose K A, Shuter B J, et al. Effects of climatic temperature change on growth, survival, and reproduction of rainbow trout:predictions from a simulation model[J]. Canadian Journal of Fisheries and Aquatic Sciences.1997, 54(11):2526-2542.
    [6]Facsimile Products, Max/Min temperature forecasts [Z]. National Weather Service Forecasting Handbook No. 1.US. Department of commerce NOAA National Weather Service, 1979.
    [7]纳丽,郑广芬,杨建玲.2008年1月宁夏持续连阴雪低温极端天气气候背景及影响因子[J].干旱气象,2010,28(2):202-205.
    [8]姚望玲,陈正洪,向玉春.武汉市气候变暖与极端天气事件变化的归因分析[J].气象,2010,36(11):88-94.
    [9]盛裴轩,毛节泰,李建国等.大气物理学[M].北京:北京大学出版社,2003.122-154.
    [10]胡玉荣.新形势下气象科技服务发展的思考[J].气象软科学,2008,1(3):20-24.
    [11]魏秀兰,侯艳丽,孔凡中.菏泽市气温精细化预报[J].山东气象,2004,24(96):45.
    [12]Zeng X M, Liu J B, Ma Z G, et al. Study on the effects of land surface heterogeneities in temperature and moisture on annual scale regional climate simulation.Adv Atmos Sci,2010,27:151-163.
    [13]Klein W H, lewis F. Computer forecasts of maximum and minimum temperatures [J]. Appl Meteor,1970, (9):350-359.
    [14]谢庄,崔继良,刘海涛,等.华北和北京的酷暑天气I.历史概况及个例分析[J].气候与环境研究.1999(4):323-333.
    [15]康岚,冯汉中,屠妮妮等.Grapes模式预报西南地区夏季2m温度的检验评估[J].高原山地气象研究,2009,29(2):26-32.
    [16]Manton M J, della-Marta P M, Haylock M R, et al. Trend in extreme daily rainfall and temperature in southeast Asia and the south Pacific:1961-1998[J]. Int J Climatol, 2001,21(3):269-284.
    [17]Frich P, Alexander L V, Della-Marta P, et al. Observed coherent changes in climatic extremes during the second half of the 20th Century[J]. Climate Res,2002, 19(3):193-212.
    [18]Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for the globe[J]. Science,1997,277:364-367.
    [19]翟盘茂,任福民.中国近四十年最高最低温度变化[J].气象学报,1997,55(4):418-429.
    [20]江志红,丁裕国,屠其璞.中国近50年冬夏季极端气温场的年代际空间形态及其演变特征[J].应用气象学报,1999,10(增刊):97-103.
    [21]任福民, 翟盘茂.1951—1990年中国极端气温变化分析[J].大气科学,1998,22(2):217-227.
    [22]纪钟萍,林刚,李晓娟,等.2003年广东省夏季的异常高温天气及其气候背景[J].热带气象学报,2005,21(2):207-215.
    [23]王劲松,陈发虎,靳立亚,等.亚洲中部干旱区在20世纪两次暖气的表现[J].冰川冻土,2008,30(2):224-223.
    [24]张宁,孙照渤,曾刚.1955-2005年年中国极端气温的变化[J].南京气象学院学报,2008,31(1):123-128.
    [25]陈少勇,王劲松,郭俊庭,等.中国西北地区1961—2009年极端高温事件的演变特征[J].自然资源学报,2012,27(5):832-842.
    [26]杨金虎,沈永平,王鹏祥,等.中国西北近45年来极端低温事件及其对区域增暖的响应[J].冰川冻土,2007,29(4):536-542.
    [27]汪宝龙,张明军,魏军林,等.1960--2009年甘肃省极端气温的变化[J].干旱区研究,2012,29(4):674-680.
    [28]史军,丁一汇,崔林丽.华东极端高温气候特征及成因分析[J].大气科学,2009,33(2):347-358.
    [29]卫捷,杨辉,孙淑清.两太平洋副热带高压东西位置异常与华北夏季酷暑[J].气象学报,2004,62(3):308-316.
    [30]邹燕,周信禹,林毅.福建省夏季高温成因分析[J].气象,2001,27(9):26-30.
    [31]纪钟萍,林刚,李晓娟,等.2003年广东省夏季的异常高温天气及其气候背景[J].热带气象学报,2005,21(2):207-215.
    [32]陈明轩,徐海明,管兆勇.春季格陵兰海冰与夏季中国气温和降水的关系[J].南京气象学院学报,2001,24(4):483-490.
    [33]王光宇,曾群柱.北半球雪盖与我国夏季气温的相关分析[J].冰川冻土,1994,16(1):49-52.
    [34]张洁新,张娜娜,张文,等.中国南方冬季极端低温事件年际变化特征[J].灾害天气研究与预报,2012,31(3):276-281.
    [35]陈少勇,王劲松,任燕,等.近49年中国西北地区极端低温事件的演变特征[J].高原气象,2012,46(3):226-241.
    [36]李玉华,耿勃,吴炜等.MOS, PP方法在降水及温度预报中的效果对比检验[J].山东气象,2000,20(82):14-16.
    [37]时兴合,秦宁生,赵冰燕等.最优子集回归在青藏高原冬季降水、气温预报中的应用及改进[J].气象科学,2001,21(2):222-229.
    [38]黄嘉佑,谢庄.卡尔曼滤波在天气预报中的应用[J].气象,1993,21(2):3-7.
    [39]陆如华,何于班.卡尔曼滤波方法在天气预报中的应用[J].气象,1994,19(4):41-43.
    [40]吴建秋,郭品文.基于统计降尺度技术的精细化温度预报[J].中国科技信息,2009,(12):44-48.
    [41]赵声蓉.多模式温度集成预报[J].应用气象学报,2006,17(1):52-57.
    [42]张秀年,曹杰,杨素雨等.多模式集成MOS方法在精细化温度预报中的应用[J].云南大学学报(自然科学版),2011,33(2):67-71.
    [43]熊聪聪,王静,宋鹏等.遗传算法在多模式集成天气预报中的应用[J].天津科技大学学报,2008,23(4):80-84.
    [44]李倩,胡邦辉,王学忠等.基于BP人工神经网络的区域温度多模式集成预报试验[J].干旱气象,2011,29(2):231-235.
    [45]陈勇,江海生,郭荣芳等.利用MM5开展精细化预报业务[J].广西气象,2005,26(增刊I):94-96.
    [46]郑祚芳,王迎春,刘伟东.地形及城市下垫面对北京夏季高温影响的数值研究[J].热带气象学报,2006,22(6):672-676.
    [47]李欣,杨修群,汤剑平等.WRF/NCAR模拟的夏季长三角城市群区域多城市热岛和地表能量平衡[J].气象科学,2011,31(4):441-450.
    [48]卢萍,陈章.成都市精细化数值模式研究及试验[J].高原山地气象研究,2008,28(4):50-54.
    [49]黄嘉佑.气象统计分析与预报方法(第三版)[M].北京:气象出版社,2004.36-50.
    [50]符淙斌,王强.气候突变的定义和检测方法[J].大气科学,1992,16(4):482-493.
    [51]何文平,何涛,成海英,等.基于近似熵的突变检测新方法[J].物理学报,2011.60(4):049202.
    [52]金红梅,何文平,侯威,等.不同趋势对滑动移除近似熵的影响[J].物理学报,2012,61(6):069201.
    [53]金红梅,何文平,张文,等.噪声对滑动移除近似熵的影响[J].物理学报,2012,61(12):129202.
    [54]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999:63-65.
    [55]吴洪宝,吴蕾.气候变率诊断和预测方法[M].北京:气象出版社,2005.
    [56]Vapnik V N. Statistical Learning Theory. John Wiley & Sons, Inc., New York,1998.
    [57]潘敖大,范苏丹,陈海山,等.江苏近50年极端气候变化特征[J].气象科学,2010,30(1):87-92.
    [58]杨金虎,沈永平,王鹏祥,等.中国西北近45年来极端低温事件及其对区域增暖的响应[J].冰川冻土,2007,29(4):536-542.
    [59]杨金虎,江志红,魏锋,等.近45年来中国西北年极端高、低温的变化及对区域增暖的响应[J].干旱区地理,2006,29(5):625-631.
    [60]李冰,潘安定,陈碧珊.西北地区极端温度事件变化特征[J].气象科学,2008,26(4):187-192.
    [61]丁裕国,江志红.中国近50年严冬和冷夏演变趋势与区划[J].应用气象学报,1995,10(增刊):88-96.
    [62]朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M].北京:气象出版社,2003:174.
    [63]龚道溢,王绍武.冬季西风环流指数的变率及其与北半球温度变化的关系研究[J].热带气象学报,2002,18(2):104-110.
    [64]施洪波.1960-2008年京津冀地区夏季高温日数的变化趋势分析[J].气象,2011,37(10):1277-1282.
    [65]张强,胡向军,王胜,等.黄土高原陆面过程试验研究(LOPEX)有关科学问题[J].地球科 学进展,2009,24:363-372.
    [66]杨辉,李崇银.2003年夏季中国江南异常高温的分析研究[J].气候与环境研究,2005,10:81-85.
    [67]Gershunov A, Cayan D R, Iacobellis S F. The great 2006 heat wave over California and Nevada:Signal of an increasing trend[J]. J Clim,2009,22:6181-6203.
    [68]李安泰,何宏让,张云.WRF模式陆面参数扰动对一次西北暴雨影响的数值模拟[J].高原气象,2012,31(1):65-75.
    [69]王明欢,赖安伟,陈正洪,等.WRF模式模拟的地表短波辐射与实况对比分析[J].气象,2012,38(5):585-592.
    [70]李强,李永华,周锁铨,等.基于WRF模式的三峡地区局地下垫面效应的数值试验[J].高原气象,2011,30(1):83-93.
    [71]Grell A G, Dudhia J, Stauffer D R.A description of the fifth generation Penn State/NCAR Mesoscale Model.National Center for Atmospheric Research,1995.
    [72]Ek M B,Mitchell K E, Lin Y, et al. Implementation of Noah land-surface model advances in the National Center Environment Prediction operational mesoscale Eta model. J Geophys Res,2003.
    [73]曾新民,吴志皇,熊仕焱,等.WRF模式短期高温天气模拟对陆面方案的敏感性[J].中国科学:地球科学,2011,41(9):1375-1384.
    [74]Fischer M E, Seneviratne S I.Vidal P L, et al.Soil moisture-atmosphere interaction during the 2003 European summer heat wave.. J Clim,2007,20:5081-5099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700