宁夏地区极端气候事件的情景分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球变暖的大背景下,自20世纪70年代以来,在更大范围地区,尤其是在热带和副热带,观测到了强度更强、持续更长的干旱,大多数陆地上的强降水事件发生频率有所上升。近50年来观测到了极端温度的大范围变化,冷昼、冷夜和霜冻的发生频率已减小,而热昼、热夜和热浪的发生频率已增加。在某种程度上,极端气候事件发生频率和强度的变化对人类和各项社会生产活动的影响更为严重,因此研究未来可能的极端气候事件变化具有重要的意义。
     本文采用了英国Hadley气候预测与研究中心的区域气候模式系统PRECIS来进行宁夏地区极端气候事件的情景分析。首先利用1979~1993年ECMWF再分析数据驱动PRECIS对宁夏地区该时期气候进行模拟,对比分析各极端气候指标的模拟结果和观测结果,验证模式模拟极端气候事件的空间分布和年际变化特征的能力;然后将PRECIS模拟的气候基准时段(1961~1990年)的极端气候指标与观测结果进行对比分析,验证模式模拟极端气候事件发生频率的能力;在模式验证的基础上,对模拟数据的订正方法进行初步探讨,并将订正方法应用到情景数据的订正中;最后在考虑订正的基础上,基于政府间气候变化专门委员会(IPCC)《排放情景特别报告》(SRES)的A2和B2情景,对宁夏地区2071~2100年相对于气候基准时段的极端气候事件的可能变化进行了分析。
     通过本文的研究可以得到以下主要结论:
     (1) PRECIS能够模拟出极端温度和降水指标的各项特征,模式对温度的模拟具有明显暖偏差,这使得各极端温度指标的模拟值同观测值之间存在系统的偏差。对模拟的温度值订正后,各极端温度指标的订正值保持原有模拟结果本身的波动,并减小了模拟的系统偏差。降水量的模拟值比观测值普遍偏大,这使得极端降水指标的模拟值同观测值存在偏差,对模拟的降水量订正后,各极端降水指标在大多数情况下与观测值的吻合程度好于订正前的模拟值。
     (2)相对于气候基准时段,至21世纪最后30年,宁夏地区的年极端温度值将显著升高,A2情景下的增温幅度大于B2情景下的增温幅度,宁夏北部的增温幅度大于南部山区的增温幅度。暖日和暖夜事件将显著增加,冷日和冷夜事件将减少。A2情景下极端温度事件的变化比B2情景下更为剧烈,夏秋季节暖日事将件显著增多,冷日事件将显著减少,春季变化不显著。宁夏地区的日较差将减小,尤其冬季和春季减小显著,北部地区减小显著。夏季日数将显著增加,最大连续霜冻日数将显著减少,生长季将延长,这三个极端指标在A2情景下的变化比B2情景下的变化更为剧烈,南部地区的变化比其它地区的变化更为剧烈。
     (3)相对于气候基准时段,至21世纪最后30年,宁夏地区极端降水事件的日数整体呈现微弱的增加趋势,但逐年变化趋势并非一致增加,而是存在年际波动;北部地区极度降水日数略有增加,南部地区少变化,夏秋季节极端降水日数有少量增加,冬季少变化。宁夏地区大雨日数、简单降水强度和最大连续5日降水量都呈现微弱的增加趋势,北部地区的增加量为全区最多。另外宁夏地区的最大连续干日数将减少,北部地区将减少最多。
With global warming, more intense and longer droughts have been observed over larger areas since the 1970s, particularly in the tropics and subtropics. The frequencies of heavy rainfall events have increased over most of land areas. Widespread changes in extreme temperature have been observed over the last 50 years. Cold days, cold nights and frost have become less frequent, while warm days, warm nights and heat waves have become more frequent. It is of great significance to research the possible future changes in extreme climate events because the changes in frequency and intensity of extreme climate events will severely affect human and social activities to some extent.
     In this paper, the PRECIS, a regional climate model system developed at the UK Met Office Hadley Center for Climate Prediction and Research, is employed to address scenario projection for extreme climate events in Ningxia Provence. First of all, to validate PRECIS capacity to simulate spatial distribution and interannual variability of extreme climate events by comparing the extreme climate indices derived from simulation of PRECIS, which is driven by ECMWF 1979-1993 reanalysis data, with those from observed data. Secondly, to validate PRECIS’s ability to simulate frequency of extreme climate events by comparing the Baseline (1961-1990) extreme climate indices derived from output of PRECIS with those from observed data. Thirdly, the correction methodology to simulated data of PRECIS is preliminarily discussed based on above validation, and is applied to scenario data. Finally, on the basis of correction to output of PRECIS, to analyse the changes of extreme climate events in the future (2071~2100) relative to Baseline under SRES A2 and B2 scenarios of IPCC.
     The main conclusion of this research can be summarized in the following items:
     (1) PRECIS has capability to simulate the characteristics of extreme indices of temperature and precipitation, but shows obvious overestimates in simulated temperature and precipitation comparing with observed data which cause the systematic bias between simulated extreme indices and observations. After correction to simulated data, the extreme temperature indices maintain their original fluctuation while the systematic bias has been reduced and the extreme precipitation indices are more consistent with observed data.
     (2) Relative to Baseline, in the last 30 years of 21st century, the annual extreme temperature would increase remarkably, and the increment under A2 scenario is larger than that under B2 scenario, and the increment in the northern region of Ningxia is larger than that in southern mountain area of Ningxia. Warm days and warm nights would increase notably and cold days and cold nights would decrease. The extreme temperature events under A2 scenario would change more severely than under B2 scenario. Warm days would increase remarkably and cold days would decrease in summer and autumn, while changes of warm days and cold days are not noticeable in spring. DTR would decrease, especially in winter and spring and in northern region. SU would increase remarkably, CFD would decrease remarkably, and GSL would extend. These three extreme temperature indices would change more acutely under A2 scenario than B2 scenario and would change more acutely in southern area of Ningxia than that in other areas.
     (3) Relative to Baseline, in the last 30 years of 21st century, the days of the extreme precipitation events would show a slender increasing trend as a whole, but annual changes are inconsistent and appear an interannual fluctuation. The extreme precipitation events would increase slightly in northern area of Ningxia, and would show fewer changes in southern area. The extreme precipitation events would increase a little in summer and autumn and change rarely in winter. Over Ningxia, R20mm, SDII and RX5day would increase a little, and the increment would be the largest in northern area. In addition, CDD would decrease, and decrease most in northern area.
引文
1.布和朝鲁.东亚季风气候未来变化的情景分析—基于IPCC SRES A2和B2方案的模拟结果.科学通报,2003a,48:737~742
    2.布和朝鲁,林永辉等. ECHAM4/OPY3海气耦合模式对东亚季风年循环及其未来变化的模拟.气候与环境研究,2003b,8(4):402~416
    3.鲍艳,吕世华等. RegCM3模式在西北地区的应用研究Ⅰ:对极端干旱事件的模拟.冰川冻土,2006 ,28(2):164~174
    4.陈晓光,苏占胜等.宁夏气候变化的事实分析.干旱资源与环境,2005,19(6):43~47
    5.陈楠,许吟隆,陈晓光等. PRECIS模式对宁夏气候变化情景的模拟分析.第四纪研究,2007,27(3):332~338
    6.陈楠,许吟隆,陈晓光等. PRECIS模式对宁夏气候模拟能力的初步验证.气象科学,2008,28(1):94~99
    7.陈起英,俞永强等.温室效应引起的东亚地区气候变化.气候与环境研究,1996,1(2):113~123
    8.丁一汇,任国玉等.气候变化国家评估报告(I):中国气候变化的历史和未来趋势.气候变化研究进展,2006,2(1):3~8
    9.邓自旺,丁裕国,陈业国,全球气候变暖对长江三角洲极端高温事件概率的影响,南京气象学院学报,2000,23(1):42~47。
    10.高学杰,赵宗慈等.温室效应引起的中国区域气候变化的数值模拟Ⅰ:模式对中国气候模拟能力的检验.气象学报,2003a,61(1):20~28
    11.高学杰,赵宗慈等.温室效应引起的中国区域气候变化的数值模拟Ⅱ:中国区域气候的可能变化.气象学报,2003b,61(1):29~38
    12.高学杰,赵宗慈等.区域气候模式对温室效应引起的中国西北地区气候变化的数值模拟.冰川冻土,2003c,25(2):165~169
    13.黄晓莹.未来华南地区地面气温和降水变化情况以及极端事件的分析. [硕士学位论文],中山大学,2005
    14.居煇,熊伟,许吟隆. IPCC SRES A2和B2情景下我国小麦产量变化模拟.作物学报,2005,31(8):24~29
    15.姜大膀,王会军等.全球变暖背景下东亚气候变化的最新情景预测.地球物理学报,2004a 16. 47(4):590~596
    17.姜大膀,王会军等. SRES A2情景下中国气候未来变化的多模式集合预测结果.地球物理学报,2004b,47(5):776~784
    18.刘永强,丁一汇.区域气候模拟研究.应用气象学报,1995,6(2):228~239
    19.刘黎平,钱永甫等.区域气候模式和GCM对青藏高原和西北地区气候模拟结果的对比分析.高原气象,2000,19(3):313~322
    20.李巧萍,丁一汇.区域气候模式对东亚季风和中国降水的多年模拟与性能检验.气象学报,2004,62(2),140~153
    21.李巧萍,丁一汇.区域气候模式对东亚冬季风多年平均特征的模拟.应用气象学报,2005,16(增刊),30~40
    22.马柱国,符淙斌等.中国北方干旱区地表湿润状况的趋势分析.气象学报,2001,59(6):738~746
    23.马柱国,华丽娟等.中国近代北方极端干湿事件的演变规律.地理学报,2003,58增刊:69~74
    24.马柱国,黄刚等.近代中国北方干湿变化趋势的多时段特征.大气科学,2005,29(5):671~681
    25.马柱国,邵丽娟等.中国北方近百年干湿变化与太平洋年代际振荡的关系.大气科学,2006,30(3):465~474
    26.潘晓华,翟盘茂.气温极端值的选取与分析.气象,2002,28(10):28~31
    27.潘晓华.近五十年中国极端温度和降水事件变化规律的研究. [硕士学位论文]北京:中国气象科学研究院,2002
    28.秦鹏.广东省近40多年来极端温度和降水的变化规律分析. [硕士学位论文],南京:南京信息工程大学,2006
    29.钱永甫,王谦谦等.中国区域气候变化的模拟和问题.高原气象,1999,18(3):341~349
    30.许吟隆,薛峰,林一骅.不同温室气体排放情景下中国21世纪地面气温和降水变化的模拟分析.气候与环境研究,2003 ,8(2):209~217.
    31.许吟隆,Richard Jones.利用ECMWF再分析数据验证PRECIS对中国区域气候的模拟能力.中国农业气象,2004,25(1):5~9
    32.许吟隆.中国21世纪气候变化的情景模拟分析.南京气象学院学报,2005a,28(3):323~
    329
    33.许吟隆,黄晓莹等.中国21世纪气候变化情景的统计分析.气候变化研究进展,2005b,1(2):80~83
    34.许吟隆,张勇等.利用PRECIS分析SRES B2情景下中国区域的气候变化响应.科学通报,2006,51(7):2068~2074
    35.熊喆.区域气候模式RIEMS对东亚气候的模拟.气候与环境研究,2004a,9(2):251~260
    36.熊喆.区域气候模式对东亚气候时空演变特征的模拟研究.气候与环境研究,2004b,9(2):295~203
    37.熊伟,许吟隆,林而达,等. IPCC SRES A2和B2情景下我国玉米产量变化模拟,中国农业气象,2005a,26(1):11~15
    38.熊伟,林而达,居辉,许吟隆.气候变化的影响阈值与中国的粮食安生.气候变化研究进展,2005b,1(2):84~87
    39.徐影,丁一汇等.长江中下游地区21世纪气候变化情景预测.自然灾害学报,2004,13(1):25~31
    40.严中伟,杨赤.近几十年中国极端气候变化格局.气候与环境研究,2000,5(3):267~272
    41.赵宗慈,罗勇.二十世纪九十年代区域气候模拟研究进展.气象学报,1998,56(2):25~241
    42.赵宗慈,罗勇.东亚夏季风的模拟研究—3个区域气候模式的对比.应用气象学报,1997,8(增刊):116~123
    43.翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化.地理学报,2003,58(增刊):1~10
    44.张勇,许吟隆. SRES B2情景下中国区域最高最低气温及日较差变化特征初步分析.地球物理学报,2007,50(3):714~723
    45. Bonsal B.R., et al. Characteristics of Daily and Extreme Temperature over Canada. American Meteorological Society, 2001, 5(14): 1959~1976.
    46. Boo K.O., Kwon W.T., et al. Response of global warming on regional climate change over Korea: an experiment with the MM5 model. Geophys Res. Lett., 2004,31: L21206
    47. Boo K.O., Kwon W.T., et al. Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys Res. Lett., 2006, 33: L01701
    48. Cox P.M., Betts R.A., Bunton C.B., et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn, 1999, 15: 183—203
    49. DKRZ Technical Report NO. 18. The Hamburg Atmosphere-Ocean Model ECHO-G. Hamburg, 1999, ISSN 0940-9327
    50. Emori S., Noazwa T., Abe-Ouchi A., et al. Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. J. Meteorol. Soc. Japan, 1999, 77: 1299~1307
    51. Flato G.M., Boer G.J., Lee W.G., et al. The Canadian Centre for Climate Modelling and Analysis Global Coupled Model and its Climate. Climate Dynamics, 2000, 16: 451~467
    52. Frich P., Alexander L.V., et al. Observed coherent changes in climate extremes during the second half of the twentieth century . Climate Res., 2002, 19: 193~212
    53. Giorgi F., Bates G.T. The climatological skill of a regional model over complex terrain. Mon. Wea. Rev, 1989 , 117: 2325~2347
    54. Giorgi F. Sensitivity of simulated summertime precipitation over the western United States to different physics parameterizations. Mon. Wea. Rev , 1991 , 119 : 2870~2888
    55. Gordon C., Cooper C., Senior C.A., et al. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 2000,16: 147~168
    56. Gordon H.B., O’Farrell S.P.. Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon. Wea. Rev., 1997, 125: 875~907
    57. Giorgetta M.A., et al. Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Clim., 19: 3882–3901.
    58. Gao Xuejie, Zhao Zongci, et al. Changes of Extreme Events in Regional Climate Simulationsover East Asia. Advances in Atmospheric Sciences, 2002, 19: 927~942
    59. Gao X.J., Zhao Z.C., Ding Y.H., et al. Climate change due to greenhouse effects in China as simulated by a regional climae model [J]. Advances in Atmospheric Science, 2001, 18 (6): 1224~1230.
    60. Grotch S.L., MacCracken M.C.. The use of general circulation models to p redict regional climatic change. J. Climate, 1991, 4: 286—303
    61. Hadson D.A., Jones R.G. Regional climate model simulations of present-day and future climates of southern Africa. Hadley Centre Technical Note 39, Hadley Centre for Climate Prediction and Research, Met Office, Bracknell, U.K. 2002
    62. Huntingford C., Jones R.G., Prudhomme C., et al. Regional climate model predictions of extreme rainfall for a changing climate. Q. J. R. Meteorol. Soc, 2003, 129: 1607~1621
    63. IPCC, 2007: Climate Change 2007: The Physical Science Basis-Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. pp18 (Formally approved at the 10th Session of Working Group I of the IPCC, Paris, February 2007)
    64. Johns T.C., Carnell R.E., et al. The second Hadley Center coupled ocean-atmosphere GCM: model description , spinup and validation , Climate Dynamics, 1997, 13: 103~1341
    65. Jason L., et al. Regional Changes in Extreme Climate Events: A Future Climate Scenario. American Meteorological Society, 2004, 17: 81~87
    66. Jiang Dabang, Wang Huijun, et al. Evaluation of East Asian Climatology as Simulated by Seven Coupled Models. Advances in atmospheric sciences, 2005, 22(4): 479~495
    67. Kitoh A., Hosaka M., et al. Future projections of precipitation characteristics in East Asia simulated by the MRI CGCM2. Adv. Atmos. Sci., 2005, 22(4): 467~478
    68. Klein A. M. G., et al. Treads in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946-99. American Meteorological Society, 2003, 16: 3665~3680
    69. Khaliq M.N., St-Hilaire A., Ouarda T., et al. Frequency analysis and temporal pattern of occurrences of southern Quebec heatwaves, Intl. J. Clim. 2005, 25, 485~504.
    70. Murphy J.M.. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. PartⅠ, control climate and flux adjustment. J. Climate, 1995, 8: 36~56
    71. Mizuta R., Uchiyama T., et al. Changes in extremes indices over Japan due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 2005, 1: 153~156
    72. Met Office: The Hadley Centre regional climate modeling system: PRECIS—Updata 2002, Providing Regional Climates for Impacts Studies,2002:P16
    73. Roeckner E., et al. The Atmospheric General Circulation Model ECHAM5. Part I: Model Description. MPI Report 349, Max Planck Institute for Meteorology, Hamburg, Germany, 2003, 127 pp.
    74. Hope P.K.. Projected future changes in synoptic systems influencing southwest WesternAustralia. Climate Dynamics, 2006, 26: 765-780
    75. Seung-Ki M., Stephanie L., et al. East Asian Climate Change in the 21st Century as Simulated by the Coupled Climate Model ECHO-G under IPCC SRES Scenarios. Joural of the Meteorological Society of Japan, 2006, 84(1): 1~26
    76. Seung-Ki M., et al. Futrue Projections of East Asian Climate Change from Multi-AOGCM Ensembles of IPCC SRES Scenario Simulations. Joural of the Meteorological Society of Japan, 2004, 82(4): 1187~1211
    77. Tebaldi C., et al. An Intercomparison of Model-Simulated Historical and Future Changes in Extreme Events. Climate Change, 2006, 79: 185~211
    78. Yonetani T., Gordon H.B.. Simulated Change in the Frequency of Extremes and Regional Features of Seasonal/Annual Temperature and Precipitation when Atmospheric CO2 Is Doubled, J. Climate, 2001, 15: 1765~1779
    79. Zhang Y., Xu Y.L., et al. A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett., 2006, 33: L24702
    80. Zhai, P.M. Pan, X.H. Trends in temperature extremes during 1951–1999 in China, Geophys. Res. Lett. 2003, 30, Art. No. 1913.
    81. Zhai P.M. Zhang X.B., et al. Trends in total precipitation and frequency of daily precipitation extremes over China, J of Climate, 2005, 18, 1096~1108
    82. Zhai P.M. et al. Changes of climate extremes in China, Climatic Change. 1999 , 42, 203~218 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700