极紫外多层膜光栅的浮雕衬底制作及衍射效率测量与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层膜光栅是集衍射光栅的高光谱分辨率及多层膜的高反射率于一身的光学元件,在极紫外空间光谱探测、极紫外光刻等领域有着重要用途。衍射效率是衡量多层膜光栅性能的重要指标,它很大程度上取决于光栅的槽形质量。矩形光栅槽形控制精度高,已达到实用化水平。闪耀光栅较矩形光栅具有更高的理论衍射效率,但由于极紫外闪耀光栅的闪耀角通常小于3°,其槽形难以精确控制,制约了实际衍射效率的提高。如何改进制作工艺,提高闪耀光栅的衍射效率是目前极紫外多层膜光栅研究中的一个重点。本论文围绕衍射效率这个核心问题,从理论计算、制作工艺和实验测试等方面对极紫外多层膜闪耀光栅进行了较为系统的研究。同时考虑到制作实用化器件的技术储备需要,对其他类型的极紫外光栅也进行了研究。
     理论计算方面,编写了一套基于微分法的能模拟光栅实际槽形和粗糙度因素的衍射效率计算程序。该程序的计算结果与测试结果良好符合,为理论分析光栅槽形参数与衍射效率之间的关系提供了可靠手段。
     工艺制作方面,提出了基于矩形掩模的Ar+-O+混合离子束刻蚀闪耀光栅的工艺方法和理论模型,验证了该方法的便捷性和模型的有效性。该方法的特色是O2和矩形掩模的使用。O2有利于获得0.5-3°的小闪耀角,基于矩形掩模的刻蚀模型简单实用,工艺过程易于精确控制。采用该工艺能重复制作出槽形近似为三角形的闪耀光栅,闪耀角的控制精度达到±10%。
     实验测试方面,测得多层膜闪耀光栅样品的衍射效率达30%以上,达到甚至略高于国际上报道的最佳结果。通过比较闪耀光栅对照组的衍射效率测量结果,结合理论分析,定量评价了各项槽形参数对衍射效率的影响,给出了它们的误差容许范围,有利于指导闪耀光栅的实用化制作。
     其他研究方面,制作得到了衍射效率在20%以上的多层膜矩形光栅,与国际上实用化的矩形光栅相当。提出并制作了宽带多层膜光栅,在保证衍射效率约为10%的前提下,光谱范围达2.8nm,较普通多层膜光栅增大近三倍。
Multilayer-coated gratings realize the high spectral resolution of diffraction gratings and the high normal-incidence reflectivity of multilayer coatings in a single optical element, so they are widely used in extreme-ultraviolet (EUV) astronomical spectrometers, EUV lithography systems, and so on. Diffraction efficiency, which is the key performance parameter of a grating, depends largely on the grating’s groove shape. Gratings with a rectangular groove shape (laminar gratings) have been used in most EUV applications, for the rectangular groove shape can be accurately controlled. A blazed grating with a triangular groove shape has higher theoretical diffraction efficiency than a laminar grating. However, the required blaze angle of a EUV blazed grating is so small (typically < 3°) that it is difficult to control precisely the groove profile. As a result, the measured efficiency of a blazed grating is much less than the theoretical prediction. Researchers are now focusing on improving the fabrication technique so as to get higher efficiency. This dissertation mainly reports our investigation on EUV blazed gratings, which includes efficiency calculation, grating fabrication, and efficiency measurement and analysis. Some other types of EUV gratings are also studied.
     For efficiency calculation, a computer code based on the differential theory was written, which takes the actual groove shape and the surface and interface roughness into account. The calculated results are in good agreement with the measured results. This computation program is useful for analyzing the relationship between diffraction efficiency and groove parameters.
     A simple and practical method to make high-quality EUV blazed gratings is developed. This method uses an argon and oxygen mixed-gas ion-beam to directly etch the fused silica substrate through a rectangular-profile photoresist mask. A corresponding theoretical model is built to analyze the etching process. This method is characterized by its use of rectangular photoresist masks and oxygen as an etchant ingredient. With oxygen added, it is easy to obtain small blaze angles of 0.5-3°. The etch model based on rectangular mask is concise, and the etch process can be precisely controlled. Experimental results confirm the convenience of the method and the effectiveness of the model. With this fabrication technique, blazed gratings with sharp edges can be reproducibly fabricated, and the control precision of the blaze angle is±10%.
     A typical multilayer-coated blazed grating was measured with synchrotron radiation and has a peak efficiency more than 30%, which approaches or is even slightly higher than the best results published to date. Besides, a group of blazed gratings with different groove parameters were fabricated and measured for comparing their measured efficiencies and with theoretical calculation. The influences of different groove parameters on the efficiency are quantitatively assessed. The error margins of all parameters are found, which might be a guide for making EUV blazed gratings.
     In addition, a multilayer-coated laminar grating was made; its peak efficiency is larger than 20%, which is comparable with the efficiencies of pratical laminar gratings. Besides, a grating with broad wavelength bandwidth was designed and fabricated. Its efficiency is ~10% in a 2.8 nm-wide wavelength range that is almost 3 times more than that of a multilayer grating not designed for broad band applications.
引文
[1]阿特伍德著,张杰等译.软X射线与极紫外辐射的原理和应用.北京:科学出版社, 2003: 1-3
    [2] Spiller E, Low-loss reflection coatings using absorbing materials. Appl Phys Lett, 1972, 20: 365-369.
    [3] Spiller E, Reflective multilayer coatings for the far uv region. Appl Opt, 1976, 15: 2333-2338.
    [4] Montcalm C, Bajt S, Mirkarimi P, et al. Multilayer reflective coatings for extreme- ultraviolet lithography. Proc SPIE, 1998, 3331: 42-51.
    [5] Bajt S, Alameda B J, Barbee T W, et al. Improved reflectance and stability of Mo/Si multilayers. Proc SPIE, 2001, 4506: 65-75.
    [6] Barbee T W, Mrowka S, and Hettrick M C. Molybdenum-silicon multilayer mirrors for the extreme ultraviolet. Appl Opt, 1985, 24: 883-886.
    [7] Keski-Kuha R A, Layered synthetic microstructure technology considerations for the extreme ultraviolet. Appl Opt, 1984, 23: 3534-3537.
    [8] Chernov V A, Chkhalo N I, Kovalenko N V, et al. Fabrication and performance characteristics of a Ni/C multilayer grating for hard X-rays. Nulc Instr and Meth Phys Res A, 1995, 359: 138-140.
    [9] Chernov V A, Erofeev V I, Chkhalo N I, et al. X-ray performance of multilayer gratings: recent advances at SSRC. Nulc Instr and Meth Phys Res A, 1998, 405: 310-318.
    [10] Sammar A, Ouahabi M, Barchewitz R, et al. Theoretical and experimental study of soft x-ray diffraction by a lamellar multilayer amplitude grating. J Opt, 1993, 24: 37-41.
    [11] AndréJ M, Sammar A, Barchewitz R, et al. X-UV lamellar multilayer amplitude gratings. J X-Ray Sci and Tech, 1998, 8: 171-193.
    [12] Benbalagh R, AndréJ M, Barchewitz R, et al. Fabrication and characterization of a Mo/Si multilayer monochromator with a narrow spectral bandwidth in the xuv domain. Nulc Instr and Meth Phys Res A, 2001, 458: 650-655.
    [13] Cerrina F, Margaritondo G, Underwood J H, et al. Maximum, a scanning photoelectron microscope at aladdin. Nulc Instr and Meth Phys Res A, 1988, 266: 303-307.
    [14] Kleinberg U, Menke D, Hamelmann F, et al. Photoemission microscopy with microspot-XPS by use of undulator radiation and a high-throughput multilayer monochromator at BESSY. J Elec Spec Relat Phenom B, 1999, 101-103: 931-936.
    [15] Bjorkholm J E, EUV lithography—the successor to optical lithography? Intel Tech J, 1998, Q3: 1-8.
    [16] Kemp K and Wurm S. EUV lithography. Comptes Rendus Physique, 2006, 7: 875-886.
    [17] Miura T, Murakami K, Suzuki K, et al. Nikon EUVL development progress update. Proc SPIE, 2007, 6921: 69210M-1 - 69210M-10.
    [18] Tichenor D A, Ray-Chaudhuri A K, Lee S H, et al. Initial Results from the EUV Engineering Test Stand. Proc SPIE, 2001, 4506: 9-18.
    [19] Naulleau P P, Sweatt W C, and Tichenor D A. Theoretical efficiency analysis of a condenser-embedded grating-based spectral purity filter for EUV lithography. Opt Commun, 2002, 214: 31-38.
    [20]金春水,王占山,曹健林.软X射线投影光刻技术.强激光与粒子束, 2000, 12: 559-564.
    [21] Stradling G L, Barbee T W, Henke B L, et al. Streaked Spectrometry Using Multilayer X-Ray Interference mirrors to investigate Energy Transport in Laser Plasma Applications. AIP Conf Proc, 1981, 75: 292-296.
    [22] Moos W, Zwicker A P, Regan S P, et al. Layered synthetic microstructures for soft x-ray spectroscopy of magnetically confined plasmas. Rev Sci Instr, 1990, 61: 2733-2737.
    [23] SERTS related publications [EB/OL]. [2008-10-01]. http://serts.gsfc.nasa.gov/results/publications.shtml.
    [24] Kowalski M P, Barbee T W, Heidemann K F, et al. Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer. Appl Opt, 1999, 38: 6487-6493.
    [25] Kowalski M P, Gursky H, Rife J C, et al. Efficiency calibration of the four multilayer-coated holographic ion-etched flight gratings for a sounding rocket high-resolution spectrometer. Proc SPIE, 2001, 4498: 303-314.
    [26] Hinode (Solar-B) [EB/OL]. [2008-10-01]. http://solarb.msfc.nasa.gov/.
    [27] Culhane J L, Harra L K, James A M, et al. The EUV Imaging Spectrometer for Hinode. Solar Phys, 2007, 243: 19-61.
    [28] Lang J, Kent B J, Paustian W, et al. Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite. Appl Opt, 2006, 45: 8689-8705.
    [29] Seely J F, Brown C M, Windt D L, et al. Normal-incidence efficiencies of multilayer-coated laminar gratings for the Extreme-Ultraviolet Imaging Spectrometer on the Solar-B mission. Appl Opt, 2004, 43: 1463-1471.
    [30] Loewen E G, Nevière M, and Maystre D. On an asymptotic theory of diffraction gratings used in the scalar domain. J Opt Soc Am, 1978, 68: 496-502.
    [31] Vidal B, Vincent P, Dhez P, et al. Thin films and gratings: theories used to optimize the high reflectivity of mirrors and gratings for x-ray optics. Proc SPIE, 1985, 563: 142-149.
    [32] Nevière M, Multilayer coated gratings for x-ray diffraction: differential theory. J Opt Soc Am A, 1991, 8: 1468-1473.
    [33] Nevière M and Popov E. Light propagation in periodic media: differential theory and design. New York: Marcel Dekker, Inc, 2003.
    [34] Goray L I and Seely J F. Efficiencies of master, replica, and multilayer gratings for the soft-x-ray–extreme-ultraviolet range: modeling based on the modified integral method and comparisons with measurements. Appl Opt, 2002, 41: 1434-1445.
    [35] Kowalski M P, Seely J F, Hunter W R, et al. Comparison of the calculated and the measured efficiencies of a normal-incidence grating in the 125–225-? wavelength range. Appl Opt, 1997, 36: 8939-8943.
    [36] Seely J F, Multilayer grating for the Extreme Ultraviolet Spectrometer (EIS). Proc SPIE, 2000, 4138: 174-181.
    [37]袁利祥,范正修.软X激光反射输出镜的近似理论设计.中国激光, 1993, A20: 356-361.
    [38]袁利祥,范正修.应用微分电磁理论研究软X光衍射光栅.中国激光, 1994, A21: 136-140.
    [39]张立超.极紫外/软X射线多层膜光栅技术研究[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所, 2007.
    [40] Kowalski M P, Cruddace R G, Seely J F, et al. Efficiency of a multilayer-coated, ion-etched laminar holographic grating in the 14.5–16.0-nm wavelength region. Opt Lett, 1997, 22: 834-836.
    [41] Seely J F, Kowalski M P, Cruddace R G, et al. Multilayer-coated laminar grating with 16% normal-incidence efficiency in the 150-? wavelength region. Appl Opt, 1997, 36: 8206-8213.
    [42] Seely J F, Kowalski M P, Rife J C, et al. On-blaze operation of a Mo/Si multilayer-coated, concave diffraction grating in the 136-142-? wavelength region and near normal incidence. Appl Opt, 1993, 32: 4890-4897.
    [43] Seely J F, Kowaski M P, Hunter W R, et al. Normal-incidence efficiencies in the 115–340-? wavelength region of replicas of the Skylab 3600-line/mm grating with multilayer and gold coatings. Appl Opt, 1995, 34: 6453-6458.
    [44] Hutley M C, Diffraction gratings. London: Academic Press, 1982.
    [45] Kleinberg U, Osterried K, Stock H–J, et al. Mo/Si multilayer-coated ruled blazed gratings for the soft-x-ray region. Appl Opt, 1995, 34: 6506-6512.
    [46] Sheridon N K, Production of blazed holograms. Appl Phys Lett, 1968, 12: 316-318.
    [47] Mcphedran R C and Waterworth M D. Properties of diffraction grating anomalies. Opt Acta, 1973, 20:533-547.
    [48] Schmahl G and Rudolph D. Holographic diffraction grating// Wolf E ed., Progress in optics XIV. Amsterdam: North-Holland, 1976: 197-244.
    [49] Aoyagi Y and Namba S. Blazed ion-etched holographic gratings. Opt Acta, 1976, 23: 701-707.
    [50] Aoyagi Y, Sano K, and Namba S. High spectroscopic qualities in blazed ion-etched holographic gratings. Opt Commun, 1979, 29: 253-255.
    [51] Somekh S, Introduction to ion and plasma etching. J Vac Sci Tech, 1976, 13: 1003-1007.
    [52] Nelles B, Heidemann K F, and B. Kleemann. Design, manufacturing and testing of gratings for synchrotron radiation. Nulc Instr and Meth Phys Res A, 2001, 467-468: 260-266.
    [53] Kowalski M P, Barbee T W, Cruddace R G, et al. Efficiency and long-term stability of a multilayer-coated, ion-etched blazed holographic grating in the 125–133-? wavelength region. Appl Opt, 1995, 34: 7338-7346.
    [54] Seely J F, Cruddace R G, Kowalski M P, et al. Polarization and efficiency of a concave multilayer grating in the 135–250-? region and in normal-incidence and Seya–Namioka mounts. Appl Opt, 1995, 34: 7347-7354.
    [55] Osterried K, Heidemann K F, and Nelles B. Groove profile modification of blazed gratings by dip coating with hardenable liquids. Appl Opt, 1998, 37: 8002-8007.
    [56] Kowalski M P, Cruddace R G, Heidemann K F, et al. Record high extreme-ultraviolet efficiency at near-normal incidence from a multilayer-coated polymer-overcoated blazed ion-etched holographic grating. Opt Lett, 2004, 29: 2914-2916.
    [57] Kowalski M P, Cruddace R G, T W Barbee, et al. High efficiency multilayer-coated Polymer-overcoated blazed ion-etched holographic gratings for high resolution EUV astronomical spectroscopy. Proc SPIE, 2004, 5488: 910-921.
    [58] Kowalski M P, Berendse F B, T W Barbee, et al. The Joint Astrophysical Plasmadynamic Experiment (J-PEX) high-resolution EUV spectrometer: diffraction grating efficiency. Proc SPIE, 2006, 6266: 62660W-1 - 62660W-12.
    [59] Tsang W and Wang S. Preferentially etched diffraction gratings in silicon. J Appl Phys, 1975, 46: 2163-2166.
    [60] Chang C, Heilmann R K, Fleming R C, et al. Fabrication of sawtooth diffraction gratings using nanoimprint lithography. J Vac Sci Tech B, 2003, 21: 2755-2759.
    [61] Chang C, Montoya J C, Akilian M, et al. High fidelity blazed grating replication using nanoimprint lithography. J Vac Sci Tech B, 2004, 22: 3260-3264.
    [62] Kowalski M P, Heilmann R K, Schattenburg M L, et al. Near-normal-incidence extreme-ultraviolet efficiency of a flat crystalline anisotropically etched blazed grating. Appl Opt, 2006, 45: 1676-1679.
    [63] Naulleau P P, Anderson E H, Gullikson E M, et al. Fabrication of high-efficiency multilayer-coated binary blazed gratings in the EUV regime. Opt Commun, 2001, 200: 27-34.
    [64] Liddle J A, Salmassi F, Naulleau P P, et al. Nanoscale topography control for the fabrication of advanced diffractive optics. J Vac Sci Tech B, 2003, 21: 2980-2984.
    [65] Naulleau P P, Liddle J A, Anderson E H, et al. Fabrication of high-efficiency multilayer-coated gratings for the EUV regime using e-beam patterned substrates. Opt Commun, 2004, 229: 109-116.
    [66]徐向东.全息离子束刻蚀真空紫外及软X射线衍射光栅研究[博士学位论文].合肥:中国科学技术大学, 2001.
    [67]李全臣,蒋月娟.光谱仪器原理.北京:北京理工大学出版社, 1999: 23-24.
    [68]袁利祥,范正修,殷功杰,等.软X光多层膜位相型矩形光栅的实验研究及其光学特性.光学学报, 1994, 14: 642-645.
    [69]袁利祥,范正修,殷功杰,等.亚微米光栅周期的软X射线多层膜光栅的衍射效率研究.物理学报, 1995, 44: 184-188.
    [70]吴文娟,王占山,秦树基,等.窄光谱带宽X射线刻蚀多层膜光栅.光学精密工程, 2004, 12: 226-230.
    [71]孟祥峰,李立峰.提高离子束刻蚀亚微米光栅侧壁陡直度的方法.光学学报, 2008, 28: 189-193.
    [72] Hunter W R, Kowalski M P, Rife J C, et al. Investigation of the properties of an ion-etched plane laminar holographic grating. Appl Opt, 2001, 40: 6157-6165.
    [73] Vinogradov A V and Zeldovich B Y. X-ray and far uv multilayer mirrors: principles and possibilities. Appl Opt, 1977, 16: 89-93.
    [74] Goray L I and Seely J F. Wavelength separation of plus and minus orders of soft-x-ray-EUV multilayer-coated gratings at near-normal incidence. Proc SPIE, 2005, 5900: 59000C-1 - 59000C-11.
    [75]李立峰.光栅的电磁场理论.清华大学精密仪器与机械学系精密测试技术及仪器国家重点实验室光栅理论短期班讲义, 2003.8.
    [76] Li Lifeng. Electromagnetic theory of gratings.清华大学精密仪器与机械学系光学工程专业研究生学位课讲义.
    [77] Li Lifeng, Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A, 1996, 13: 1870-1876.
    [78]姜启源,何青,高立.数学实验.北京:高等教育出版社, 1999: 102-113.
    [79] Matlab function reference– ode45, 7.4 (R2007a) ed. [CP/DK].
    [80] Li Lifeng, Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J Opt Soc Am A, 1996, 13: 1024-1035.
    [81] Comparison of multilayer reflectivity code [R/OL]. [2008-10-01] http://hea-www.harvard.edu/MST/simul/analysis/optical_constants/lsm_vs_multilayer_reflect/docs/multilayer.html#INTRO.
    [82] Born M and Wolf E, Principles of optics, 7th ed.. Cambridge: Cambridge university Press, 1999: 65.
    [83] Multilayer reflectivity [CP/OL]. [2008-10-01] http://henke.lbl.gov/optical_constants/multi2.html.
    [84] Index of refraction [DB/OL]. [2008-10-01] http://henke.lbl.gov/optical_constants/getdb2.html.
    [85]邱克强,徐向东,洪义麟,等.衍射光学元件制作中的基片涂胶方法.微细加工技术, 2007, 25: 19-23.
    [86] Mello B de A, Costa I F da, Lima C R A, et al. Developed profile of holographically exposed photoresist gratings. Appl Opt, 1995, 34: 597-603.
    [87] Steinbruchel C, Universal energy dependence of physical and ion-enhanced chemical etch yields at low ion energy. Appl Phys Lett, 1989, 55: 1960-1962.
    [88]王旭迪.几种光学材料的离子束刻蚀微结构研究[博士学位论文].合肥:中国科学技术大学, 2005.
    [89] LKJ-1C-100、LKJ-1C-150离子束刻蚀系统技术及使用说明,北京埃德万斯离子束技术研究所.
    [90] Ducommun J P, Cantagrel M, and Moulin M. Evolution of well-defined surface contour submitted to ion bombardment: computer simulation and experimental investigation. J Mater Sci, 1975, 10:52-62.
    [91] Johnson L F, Evolution of grating profiles under ion-beam erosion. Appl Opt, 1979, 18: 2559-2574.
    [92] Johnson L F and Ingersoll K A. Asymmetric triangular grating profiles with 90°groove angles produced by ion-beam erosion. Appl Opt, 1981, 20: 2951-2961.
    [93] Aston G, Kaufman H, and Wilbur P. Ion beam divergence characteristics of two-grid accelerator systems. AIAA J, 1978, 16: 516-524.
    [94]刘金声.离子束技术及应用.北京:国防工业出版社, 1995.
    [95]赵劲松,李立峰,吴振华.一种控制矩形光刻胶光栅槽深和占宽比的方法.光学学报, 2004, 24: 1285-1291.
    [96]赵劲松,李立峰,吴振华.全息光栅实时显影监测曲线的理论模拟.光学学报, 2004, 24: 1146-1150.
    [97] Li Lifeng, Xu Mai, Stegeman G I, et al. Fabrication of photoresist masks for sub-micrometer surface relief gratings. Proc. SPIE 1988, 835: 72-82.
    [98] Kowalski M P, Hunter W R, and Barbee T W. Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: topography. Appl Opt, 2006, 45: 305-321.
    [99] Lin Hui and Li Lifeng. Fabrication of extreme-ultraviolet blazed gratings by use of direct argon-oxygen ion-beam etching through a rectangular photoresist mask. Appl Opt, 2008, 47: 6212-6218.
    [100]光谱辐射标准和计量_中国科大国家同步辐射实验室[EB/OL]. [2008-10-01] http://www.nsrl.ustc.edu.cn/zh_CN/Equipmentsinfo.asp?id=15&tp=syb&mesi=0.2356113.
    [101]周洪军,郑津津,霍同林,等.计量线高次谐波的定量研究.光学精密工程, 2007, 15: 640-645.
    [102] Lin Hui, Zhang Lichao, Li Lifeng, et al. High-efficiency multilayer-coated ion-beam-etched blazed grating in the extreme-ultraviolet wavelength region. Opt Lett, 2008, 33: 485-487.
    [103] Zhou Qian, Li Lifeng, and Zeng Lijiang. A method to fabricate convex holographic gratings as master gratings for making flat-field concave gratings. Proc SPIE, 2007, 6832: 68320W-1 - 68320W-9.
    [104] Veeco-TESP Probes [EB/OL]. [2008-10-01] http://www.veecoprobes.com/p-3394-tesp.aspx.
    [105] Lin Hui, Zhang Lichao, Jin Chunshui, et al. Fabrication and efficiency measurement of a multilayer-coated ion-beam-etched laminar grating for the extreme-ultraviolet wavelength region. Chin Opt Lett, in press.
    [A-1] Kowalski M P, Hunter W R, and Barbee T W. Replication of a holographic ion-etched spherical blazed grating for use at extreme-ultraviolet wavelengths: topography. Appl Opt, 2006, 45: 305-321.同[98]
    [A-2] Elson J M and Bennett J M. Calculation of power spectral density from surface profile data. Appl Opt, 1995, 34: 201-208.
    [A-3] Veeco-TESP Probes [EB/OL]. [2008-10-01] http://www.veecoprobes.com/p-3394-tesp.aspx.同[104]
    [A-4] Villarrubia J S, Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand and Tech, 1997, 102: 425-454.
    [B-1] Index of refraction [DB/OL]. [2008-10-01] http://henke.lbl.gov/optical_constants/getdb2.html.同[84]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700