陕西未来极端气候事件变化情景分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西是我国气候高度敏感区,气象灾害种类俱全,成因独特,如旱灾、低温阴雨、连阴或连暴雨涝、洪灾、雹灾、低温冻害、大风、沙尘暴、寒潮、霜冻、干热风、大雾、龙卷风、酸雨等,而且各类气象灾害频繁发生,使得陕西地区连年遭受各类气象灾害袭击。在目前全球平均气温、海温升高的气候变化背景下,需要对该地区未来气候变化的情景以及极端气候事件发生频率变化的趋势进行研究,了解增加区域气候变化对自然环境和人类已经产生的影响。
     本文利用英国Hadley气候预测和研究中心的区域气候模式系统PRECIS(Providing Regional Climates for Impacts Studies),基于IPCC《排放情景特别报告》(SRES)的B2情景对陕西2071~2100年的气候变化进行预估,初步分析陕西未来气候变化的概况和极端气候事件发生的频率以及强度,重点对陕西干旱做了分析。
     本文首先通过对PRECIS模拟与气候基准时段(1961~1990年)的资料进行了分析对比,结果表明,PRECIS模式对陕西温度、极端温度、极端降水等模拟能力较好。
     B2框架和情景系列描述的世界强调区域性的经济、社会和环境的可持续发展。但是在温室气体持续增加的全球背景下,该情景下陕西2071~2100年逐月平均气温、年平均气温相对气候基准时段有所上升。
     未来全省年均气温都将增高,未来全省年平均气温将增大3℃以上,未来气温变率为0.17℃/10a。高值区主要还是位于陕南和关中地区,且关中地区高值区范围将有所扩大,可能延伸到渭北地区。渭北是陕西的苹果主产区,单从温度升高的角度分析,未来热量条件对苹果果实膨大、着色和收获较为有利。
     未来月平均气温变化幅度最大的是冬季(12、1、2三个月),其中12月和2月变化幅度超过100%,1月的幅度也约在100%,这说明未来有向暖冬变化的趋势,春末、夏季、秋初的变化幅度不大,在20%以内。
     从全省角度来看,未来降水总体是增加的趋势,年均增加约为100mm。未来降水变率为79mm/10a,仍然为增加的趋势。但是未来年降水量的变化幅度较大,出现异常偏多、偏少年份的可能性增加。
     未来陕西冬春季降水较气候基准时段偏多,平均偏多30%左右,汛期前期的降水偏少,出现伏旱的可能性增大,秋季降水总体偏多,说明未来秋季出现暴雨的可能性较大。
     与气候基准时段的模拟值比较,未来多年平均降水日数陕北、关中地区的降水日数有不同幅度的增多,增幅最多的是关中中东部和陕北北部,陕南地区的降水日数有所减少。
     未来陕西降水日数大体上是春季增多、夏秋季减少,春季透雨的来临时间将可能有所提前,夏季出现干旱的可能性增加,华西秋雨在陕西关中、陕南等地的发生频率可能会基本持平但略有减少。
     未来陕北暴雨日数可能会有所增加,黄河沿线暴雨日数有所增加。由于渭河流域和汉江流域各站暴雨频次均较气候观测基准时段有增加,未来渭河、汉江流域出现致洪暴雨的可能性仍然很大,而且有增加的趋势。
     本文按照构造的指数关系计算未来的蒸发量,B2情景下,未来蒸发量可能偏多,其中关中地区偏多20%以上,陕北地区可能大于30%。
     与气候基准时段的模拟值相比,陕西区域内有3个区域干旱频次较少,分别是陕北榆林南部以南到延安全市、关中东部(含渭北)以及陕南西部,幅度最大是黄河沿线;但仍有3个区域干旱频次增加,分别是陕北北部、关中西部秦岭地区和商洛地区。
     各等级干旱5~7月发生频率较高,这与前面分析的陕西未来夏季降水减少有关,秋冬季干旱发生频率减少,这与前面分析的华西秋雨发生的趋势大体不变有关。
     虽然总体上干旱发生在秋冬季的频次较少,但是4—5级干旱在秋季发生的频率有所增加,这说明降水逐年分布的不均匀性,某些年份秋冬季降水可能会出现异常偏少。
     未来即便全省降水会增加,但是由于持续的温度升高,未来出现极端干旱气候事件的可能性仍然增大。
Shaanxi province is a climate high-sensitive region of China,enduring various meteorological disasters as drought,low temperature,consecutive cloudy or torrential rains,flooding,hail storm,low-temperature freezing,wind, sand storm,cold wave,frost disaster,dry warm wind,fog,tornado and acid rain etc.Each occurs frequently with a unique cause,which attacks Shaanxi region successive annually.Under the climate change background of global average air temperature and sea surface temperature increase,it is necessary to study future climate change scenario,occurrence frequency change trend of extreme climate events in this region,and investigate existing impacts of increasing regional climate change on natural environment and human.
     In this paper,the PRECIS(Providing Regional Climates for Impacts Studies,an RCM system developed at the UK Met Office Hadley Center for Climate prediction and Research) is used to estimate climate change from 2071 through 2100 in accordance with SRES B2 scenario of IPCC,and further analyze future climate change situation and extreme climate events occurrence frequency and intensity in Shaanxi,emphasizing on drought.
     Firstly,compared simulation results of PRECIS with observation data,the results indicate that PRECIS has a good simulating capability of Shaanxi temperature,extreme temperature and extreme precipitation.
     In a world under SRES B2 scenario,regional economic,social and environmental sustainable development is emphasized.However,under the global background of transient green house gases increase,in 2071 through 2100,the monthly average air temperature and annual average air temperature of Shaanxi increased according to baseline period under scenario B2.
     In future,annual average air temperature would increase more than 3℃throughout the province.The air temperature change rate would be 0.168℃/10a.The high value center would concentrate on Shaannan(south Shaanxi) and Guanzhong(middle of Shaanxi).The Guanzhong high value center would expand to Weibei(north of Guanzhong),where is a main apple production area.Analyzing only on temperature,the future heat condition would be favorable for apple expansion,coloring and harvest.
     The maximum change extent of future monthly average air temperature appears in winter(December,January,and February),in which change extent in December and February exceed 100%,and in January approximately 100%. It shows there is a trend of turning into warm winter in future.In spring,summer and autumn,the change extent is less than 20%.
     Provincially,precipitation shows an accelerating trend in total.Annual average increase is approximately 100mm.In future,precipitation change rate is 79mm/10a,still on an increasing trend.But,the change extent is large,which increases probability of abnormal more or less year.Compared to normal year, in an abnormal more year,precipitation would exceed 600mm.While in a less year,it would reduce approximate 500mm.
     Precipitation in winter and spring tend to be 30%more than baseline period (1961-1990).Precipitation in early period of flood season is less,raising the drought occurrence probability.Precipitation in autumn is generally more, indicating a big torrential rain occurrence probability in autumn.
     Compared with baseline simulation data,average yearly precipitation day numbers of Shaanbei(north Shaanxi) and Guanzhong increase in dfferent extents,the maximum in mid-east of Guanzhong and north of Shaanbei, whereas in Shaannan,it decreases.
     Generally,Shaanxi precipitation day numbers presents increase in spring and decrease in summer and autumn.The soaking rain in spring would probably emerge early.Summer drought probability would increase.The occurrence frequency of Huaxi durative rains in autumn in Guanzhong and Shaannan would probably remain equal but slightly less.
     Torrential rain day numbers of Shaanbei would probably increase, especially of the regions along the Yellow river.Because the torrential rain occurrence frequency of stations in Weihe valley and Hanjiang valley would increase compared to climatic observations of baseline period,in these two valleys,there would still exist a high probability of flood-induced torrential rain occurrence,and this trend probably increases.
     In this paper,evaporation is calculated under constructed exponential relationship.Under B2 scenario,future evaporation would be probably more,in which 20%more in Guanzhong,30%more in Shaanbei.
     Compared to baseline period,there are three regions in Shaanxi with lower drought frequency,respectively,south of south Yulin to Yanan,east of Guanzhong and west of Shaannan.The maximum appears along the Yellow river.Nevertheless,there are still three regions with increasing drought frequency,north Shaanbei,west Guanzhong Qingling Trend,and Shangluo region respectively.
     Drought of different grades occurs frequently between May and July,which is correlated with the analyzed results,summer precipitation decrease.Drought frequency decreasing in autumn and winter is related to former analyzed trend of Huaxi durative rains in autumn.
     Although,Drought frequency decreases in autumn and winter in general, 4-5 grade drought increases in autumn,which indicates that yearly precipitation is distributed unevenly.In certain years,precipitation in autumn and winter would probably be abnormally less.
     Even if precipitation throughout the province increases,with continuing temperature increase,there still exists a high probability of extreme climatic drought event occurrence.
引文
1、IPCC.2007,Summary for Policymakers,Climate Change 2007:The Physical Science Basis.Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press.
    2、秦大河,陈振林,罗勇等.2007,气候变化科学的最新认知.气候变化研究进展,3(1):63-73.
    3、秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估():中国气候与环境变化及未来趋势.气候变化研究进展,2005,1(1):4-9.
    4、Nakicenovic N,Alcamo J,Davis G,de Vries B,et al.Special Report on Emissions Scenarios.A Special Report of Working Group Ⅲ of the Intergovernmental Panel on Climate Change.Cambridge,United Kingdom and New York:Cambridge University Press,USA,2000.599pp.
    5、赵宗慈,王绍武,罗勇,等.2007,IPCC成立以来对温度升高的评估与预估,气候变化研究进展,3(3):183-184.
    6、气候变化国家评估报告.2007,气候变化国家评估报告编写委员会,科学出版社,北京,422pp.
    7、陈明,符淙斌.2000,区域和全球模式的嵌套技术及其长期积分试验.大气科学,24(2):253-262.
    8、马艳,刘洪芝,靳立亚,等.2006,区域气候模式的发展及研究进展,甘肃科技,22(12):137-139.
    9、刘鸿波,张大林,王斌.2006,区域气候模拟研究及其应用进展,气候与环境研究,11(5):649-668.
    10、孙颖.2005,用于IPCC第四次评估报告的气候模式比较研究简介,气候变化研究进展,1(4):61-163.
    11、鞠丽霞,王会军.2006,用全球大气环流模式嵌套区域气候模式模拟东亚现代气候,地球物理学报,49(1):52-60
    12、冯锦明,符淙斌.2007,不同区域气候模式对中国地区温度和降水的长期模拟比较,大气科学,31(5):805-814.
    13、高学杰,赵宗慈,丁一汇,等.2001,区域气候模式对温室效应引起的中国地区气候变化的数值模拟,大气科学进展(英文版),18(6):1224-1230.
    14、张冬峰,高学杰,赵宗慈,等.2005,RegCM3区域气候模式对中国气候的模拟.气候变化研究进展,1(3):119-121.
    15、高学杰,赵宗慈,丁一汇,等.2003,温室效应引起的中国区域气候变化的数值模拟Ⅰ:模式对中国气候模拟能力的检验.气象学报,2003,61(1):20-28.
    16、高学杰,赵宗慈,丁一汇.2003,区域气候模式对温室效应引起的中国西北地区气候变化的数值模拟,冰川冻土,25(2):165-16
    17、高学杰.2007,中国地区极端事件预估研究,气候变化研究进展,3(3):162-164
    18、林而达,吴绍洪,戴晓苏,等.2007,气候变化影响的最新认知,气候变化研究进展,3(3):125-131.
    19、Working Group Ⅱ Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report.Climate Change 2007:Impacts,Adaptation and Vulnerability[EB/OL].[2007-04-23].http://www.ipcc.ch/SPM13apr07.pdf.
    20、许吟隆,Richard Jones.2004,利用ECMWF再分析数据验证PRECIS对中国区域气候的 模拟能力.中国农业气象,25(1):5-9.
    21、Jones R G,NoguerM,HassellD C,et al..Generating high resolution climate change scenations using PRECIS.Uk,Exeter:Met.office Hadley Centre,2004:1-35.
    22、陈楠,许吟隆,陈晓光,等.2007,PRECIS模式对宁夏气候变化情景的模拟分析,第四纪研究,27(5):332-338.
    23、许吟隆,黄晓莹,张勇等.2005,中国21世纪气候变化情景的统计分析.气候变化研究进展,1(2):80-83.
    24、许吟隆.2005,中国21世纪气候变化的情景模拟分析.南京气象学院学报,28(3):323-329.
    25、许吟隆,张勇,林一骅,等.2006,利用PRECIS分析SRES B2情景下中国区域的气候变化响应.科学通报,51(7):2068-2074.
    26、Hadson D A,Jones R G.Regional climate model simulations of present-day and future climates of southern Africa.Hadley Centre Technical Note 39,Hadley Centre for Climate Prediction and Research,Met Office,Bracknell U K,2002.
    27、罗勇,王绍武.近20年来气候模式的发展与模式比较计划.地球科学进展,2002,17(3):372-377.
    28,Giorgi F,Hewitson B,Christensen J,et al.2001,Regional Climate Information -Evaluation and Projections.Chapter 10 of Climate Change 2001:The Scientific Basis,Contribution of WGI to the Third Assessment Report of IPCC,Edited by J T Houghton,et al.Cambridge University Press,Cambridge,UK.
    29、Manabe S,Wetherald R T.1980,On the distribution of climate change resulting from an increase of CO2-content of the atmosphere.J.Atmos.Sci.,37:99-118.
    30、Manabe S,Stouffer R J.1994,Multiple-Century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide.J.Climate,7:5-23
    30、Giorgi F,Bates G T.1989,The climatological skill of a regional model complex terrain.Mon.Wea.Rev.,117:2325-2347.
    31、Dickinson R E,Kennedy P J,Giorgi F,et al.1989,A regional climate model for the western United States.Clim.Change,15:383-422.
    32、Giorgi F,Christine S B,Gary T B.1994,Regional climate change scenarios over the United States produced with a nested regional climate model.Am.Meteorol.Soc.,3:375-399.
    33、Rotach M W,Marinucci M R,Wild M,et al.1997,Nested regional simulation of climate change over the Alps for the scenario of a doubled greenhouse forcing.Theor.Appl.Climatol.,57:209-227.
    34、Raisanen J,Rummukainen M,Ullerstig A.Downscaling of greenhouse gas induced climate change in two GCMs with the Rossby Centre regional climate model for Northern Europe.Tellus A,2001,53:168-191.
    35、Leung L R,Qian Y,Bian X,et al.2004,Mid-century ensemble regional climate change scenarios for the western United States.Clim.Change,62:75-113.
    36、Christensen O B,Christensen J H.2004,Intensification of extreme European summer precipitation in a warmer climate.Global Planet.Change,44:107-117.
    37、Gao X J,Pal J S,Giorgi F.2006,Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation.Geophys.Res.Lett,2006a,33:L03706,doi:10.1029/2005GL024954.
    38、Diffenbaugh N S,Pal J S,Trapp R J,et al.Fine-scale processes regulate the response of extreme events to global climate change.Proc.NaIt.hcad.Sci.USA,2005,102(44):15774-15778,doi:10.1073/pnas.0506042102
    39、Mizuta R,Oouchi K,Yoshimura H,et al.2006,20 km-mesh global climate simulations using JMA-GSM model.-Mean climate states.J.Meteor.Soc.Jpn.,84:165-185.
    40、Kusunoki S,Yoshimura J,Yoshimura H,et al.2006,Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size.J.Meteor.Soc.Jpn.,84:581-611.
    41、陈起英,俞永强,郭裕福,等.1996,温室效应引起的东亚区域气候变化,气候与环境研究,1(2):113-123.
    42、俞永强,陈克明,金向泽,等.1996,温室效应引起的全球气候变化.气候变化规律及其数值模拟研究论文(二),气象出版社,北京,123-137.
    43、宋玉宽,陈隆勋.1996,二氧化碳稳态倍增情况下的气候变化数值模拟.气候变化规律及其数值模拟研究论文(二),气象出版社,北京,228-240.
    44、王彰贵,巢纪平,陈英仪,等.1996,全球海气耦合模式对大气中CO2含量变化的响应.气候变化规律及其数值模拟研究论文(二),气象出版社,北京,289-307.
    45,Guo Yufu,Yu Yongqiang,Liu Xiying,et al.2001,Simulation of Climate Change Induced by CO2 Increasing for East Asia with IAP/LASG GOALS Model.Adv.Atmos.Sci.,18(1):53-66.
    46、徐影,丁一汇,赵宗慈.2002,近30年人类活动对东亚地区气候变化影响的检测与评估.应用气象学报,13(5):513-525.
    47、许吟隆,薛峰,林一骅.2003,不同温室气体排放情景下中国21世纪地面气温和降水变化的模拟分析.气候与环境研究,8(2):209-217.
    48、徐影.2002,人类活动对气候变化影响的数值模拟研究.博士学位论文,中国气象局.
    49、李维亮,龚威.1996,中国区域气候模式对中国地区的区域性气候变化情景的模拟.气候变化规律及其数值模拟研究论文(二),气象出版社,北京,255-272.
    50、罗勇,赵宗慈.1997,NCAR RegCM2对东亚区域气候的模拟试验,应用气象学报,增刊,124-133.
    51、徐宾、许吟隆、张勇,等.2007,PRECIS模拟区域的选择对宁夏区域气候模拟效果的敏感性分析,中国农业气象,28(2):118-123.
    52、张勇、许吟隆、董文杰,等.2007,SRES B2情景下中国区域最高、最低气温及日较差变化分布特征初步分析,地球物理学报,50(3):714-723.
    53、许吟隆.应用Hadley中心RCM发展中国高分辨率区域气候情景.气候变化通讯,2004,3(5):6-7.
    54、姚玉璧,张存杰,邓振镛,等.2007,气象、农业干旱指标综述.干旱地区农业研究,25(1):185-189.
    55、冯平,李绍飞,王仲钰,等.2002,干旱识别与分析指标综述.中国农村水利水电,(7):13-15.
    56、Karl T R.1986,The sensitivity of the Palmer drought severity index and Palmer's Z.index to their calibration coefficients including potential evapotransp iration.Journal of Climate and App lied Meteorology,25(1):77-86.
    57、Dai Aiguo,Trenberth Kevin E,Taotao Qian.2002,A global dataset of Palmer Drought Severity index for 1870.relationship with soil moisture and effects of surface warming.Journal of Hydrometeorology,2004,5(6):1117-1130.
    58、Hayes M J,Svoboda M D,Wilhite D A,et al.1999,Monitoring the 1996 drought using the standardized precipitation index.Bulletin of the American Meteorological Society,80:429-438.
    [6]William M A.1984,The Palmer drought severity index:Limitations and assump tions.Journal of Climate and App lied Meteorology,23(7):1100-1109.
    59、李星敏,杨文峰,高蓓,等.2007,气象与农业业务化干旱指标的研究与应用现状.西北农林科技大学学报(自然科学版),35(7):111-116.
    60、杨小利.2007,西北地区气象干旱监测指标的研究和应用.气象,33(8):90-96.
    61、刘庚山,郭安红,安顺清,等.2004,帕默尔干旱指标及其应用研究进展.自然灾害学报,13(4):21-27.
    62、张存杰,王宝灵,刘德祥,等.1998,西北地区旱涝指标的研究.高原气象,17(4):381-389.
    [11]鞠笑生,杨贤为,等.1997,我国单站旱涝指标确定和区域旱涝级别划分的研究.应用气象学报,8(1):26-32.
    63、张尚印,姚佩珍,吴虹,等.1998,我国北方旱涝指标的确定及旱涝分布状况.自然灾害学报,7(2):22-28.
    64、袁文平,周广胜.2004,标准化降水指标与Z指标在我国应用的对比分析.植物生态学报,28(4):523-529.
    65、张强,鞠笑生,李淑华.1998,三种干旱指标的比较和新指标的确定.气象科技,1998(2):48-52.
    66、樊高峰,苗长明,毛裕定.2006,干旱指标及其在浙江省干旱监测分析中的应用.32(2):70-74.
    67、刘巍巍,安顺清,刘庚山,等.2003,以气候适宜降水量为基础的水分距平的计算方法.气象,29(4):14-23.
    68、卫捷,马柱国.2003,Palmer干旱指标、地表湿润指标与降水距平的比较.地理学报,58(增刊):117-124.
    69、朱炳瑗,谢金南,邓振镛.1998,西北干旱指标研究的综合评述.甘肃气象,16(1):35-36.
    70、宫德吉.1998,干旱监测预警指标研究.气象,24(8):14-17.
    71、宋连春,邓振镛,董安祥,等.2003,干旱.北京:气象出版社,54-55.
    72、谭桂容,孙照渤,陈海山.2002,旱涝指标的研究.南京气象学院学报,25(2):153-158.
    73、袁文平,周广胜.2004,干旱指标的理论分析与研究展望.地球科学进展,19(6):982-991.
    74、邹旭恺,张强,王有民,等.2005,干旱指标研究进展及中美两国国家级干旱监测.气象,31(7):6-9.
    75、杨青,李兆元.1994,干旱半干旱地区的干旱指标分析.灾害学,9(2):12-16.
    76、冯利华.2003,干旱等级和旱灾程度的定量表示法.农业系统科学与综合研究,19(3):230-231.
    77、张养才,何维勋,李世奎.1991,中国农业气象灾害概论[M].北京:气象出版社,262-281.
    78、王密侠,马成军,蔡焕杰.1998,农业干旱指标研究与进展[J].干旱地区农业研究,16 (3):119-124.
    79、康慕谊、朱源.2007,秦岭山地生态分界线的论证,生态学报,27(7):2774-2784
    80、张新时.1994,中国山地植被垂直带基本生态地理类型,植被生态学研究.北京:科学出版社,7-92.
    81、刘华训.1981,我国山地植被的垂直分布规律.地理学报,36(3):267-279.
    82、杜继稳.2006,陕西省短期天气预报指导手册,气象出版社.
    83、温克刚,翟佑安.2005,中国气象灾害大典.北京:气象出版社,陕西卷.
    82、杨文峰,李星敏,鲁渊平.2002,陕西省近50年气候变化及其对水资源的影响,陕西气象,2002(6):1-3.
    85、田武文、雷向杰、黄祖英.2007,陕西省2006年气候影响评价,陕西气象,2007(3):261-29.
    86、李平华、胡小晖、程燕.2002,陕西关中地区水文气候状况对全球变暖的响应问题探讨,灾害学,2002(2):37-41.
    87、郑小华.2005,气候变暖对陕西农业生产的影响,陕西气象,2005(6):15-18.
    88、王川、杜继稳、杜川利,等.2005,陕西及我国东部区域气候变化研究,气象,31(4):22-26.
    89、徐宾.2007,构建宁夏地区高分辨率气候变化情景的方法论探讨,中国农业科学院硕士论文,2pp.
    90、杜继稳,李社宏.2007,渭河流域致洪暴雨分析研究与应用.北京:气象出版社.
    91、许新田.1996,渭河流域致洪暴雨分析及其预报.空军气象学院学报,17(1).
    92、汤克靖,杨贤为.1995,黄河中游致洪暴雨的特征分析.灾害学,10(3).
    93、刘志玉.1998,陕西省灾害性洪水实例选编.陕西省防汛抗旱总指挥部办公室,内部发行、
    94、刘晓东,江志红,罗树如等.2005,RegCM3模式对中国东部夏季降水的模拟试验.南京气象学院学报,28(3):351-359.
    95、杜继稳.2008,陕西省干旱监测测预警评估于风险管理,气象出版社.
    96、李新周,刘晓东,马柱国.2004,近百年来全球主要干旱区的干旱化特征分析.干旱区研究,21(2),97-103.
    97、鞠笑生,杨贤为,陈丽娟,等.1997,我国单站旱涝指标确定和区域旱涝级别划分的研究.应用气象学报,8(1),26-33.
    98、鞠笑生,周旭恺,张强.1998,气候旱涝指标方法及其分析.自然灾害学报,7(3),51-57.
    99、马柱国,符淙斌.2001,中国北方干旱区地表湿润状况的趋势分析.气象学报,59(6),737-746.
    100、马柱国,华丽娟,任小波.2003,中国近代北方极端干湿事件的演变规律.地理学报.58(增刊),068-074.
    101、马柱国,符淙斌.2005,中国干旱和半干旱带的10年际演变特征.地球物理学报,48(3),519-525.
    102、杨帅英,郝芳华,宁大同.2004,干旱灾害风险评估的研究进展.安全与环境学报,4(2):79-82.
    103、周飞.2005,区域干旱评价指标体系及抗旱对策研究.山东大学硕士学位论文.
    104、郭韧,曹光源.2005,区域旱情评估模型.运筹与管理,14(4):111-114.
    105、赵传军.1985,风险经济学.哈尔滨:黑龙江教育出版社.
    106、风险管理编写组.1994,风险管理.成都:西南财经大学出版社.
    107、桑国庆.2006,区域干旱风险管理研究.山东大学硕士学位论文.
    108、顾颖.2006,风险管理是干旱管理的发展趋势.水科学进展,17(2):295-298.
    109、秦大河,罗勇,陈振林等.2007,气候变化科学的最新进展:IPCC第四次评估综合报告解析,气候变化研究进展,3(6):311-314
    110、胡顺军.塔里木盆地水面蒸发量的实验研究.干旱区资源与环境,2003,17(6):95
    111、张辉,万淑燕.江西省蒸发能力与干旱指数特性分析.黑龙江水利科技,2006,34(6):53-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700