三峡库区涉水滑坡体稳定性的可靠度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在滑坡稳定性评价中,主要采用稳定系数作为评价指标,但稳定系数高度依赖于强度参数的取值,其计算中没有考虑岩土体参数的不确定性,因而对该方法的科学性提出了挑战。用可靠度理论评价滑坡长期稳定性是对该课题研究的一个发展趋势。本文以长江三峡库区涉水滑坡体为对象,开展正常蓄水时滑坡稳定性的可靠度研究。
     本文是在课题组承担的“长江上游宜昌-江津段环境工程地质调查地质灾害遥感解译”项目和三峡库岸马家沟滑坡、归州老城滑坡、玉皇阁崩滑体、上西坪滑坡、烟厂后滑坡、四道桥滑坡、四道沟滑坡、北门坡滑坡和巴东小商品市场滑坡等多处滑坡勘察治理项目的基础上完成的。首先根据三峡库岸滑坡特点和岸坡工程地质条件,将三峡库区库岸分为三段,即秭归段、巴东-奉节段和奉节西-重庆段。秭归段从库首到秭归与巴东交界处,以侏罗系地层为主,地势较开阔,构造上受秭归向斜控制;巴东-奉节段主要为三叠系中统巴东组地层,宽缓的河谷与陡峻的山峰相间出现,形成独特的峡谷地貌;奉节西-重庆段主要为侏罗系地层,地势较平缓,宽缓的向斜与紧密的背斜形成平行于河流的线性构造。
     在此基础上,分析了78个涉水滑坡案例,其中9处滑坡为作者和课题组参与勘察设计。由秭归到重庆段,滑坡的地表坡度及滑面倾角逐渐变缓,滑坡的长宽比由1.5-4.2逐渐减小到0.2-0.8,滑坡由纵长型向横宽型过渡。秭归段以中倾角、纵长型、中层、中型-大型滑坡为主;巴东-奉节段以中倾角、纵长型、中-深层、大型滑坡为主;奉节西-重庆段以平缓、横宽型、中-深层、大型滑坡为主。根据三个库段涉水滑坡的地表坡度、滑面倾角和滑坡前后缘高程等几何参数统计结果,建立了三个库段滑坡地质结构模型。
     将库区滑坡的物理力学指标分为实测值(据勘察报告)和专家值(用于稳定性计算的值)。根据本课题组和其他勘察单位对三峡库区滑坡的勘察结果,共取得库区滑坡物理力学指标927组实测值和325组专家值。对滑体与滑带强度指标的天然峰值、天然残剪值、饱和峰值、饱和残剪值、原位剪切值、天然专家值和饱和专家值进行了比较,结果表明,从秭归到重庆,滑体与滑带的粘聚力逐渐增大。天然状态下,粘聚力的专家值介于实测峰值与实测残剪值之间;饱和状态下,秭归段滑体与滑带的粘聚力专家值比实测峰值大5-12kPa,巴东-奉节段和奉节西-重庆段粘聚力专家值介于实测峰值与实测残剪值之间。从秭归到重庆段,滑体与滑带的天然内摩擦角逐渐降低;饱和状态下,巴东-奉节段内摩擦角最大,奉节西-重庆段最小。整个库段中,滑体与滑带的内摩擦角专家值比实测峰值大1.5°-5.7°。
     对各库段滑体土与滑带土强度指标和饱和渗透系数统计检验表明,各库段滑体与滑带的c、φ实测值与专家值都服从正态分布,除秭归段滑体粘聚力的饱和峰值与奉节西-重庆段粘聚力的天然峰值外,三个库段的滑体与滑带c、φ专家值和实测值也都服从对数正态分布;滑体与滑带的饱和渗透系数都服从对数正态分布和Weibull分布,本文在可靠度分析时,强度参数采用了正态分布概率模型。
     采用Morgenstern-Price法建立极限状态方程,用有限元法模拟库水位升降引起滑坡体内渗流场的变化,对三个库段滑坡模型进行2250次Monte-Carlo模拟计算,结果表明,库水位上升时,各库段滑坡模型的失效概率逐渐减小;库水位下降时,滑坡的失效概率增大。对68个典型滑坡案例进行模拟计算,分析了失效概率曲线的变化形态,将失效概率曲线分为三类,即拐点左凹型、弧状左凹型和直线型。当水位降落比大于0.8时,失效概率与库水位的关系曲线多呈拐点左凹型,此时滑坡前缘高程多位于145m以上或附近,库水对滑坡稳定性的影响较小;当水位降落比在0.4-0.8范围内,曲线形态多呈弧状左凹型,滑坡前缘高程低于145m,涉水不深,库水对滑坡稳定性影响极大;当水位降落比小于0.4时,曲线多呈直线型,滑坡前缘高程远低于145m,涉水很深,库水对滑坡稳定性有一定的影响。
     基于各库段滑坡的地质条件、实际变形特点、水位降落比和可靠度计算结果,给出了库水位涨落过程中三峡库区涉水滑坡体目标失效概率推荐值,即在库水位涨落过程中,秭归段和巴东-奉节段滑坡可接受失效概率低于30%、奉节西-重庆段滑坡可接受失效概率低于20%,低于此值时,对滑坡采取地表排水措施;秭归段和巴东-奉节段滑坡基本接受失效概率为30%-50%、奉节西-重庆段滑坡基本接受失效概率为20%-40%,在此范围内时,应对滑坡采取地表排水及监测预警措施;秭归段和巴东-奉节段失效概率超过50%、奉节西-重庆段失效概率超过40%为不可接受失效概率,此时应对滑坡采取地表排水及圬工防治措施。
At present, a factor of safety is mainly adopted as the main indicators for assessment of landslides stability. However, the factor of safety highly depends on the value of shear strength parameter, without considering about the uncertainty of the geotechnical body parameters during the course of calculation. Therefore, the method of stability factor is challenged scientifically. It is a development trend of the subject that the theory of reliability is used for evaluation of the long-term stability of landslides. In this paper, the theory of reliability is used to research on the stability of landslides during the normal fluctuation of the water level in Three-Gorges Reservoir area.
     On the basis of remote sensing interpretation for geological investigation of environmental engineering and geology disaster for Yichang-Jiangjin of the Yangtze River by my research team, and some landslides investigation and design projects, such as Majiagou landslide, Guizhou landslide, Yuhuangge slumped mass, Shangxiping landslide, Yanchanghou landslide, Sidaoqiao landslide, Sidaogou landslide, Beimenpo landslide and Badong small commodity market landslide, the paper is accomplished. According to characteristic of the landslides and engineering geological condition of the bank of the Three Gorges Reservoir, the reservoir bank of Three Gorges is divided into three segments, that is Zigui, Badong-Fengjie and Fengjiexi-Chongqing. Zigui segment, from the head of reservoir to the border between Zigui and Badong, is mainly made up of Jurassic sedimentary rocks, with the open terrain, and its geological structure is controlled by the Zigui syncline. Badong-Fengjie segment, from Badong to Fengjie, is mainly made up of sedimentary rocks of Triassic age, particularly in the Badong formation with mainly clays and clayey limestone, also the unique landforms of the three gorges consisted of wide valley and steep hill. Fengjiexi-Chongqing segment, from the western part of Fengjie to Chongqing, is mainly composed of Jurassic sedimentary rocks, with linear tectonics consisted of the wide syncline and tight anticline parallel to Changjiang River.
     On that basis, the study of78landslides related to reservoir water, there are9landslides are investigated or designed by the research team and I. From Zigui to Chongqing, the slope gradient of the ground surface and the sliding zone gradually decrease, the ratio of long to wide from1.5-4.2to0.2-0.8, and the type of slope is transforming from long to wide at the sliding direction. The type of landslides between Zigui and Badong-Fengjie is slightly different on geometry feature. The landslides with medium inclination, long along the sliding direction, the medium thick layer, medium and big size dominate in Zigui and Badong-Fengjie segment. The characteristic of landslides in Fengjiexi-Chongqing is gently in sliding zone, wide, medium and thick layer, large in size. According to the statistical results from the slope gradient, the inclination of the sliding zone and the elevation of the frontier and the back, three typical models of landslides have been formed.
     The physical and mechanics parameters are divided into measured values (coming from survey reports) and expert values (these values are used for calculation of the landslides stability). There are927groups of measured values and325groups of expert values collected in this paper. These shear strength parameters of sliding mass and sliding zone are studied on detail, the results show that, from Zigui to Chongqing, the cohesions of the sliding mass and the sliding zone are increasing gradually, at the natural state, the expert value in cohesion is between the measured peak values and the measured residual shearing values; at the saturation state, the expert values in cohesion of the sliding mass and the sliding zone in Zigui segment is5-12kPa bigger than the measured peak values, the expert values in cohesion Badong-Fengjie segment and Fengjiexi-Chongqing segment are between the mesured peak values and the mesured residual shearing values. From Zigui to Chongqing, the natural internal friction angle decreases gradually; at the saturation state, the internal friction angle of Badong-Fengjie segment is the biggest, and the Fengjiexi-Chongqing segment is the smallest. In the whole reservoir area, the expert values of the internal friction angle of the sliding mass and the sliding zone is1.5°-5.7°bigger than the measured peak values.
     Based on test analysis on the parameters of mechanics and saturated hydraulic conductivity, in the whole reservoir area, the measured1values and expert values of c and (p submit the normal distribution, and most of them also submit logarithm normal distribution. The saturated permeability of the sliding mass and the sliding zone submit logarithm normal distribution and Weibull distribution. In this paper, all shear strength parameters adopt the normal probability distribution.
     After the seepage fields of the landslides are simulated by the finite element, three landslide models and68typical landslides are calculated by use the method of Monte-Carlo and Morgenstern-Price. The results show that, the failure probability of the landslides is decreasing gradually when the reservoir water level is rising up; on the contrary, when the water level is lowering, the failure probability is increasing. The failure probability curves of the typical landslides are studied on detail with the fluctuation of the reservoir water level. The figures of the failure probability curve are divided into3types, and that is turning point in the left concave shape, arc in the left concave shape and linear shape. When the front elevation of the landslides is over or closed to145m, the drawdown ratio is0.8, and the most of failure probability curves are the turning point in the left concave shape, therefore the influence of reservoir water on the stability of landslides is slightly small; when the front elevation is below the145m, the drawdown ratio is between0.4and0.8, and the curves are shown on the arc in the left concave shape, as a result, the reservoir water has a great effect on the stability; when the front elevation is far below145m, the drawdown ratio is less than0.4, and the curve is shown on the linear shape, thus, the impact of the reservoir water on the stability is limited.
     Finally, based on the geological condition, the deformed features, the drawdown ratio and the computed reliability, the failure probability recommendation values are proposed for submerged slide mass in Three Gorges reservoir area during the course of the reservoir water fluctuation. The acceptation failure probability of landslides is less than30%in Zigui and Badong-Fengjie segment, and the acceptation failure probability is less than20%in Fengjiexi-Chongqing segment, then ground surface drainage is taken for landslides. It is basically acceptable that the failure probability falls in the scope of30%-50%in Zigui and Badong-Fengjie segment,20%-40%in Fengjiexi-Chongqing segment, then the ground surface drainage, monitoring and warning should be taken for landslides. It is unacceptable that the failure possibility is great than50%in Zigui and Badong-Fengjie segment, over40%in Fengjiexi-Chongqing segment, the ground surface drainage and masonry should be taken as prevention measures for landslides.
引文
[1]三峡库区地质灾害防治工作指挥部.湖北省秭归县沙镇溪镇千将坪滑坡[J].中国地质灾害与防治学报,2003,14(3):139-139
    [2]李玉生.重庆市三峡库区若干重大地质灾害隐患[J].中国地质灾害与防治学报,2010,21(1):133-135
    [3]GB50021-2001,岩土工程勘察规范[S].北京:中国建筑工业出版社,2009
    [4]DZ 0240-2004,滑坡防治工程设计与施工技术规范[S].北京:中国标准出版社,2006
    [5]DZ/T 0218-2006,滑坡防治工程勘查规范[S].北京:中国标准出版社,2006
    [6]SL386-2007,水利水电工程边坡设计规范[S].北京:中国水利水电出版社,2007
    [7]何满潮,崔政权,陈鸿汉,等.三峡库区巫山古滑坡系统构造变形场研究[J].工程地质学报,1998,6(2):97-102.
    [8]张加桂.三峡库区巫山县新城址中段滑坡的研究[J].工程地质学报,2000,8(4):433-437
    [9]张加桂.三峡库区巫山县新城址巴东组三段形成的大型复杂滑坡特征及成因机制[J].地球学报,2001,22(2):145-148
    [10]柯于义,郭峰.三峡库区巫山新县城深层基岩古滑坡研究[J].工业建筑,2007,37(S1):898-902
    [11]Fellenius. Calculation of the stability of earth dams[C]. Sweden Second Congress on Large Dams. Washington, D. C.1936,445-462
    [12]Bishop A. W. The use of the slip circle in the stability analysis of slopes[J]. First technical session: General theory of stability of slopes,1954,5(1):7-17
    [13]Spencer E. A method of analysis of the stability of embankments assuming parallel inter~slice forces[J]. Geotechnique,1967,17 (1):11-26
    [14]Spencer E. Thrust line criterion in embankment stability analysis[J]. Geotechnique,1973,23 (1): 85-100
    [15]Morgenstern, N. R., Price, V. E. The analysis of the stability of general slip surface [J]. Geotechnique,1965,15 (1):79-93
    [16]朱大勇,李焯芬,黄茂松,等.对3种著名边坡稳定性计算方法的改进[J].岩石力学与工程学报,2005,24(2):183~194
    [17]朱本珍,周岳华,朱大勇.对Janbu普遍条分法计算方法的改进[J].防灾减灾工程学报,2003,23(4):56~60
    [18]曾纪杰.一种改进的Janbu法[J].湖南理工学院学报(自然科学版),2005,18(2):60-62
    [19]张鲁渝,郑颖人.简化Bishop法的扩展及其在非圆弧滑面中的应用[J].岩土力学,2004,25(6):927-929
    [20]孙敏.边坡稳定分析中瑞典条分法的改进[J].吉林大学学报(地球科学版),2007,37(S1):225,-227
    [21]李同录,邓宏科,李萍,等.简单土坡潜在滑动面的一种新方法[J].长安大学学报(地球科学版),2003,25(3):56-59
    [22]林丽,王敬林,郑颖人.对边坡稳定分析极限平衡法中简化Bishop法的分析与改进[J].后勤工程学院学报,2000,(4):62-66
    [23]林丽,郑颖人,孔亮,等.条分法的统一公式及其分析[J].地下空间,2002,22(3):252-255
    [24]林丽,杨明成,郑颖人.基于力平衡的安全系数统一求解格式[J].岩土力学,2005,26(S1):279~282
    [25]朱禄娟,谷兆祺,郑榕明,等.二维边坡稳定方法的统一计算公式[J].水力发电学报,2002,(3):21-28
    [26]张鲁渝,郑颖人,时卫民.边坡稳定分析中关于不平衡推力法的讨论[J].岩石力学与工程学报,2005,24(1):177-182
    [27]张鲁渝.一个用于边坡稳定分析的通用条分法[J].岩石力学与工程学报,2005,24(3):496-501
    [28]丁桦,张均锋,郑哲敏.关于边坡稳定分析的通用条分法的探讨(理论分析部分)[J].岩石力学与工程学报,2004,23(21):3684~3688
    [29]郑宏,谭国焕,刘德富.边坡稳定性分析的无条分法[J].岩土力学,2007,28(7):1285-1291
    [30]John H. H. Three-dimensional slope stability analysis method[J]. Journal of the engineering division, 1977,109 (9):971-986
    [31]Hungr O., Salgado F. M. and Byrne P. M. Evaluation of a three~dimensional method of slope stability analysis[J]. Canadian Geotechnical Journal,1989,26:679-686.
    [32]Zhang X. Three-dimensional stability analysis of concave slopes in plan view[J]. Journal of Geotechnical Engineering,1988,114:658-671.
    [33]李同录,王艳霞,邓宏科.一种改进的三维边坡稳定性分析方法[J].岩土工程学报,2003,25(5):611-614
    [34]张常亮,李同录,李萍,等.边坡三维极限平衡法的通用形式[J].工程地质学报,2008,16(1):70-75
    [35]中村浩之.论水库滑坡[J].王恭先译.水土保持通报,1990,10(1):53-64
    [36]崔政权.三峡地区岸坡的变形、失稳动力源及诱发因素[A].第六次全国岩石力学与工程学术大会论文集[C]. 北京:中国科学技术出版社,2000,586-591
    [37]蔡耀军,郭麒麟,余永志.水库诱发岸坡失稳的机理及其预测[J].湖北地矿,2002,16(4):4-8
    [38]廖巍,刘新喜.三峡库区滑坡稳定性评价研究[J].中国安全科学学报,2004,14(9):104-107
    [39]毛昶熙,李吉庆,段祥宝,等.渗流作用下土坡圆弧滑动有限元计算[J].岩土工程学报,2001,23(6):659-665
    [40]陈祖煜.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论之一[J].岩土工程学报,2002,24(3):394-396
    [41]陈立宏,李广信.关于“渗流作用下土坡圆弧滑动有限元计算”的讨论之二:兼论边坡稳定分析中的渗透力[J].岩土工程学报,2002,24(3):396~397
    [42]胡亚波,王丽艳.三峡水库调度对库岸斜坡体内渗透压力与斜坡稳定性影响研究[J].岩石力学与工程学报,2005,24(16):2994-2997
    [43]时卫民,郑颖人,唐伯明.滑坡稳定性评价方法的探讨[J].岩土力学,2003,24(4):545-552
    [44]刘新喜,夏元友,练操,等.库水位骤降时的滑坡稳定性评价方法研究[J].岩土力学,2005,26(9):1427-1436
    [45]Lane P. A., Griffiths D. V. Assessment of stability of slopes under drawdown conditions [J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126 (5):443-450
    [46]Griffiths D. V., Lane P. A. Slope stability analysis by finite elements[J]. Geotechnique,1999, 49 (3):387-403
    [47]Desai C. S. Drawdown analysis of slopes by numerical method[J]. Journal of the Geotechnical Engineering Division,1977,103 (GT7):667-676
    [48]Desai C. S. Seepage analysis of earth banks under drawdown[J]. Journal of the soil mechanics and foundation division,1972,18 (11):1143-1162
    [49]Tony Zhan L. T., Zhang W. J., Chen Y. M. Influence of reservoir level change on slope stability of a silty soil bank[J]. Unsaturated Soils,2006,463-472
    [50]张文杰,陈云敏,凌道盛.库岸边坡渗流及稳定性分析[J].水利学报,2005,36(12):1510-1516
    [51]Chen Q., Zhang L. M. Stability of a gravel soil slope under reservoir water level fluctuations[J]. Slopes and Retaining Structures,2005, 1-10
    [52]黄春娥,龚晓南,顾晓鲁.考虑渗流的基坑边坡稳定分析[J].土木工程学报,2001,34(4):98-101
    [53]廖红建,盛谦,高石夯,等.库水位下降对滑坡体稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454~3458
    [54]丁秀丽,付敬,张奇华.三峡水库水位涨落条件下奉节南桥头滑坡稳定性分析[J].岩石力学与工程学报,2004,23(17):2913-2919
    [55]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993
    [56]罗文强,张倬元,黄润秋.边坡系统稳定性的可靠性研究[J].地质科技情报,1999,18(2):62-64
    [57]Husein Malkawi A. I., Hassan W. F., Abdulla F. A. Uncertainty and reliability analysis applied to slope stability [J]. Structural Safety,2000,161-187
    [58]傅旭东,赵善锐.用蒙特卡洛(Monte-Carlo)方法计算岩土工程的可靠度指标[J].西南交通大学学报,1996,31(2):164-168
    [59]李萍.黄土边坡可靠性分析[D].长安大学,2006
    [60]杨继红,刘汉东,秦四清,等.考虑土性参数空间变异性的边坡可靠度分析[J].工程地质学报,2007,15(2):205-211
    [61]罗丽娟,赵法锁,胡江洋,等.基于剩余推力法的黄土高边坡稳定性可靠度分析[J]. 长安大学学报(自然科学版),2008,28(4):27~31
    [62]丁月双,程江涛,马志刚.基于Monte-Carlo模拟的岩村滑坡稳定可靠度研究及其程序开发(下)[J].工程地质计算机应用,2009,(2):1-7
    [63]Rosenblueth E. Point estimates for probability moments [J]. Proceedings of the National Academy of Sciences of the United States of America,1975,72 (10):3812-3814
    [64]Rosenblueth E. Two-point estimates in probabilities [J]. Appl. Math. Modelling,1981,5:329-335
    [65]Christian J. T., Baecher G. B. Point-estimate method as numerical quadrature[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125 (9):779-786
    [66]Harr M. E. Probabilistic estimates for multivariate analyses[J]. Appl. Math. Modelling,1989, 13:313-318
    [67]Chang C. H., Tung Y. K., and Yang J. C. Evaluation of probability point estimate methods[J]. Appl. Math. Modelling,1995,19:95-105
    [68]Li K. S. Point-estimate method for calculating statistical moments [J]. Journal of Engineering Mechanics,1992,118 (7):1506-1511
    [69]Duncan J. M. Factors of safety and reliability in geotechnical engineering[J]. ASCE, Journal of Geotechnical and Geoenvironmental Engineering,2000,126 (4):307-316
    [70]Low H. K., Gilbert R. B., and Wright S. G. Slope reliability analysis using generalized method of slices[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124 (4):350-362
    [71]姚耀武,陈东伟.土坡稳定可靠度分析[J].岩土工程学报,1994,16(2):80-87
    [72]谭晓慧,余兵,王茂松,等.水库边坡稳定的可靠度分析[J].岩土力学,2008,29(12):3427-3430
    [73]胡向阳.边坡稳定计算中的可靠度分析[J].西北水电,2002,(3):12-16
    [74]程心恕,杨育文.土坡可靠度的随机Bishop法[J].福州大学学报(自然科学版),1995,23(4):63-68
    [75]徐建平,胡厚田.土质边坡稳定性的概率分析[J].铁道工程学报,1998,1:120~125
    [76]孙慕群,符向前.土坡稳定可靠度分析中若干规律的探讨[J].岩土工程技术,2000,(2):109-113
    [77]谭晓慧,王建国,刘新荣,等.边坡稳定的有限元可靠度计算及敏感性分析[J].岩石力学与工程学报,2007,26(1):115-122
    [78]杨育文,程心恕.渗透破坏情况下土坡失稳的模糊概率[J].岩土力学,1996,17(3):15~20
    [79]程心恕,杨育文.土坡渗透稳定可靠度分析的模糊概率法[J].福州大学学报(自然科学版),1997,25(1):68~74
    [80]张士辰.土石坝渗透稳定可靠度分析方法研究[D].南京水利科学研究院,2004
    [81]吴震宇,陈建康,许唯临,等.高堆石坝非线性强度指标坝坡稳定可靠度分析方法研究及工程应用[J].岩石力学与工程学报,2009,28(1):130~137
    [82]范明桥,盛金保.土强度指标φ,c的互相关性[J].岩土工程学报,1997,19(4):100-104
    [83]范明桥.粘性填筑土强度指标φ,c的概率特性[J].水利水运科学研究,2000,(1):49~53
    [84]严春风,刘东燕,张建辉,等.岩土工程可靠度关于强度参数分布函数概型的敏感度分析[J]_岩石力学与工程学报,1999,18(1):36~39
    [85]罗冲,殷坤龙,陈丽霞,等.万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J].岩石力学与工程学报,2005,24(9):1588-1593
    [86]程圣国,方坤河,罗先启,等.三峡库区新生型滑坡滑带土抗剪强度确定概率方法[J].岩石力学与工程学报,2007,26(4):840-845
    [87]陈立宏,陈祖煜,刘金梅.土体抗剪强度指标的概率分布类型研究[J].岩土力学,2005,26(1):37-45
    [88]李远耀,殷坤龙,柴波,等.三峡库区滑带土抗剪强度参数的统计规律研究[J].岩土力学,2008,29(5):1419-1424
    [89]陈祖煜.土质边坡稳定分析-原理·方法·程序[M].北京:中国水利水电出版社,2003
    [90]GB 50068-2001,建筑结构可靠度设计统一标准[S].中华人民共和国建设部,2002
    [91]GB50158-92,港口工程结构可靠度设计统一标准[S].中华人民共和国建设部,1992
    [92]徐卫亚,张志腾.滑坡失稳破坏概率及可靠度研究[J].灾害学,1995,10(4):33~37
    [93]陈德基,薛果夫,徐福兴.长江三峡工程丛书:三峡工程地质研究[M].武汉:湖北科学技术出版社,1997
    [94]罗文强,张倬元,王士天,等.滑坡灾害的空间可靠性评价[J].地质科技情报,2000,19(3):70-72
    [95]黄润秋,许强,戚国庆.降雨及水库诱发滑坡的评价与预测[M]_北京:科学出版社,2007
    [96]李萍,王秉纲,李同录,等.陕西地区黄土路堑高边坡可靠度研究[J].中国公路学报,2009,22(6):18~25
    [97]李同录,张常亮.长江上游宜昌-江津段环境工程地质调查地质灾害遥感解译报告[R].长安大学,2008
    [98]柯于义,尹华刚,郭峰,等.三峡库区“巫山黄土”成因研究[J].人民长江,2007,38(9):72-73
    [99]李守定,李晓,张年学,等.三峡库区侏罗系易滑地层沉积特征及其对岩石物理力学性质的影响[J].工程地质学,2004,12(4):385-389
    [100]杨宗佶,乔建平,陈晓林.三峡库区万州侏罗系红层滑坡成因机制研究[J].世界科技研究与发展,2008,30(2):174~176
    [101]李华亮,易顺华,邓清禄.三峡库区巴东组地层的发育特征及其空间变化规律[J].工程地质学报,2006,14(5):577-581
    [102]邓清禄.长江三峡工程库区巴东新县城构造与斜坡稳定研究[D].中国地质大学,1998
    [103]唐胜传,柴贺军,冯文凯.三峡库区岸坡类型划分[J].公路交通技术,2005,(5):36-39
    [104]万宗礼,聂备新.坝基红层软岩工程地质研究与应用[M].北京:中国水利水电出版社,2007
    [105]严春杰,唐辉明,陈洁渝,等.三峡库区典型滑坡滑带土微结构和物质组分研究[J].岩土力学,2002,23(S1):23~26
    [106]陈海洋,虞钢箭,张桂坪.三峡库区巴东型滑坡典型滑带微观结构与物理力学特征研究[J].资源环境与工程,2007,21(2):147-151
    [107]陈松,徐光黎,陈国金,等.三峡库区黄土坡滑坡滑带工程地质特征研究[J].岩土力学,2009,30(10):3048-3052
    [108]李晓,梁收运,郑国东.滑带土的研究进展[J].地球科学进展,2010,25(5):484-491
    [109]三峡库区地质灾害防治工作指挥部.《三峡库区三期地质灾害防治工程地质勘查技术要求》[M].三峡库区地质灾害防治工作指挥部,2004,12
    [110]三峡库区地质灾害防治工作指挥部.《三峡库区三期地质灾害防治工程设计技术要求》[M].三峡库区地质灾害防治工作指挥部,2004,12
    [111]GEO-SLOPE International Ltd. Seepage Modeling with SEEP/W 2007 [M]. GEO-SLOPE International Ltd.,2010
    [112]章广成,唐辉明,胡斌.非饱和渗流对滑坡稳定性的影响研究[J].岩土力学,2007,28(5):965~970
    [113]Van Genuchten M. T. A Closed~Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils [J]. Soil. Sci. Soc. Am. J.1980,44:892-898
    [114]高德彬.公路黄土路堑高边坡稳定性研究[D].长安大学,2008
    [115]贾鹏云,杜宇.蒙特卡洛法在发耐斜坡稳定性评价中的应用[J].路基工程,2010,(2):127-129
    [116]时卫民,郑颖人,唐伯明,等.边坡稳定不平衡推力法的精度分析及其使用条件[J].岩土工程学报,2004,24(3):313-317
    [117]SL274-2001,碾压式土石坝设计规范[S].北京:中国水利水电出版社出版,2002
    [118]陶宏亮,陈国金,陈松,等.巴东赵树岭滑坡特征与稳定性评价[J].武汉工程大学学报,2008,30(2):62-64
    [119]胡修文,唐辉明,刘佑荣.三峡库区赵树岭滑坡稳定性物理模拟试验研究[J].岩石力学与工程学报,2005,24(12):2089-2095
    [120]唐辉明,马淑芝,刘佑荣,等.三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究[J].地球科学-中国地质大学学报,2002,27(5):621-625
    [121]唐辉明,胡新丽,严春杰,等.利用NMR研究三峡工程库区赵树岭滑坡稳定性[J].水文地质工程地质,2004,(S1):8-12
    [122]吴益平,殷坤龙,李崧.下土地岭滑坡稳定性分析及治理工程设计[A].全国岩土与工程学术大会论文集(上)[C].北京:人民交通出版社,2003,666-671
    [123]郑晓晶,殷坤龙.基于非饱和渗流的水库库岸滑坡稳定性计算[J].水文地质工程地质,2007,(2):29~32
    [124]庞明,殷坤龙.滑带士力学参数反分析法在三峡库区下土地岭滑坡中的应用[J].工程勘察, 2006,(12):12-14
    [125]李英,晏鄂川,李作成.三峡库区巴东红石包滑坡稳定性动态分析[J].岩土力学,2008,29(S1):412~416
    [126]张开鹏,刘新喜.降雨入渗对三峡库区堆积层滑坡稳定性的影响[J].中国安全科学学报,2006,16(6):4-8
    [127]廖巍,刘新喜.三峡库区滑坡稳定性评价研究[J].中国安全科学学报,2004,14(9):104~107
    [128]刘新喜,夏元友,张显书,等.库水位下降对滑坡稳定性的影响[J].岩石力学与工程学报,2005,24(8):1439~1444
    [129]王学武,冯学钢,王维早.库水位升降作用对库岸滑坡稳定性的影响研究[J].水土保持研究,2006,13(5):232-234
    [130]杨海巍,冯永.库水位下降对库岸滑坡稳定性的影响[J].铁道建筑,2007,(8):74~77
    [131]长江勘测规划设计研究院.重庆市三峡库区巫山县四道沟邓家屋场滑坡工程地质勘察报告[R].长江勘测规划设计研究院,2001
    [132]李晓,张年学,廖秋林,等.库水位涨落与降雨联合作用下滑坡地下水动力场分析[J].岩石力学与工程学报,2004,23(21):3714-3720
    [133]刘传正,李瑞敏,李铁锋,等.三峡库区白衣庵滑坡防治工程研究[J].中国地质灾害与防治学报,2003,14(1):48-54
    [134]刘传正,李铁锋,邹正盛,等.三峡库区白衣庵滑坡地质研究[J].工程地质学报,2003,11(1):3-9
    [135]殷跃平.三峡库区地下水渗透压力对滑坡稳定性影响研究[J].中国地质灾害与防治学报,2003,14(3):1-8
    [136]罗冲,殷坤龙,陈丽霞,等.万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J].岩石力学与工程学报,2005,24(9):1588-1593
    [137]罗冲.三峡库区重庆市万州区近水平地层滑坡成因机理研究[D].中国地质大学,2005
    [138]吴梦喜,王建锋,苏爱军.三峡库区寨坝变形体的渗流变形有限元耦合分析[J].岩土工程学报,2003,25(4):445-448
    [139]童广勤,刘加龙,薛昌凡.三峡库区寨坝滑坡稳定性分析及治理工程设计[J].人民长江,2005,36(3):35-37
    [140]姜永东.三峡库区边坡岩土体蠕滑与控制的现代非线性科学研究[D].重庆大学,2006
    [141]黄显贵,陈植华,汪斌.有限元强度折减系数法在北门沟坡滑坡稳定性评价中的应用[J]. 工程地质学报,2006,14(5):665-669
    [142]吴礼生,陈少平,侯国伦,等.秭归县归州镇北门沟滑坡治理实例[J].探矿工程(岩土钻掘工程),2005,(S1):180-183
    [143]胡新丽.三峡水库水位波动条件下滑坡抗滑工程效果的数值研究[J].岩土力学,2006,27(12):2234-2238
    [144]黄波林,许模.三峡水库水位上升对香溪河流域典型滑坡的影响分析[J].防灾减灾工程学报,2006,26(3):290-295
    [145]陈小婷,黄润秋.湖北省香溪河流域白家堡滑坡稳定性分析与评价[J].中国地质灾害与防治学报,2006,17(4):29-33
    [146]丁秀丽,付敬,张奇华.三峡水库水位涨落条件下奉节南桥头滑坡稳定性分析[J].岩石力学与工程学报,2004,23(17):2913-2919
    [147]宜昌长江地质灾害防治工程勘察设计院.湖北省三峡库区秭归县头道河Ⅱ号滑坡防治工程地质详细勘查报告[R].宜昌长江地质灾害防治工程勘察设计院,2004
    [148]方云,陈爱云,张涛,等.四川巫山县四道沟滑坡稳定性分析评价[J].现代地质,2002,16(3):327~330
    [149]长江勘测规划设计研究院.重庆市三峡库区巫山县四道沟邓家屋场滑坡工程地质勘察报告[R].长江勘测规划设计研究院,2001
    [150]陈松,徐光黎,陈国金,等.三峡库区黄土坡滑坡滑带工程地质特征研究[J].岩土力学,2009,30(10):3048-3052
    [151]彭正华,周霞,郑俊杰.三峡库区黄土坡滑坡深层滑移问题分析[J].土工基础,2007,21(3):66-68
    [152]蔡永胜,郑建芳.长江三峡库区巴东县黄土坡滑坡稳态分析及防滑措施[J].东南大学学报(自然科学版),2001,31(5):53-57
    [153]刘燕,王海平,蒋永才,等.长江三峡库区黄腊石边坡地下水作用规律与动态稳定性评价[J].岩石力学与工程学报,2005,24(19):3571-3576
    [154]罗先启,姜清辉,葛修润,等.黄腊石滑坡群石榴树包滑坡稳定性的研究[J].岩石力学与工程学报,2001,20(1):29~33
    [155]肖建伟,肖建新,吴少华.水在滑坡变形过程中所起作用的探讨[J].水文地质工程地质,2007,(6):33~36
    [156]唐红梅.三峡库岸散体滑坡稳定性分析-以万州清泉路滑坡为例[J].重庆交通学院学报,2002,21(4):61-65
    [157]李会中,周云,潘玉珍.三峡库区猴子石滑坡稳定性分析与防治措施研究[J].湖北地矿,2002,16(4):97-104
    [158]林仕祥,张奇华,黄振伟.三峡水库蓄水运行对猴子石滑坡稳定性影响分析[J].资源环境与工程,2009,23:95-99
    [159]颜宇森,雷海英.川东淀粉厂含碎石粉质粘土滑坡稳定性研究[J].水文地质工程地质,2008,(3):19~22
    [160]白榕.三峡库区丰都名山滑坡稳定分析与防治[J].兰州铁道学院学报(自然科学版),2002,21(4):26~30
    [161]陈萍.三峡库区滑坡稳定性分析[D].重庆大学,2002
    [162]柴军瑞,李守义.三峡库区泄滩滑坡渗流场与应力场耦合分析[J].岩石力学与工程学报,2004,23(8):1280-1284
    [163]魏进兵.水位涨落诱发水库滑坡的机制研究[D].中国科学院武汉岩土力学研究所,2006
    [164]殷坤龙,吴益平.三峡库区一个特殊古滑坡的综合研究[J].中国地质灾害与防治学报,1998,9(S1):200-206
    [165]胡新丽,殷坤龙.大型水平顺层滑坡形成机制数值模拟方法-以重庆钢铁公司古滑坡为例[J].山地学报,2001,19(2):175~179
    [166]周立,郑爱华,杜喜连.重庆钢铁公司厂区滑坡稳定性分析[J].交通科技,2006,(5):48-50
    [167]杨海平,王金生.长江三峡工程库区千将坪滑坡地质特征及成因分析[J].工程地质学报,2009,17(2):233~239
    [168]文宝萍,申健,谭建民.水在千将坪滑坡中的作用机理[J].水文地质工程地质,2008,(3):12-18
    [169]马照亭,梁海华.Sarma法在四川云阳鸡扒子滑坡稳定性评价中的应用[J].地震地质,2002,24(3):461-468
    [170]殷坤龙,汪洋,唐仲华.降雨对滑坡的作用机理及动态模拟研究[J].地质科技情报,2002,21(1):75-78
    [171]周心经,郭麒麟.巴东作揖沱崩滑体基本特征及成因机制分析[J].地质科技情报,2001,20(1):87~90
    [172]简文星,张宜虎,尹红梅.作揖沱崩滑堆积体稳定性评价及防治对策[J].水文地质工程地质,2003,(S1):91-95
    [173]龚福洪,苏爱军,蒋晓娟.秭归县邓家坡一号滑坡治理方案技术经济比选[J].资源环境与工程,2006,20(2):132-135
    [174]简文星,殷坤龙,罗冲.三峡库区万州安乐寺滑坡滑带特征[J].地球科学-中国地质大学学报,2008,33(5):672-677
    [175]王志俭,殷坤龙,简文星,等.万州安乐寺滑坡滑带土松弛试验研究[J].岩石力学与工程学报,2008,27(5):931-937
    [176]聂文波,张利洁,胡江运.滑坡治理中抗滑桩设计推力计算探讨[J].岩石力学与工程学报,2004,23(S2):5050~5052
    [177]罗文强,赵文斌,王亮清.三峡库区长江水位变化条件下滑坡稳定性二元指标体系研究[J].地球与环境,2005,33(S1):42~45
    [178]简文星,殷坤龙,汪洋,等.万州西溪铺松散堆积体成因分析及稳定性评价[J].地质科技情报,2005,24(S1):165-169
    [179]郭立文.基于渗流场-应力场耦合的库区滑坡稳定性研究[D].重庆交通大学,2007
    [180]张九鹤.三峡库区仁沱滑坡稳定分析与支挡结构优化设计[D].西安理工大学,2008
    [181]朱鹏普.在库水涨落和降雨条件下三马山滑坡稳定性分析[D].西南交通大学,2008
    [182]岳顺.三峡库区巫山县上西坪滑坡综合治理研究[D].重庆大学,2002
    [183]贺建波.三峡库区刘家湾滑坡稳定性分析及防治方案研究[D].重庆大学,2004
    [184]贺可强,王荣鲁,李新志,等.地下水加卸载动力作用规律及其位移动力学预测-以三峡库区八字门滑坡分析为例[J].岩石力学与工程学报,2008,27(8):1644~1651
    [185]丁岩.三峡库区八字门滑坡预报判据研究[D].长安大学,2008
    [186]王明华,张晓辉.长江三峡库区某滑坡滑动机理及稳定性研究[J].武汉化工学院学报,2006,28(3):29~31
    [187]戴光忠.巴东县老城区某滑坡滑动机理及稳定性分析[J].土工基础,2005,19(5):26~28
    [188]梁家虎,卞世俊.长江三峡库区兴山电厂Ⅰ滑坡稳定性分析及防治[J].西部探矿工程,2009,12:102-104
    [189]徐方,程敦伍,周训,等.三峡水库区兴山县电厂滑坡Ⅰ成因与稳定性[J].中国地质灾害与防治学报,2006,17(3):36-39
    [190]徐华,李天斌,肖学沛.三峡库区安渡滑坡成因机制分析与稳定性预测[J].水文地质工程地质,2005,(4):28-31
    [191]荣耀,黄红元.三峡库区典型二级滑坡成因分析及治理措施[J].南昌工程学院学报,2008,27(1):54-57
    [192]刘莉,余宏明,程江涛.层次分析-模糊综合评价法在滑坡工程中的应用[J].三峡大学学报(自然科学版),2008,30(2):43-47
    [193]左丽明,白燕.三峡库区观音阁滑坡治理设计浅析[J].中国矿业,2008,17(6):80-83
    [194]黄帮芝,程丽.三峡库区湖北省秭归县头道河Ⅲ号滑坡稳定性分析与评价[J].资源环境与工程,2007,(3):261-264
    [195]何清雨,陈征宙,周心经,等.三峡库区马家屋场-后坪滑坡成因及稳定性分析[J].地球科学与环境学报,2005,27(4):19~23
    [196]长江水利委员会第九工程勘测院.巫山县双龙镇新址马家屋场-后坪滑坡及赵家屋基变形体工程地质勘察报告:补充勘察[R].武汉:长江勘测规划设计研究院,2002
    [197]陈书生,易武.三峡库区沙坝沟滑坡影响因素分析与稳定性评价[J].灾害与防治工程,2008,(1):19~24
    [198]史文兵,辛全才,张志彬.三峡库区石包嘴滑坡形成机理及治理措施[J].水土保持研究,2006,13(5):225-226
    [199]茅立平,耿树勇.三峡库区太矶头滑坡治理预测与抗滑桩安全性分析[J].岩土工程界,2006,9(4):20-23
    [200]刘行架,彭正华.三峡库区太矶头滑坡防治工程设计浅析[J].湖北地矿,2002,16(4):145~150
    [201]罗红明,唐辉明.三峡库区谭家坪滑坡稳定性与防治对策研究[J].土工基础,2006,20(2):17-18
    [202]聂文波,张利洁,唐辉明,等.三峡工程库区谭家坪滑坡系统工程地质研究[J].三峡大学学报(自然科学版),2002,24(5):392~396
    [203]谭桔红,晏鄂川.三峡库区巴东县谭家坪滑坡防治工程研究[J].防灾减灾工程学报,2004,24(3):293~296
    [204]杨文东,谢全敏,李新平,等.三峡库区童家坪滑坡机理与稳定性评价[J].土工基础,2006,20(1):21-23
    [205]袁敬.三峡库区童家坪滑坡稳定治理工程探讨[J].湖北水力发电,2009,(3):30~32
    [206]刘滨,曾渠丰,尹镇龙.巴东童家坪滑坡的稳定性分析及防治研究[J].湖北地矿,2002,16(4):33~38
    [207]朱真.三峡库区新房子滑坡锚拉抗滑桩防治工程设计[J].水文地质工程地质,2006,(1):99~103
    [208]肖诗荣,胡志宇.三峡库区兴山县平邑口滑坡稳定性及其工程治理研究[J].三峡大学学报(自然科学版),2006,28(4):298~300
    [209]徐志文,罗永忠.三峡库区重庆市奉节县花乐村滑坡成因机制及稳定性分析[J].地质灾害与环境保护,2002,13(1):29~32
    [210]马淑芝,贾洪彪,唐辉明,等.稳定性可靠度分析在三峡库区二里半滑坡中的应用[J].地质科技精报,2005,24(S):177~179
    [211]龚良成,李芾,马淑芝,等.三峡工程库区兴山县二里半滑坡稳定性及敏感因素分析[J].广西城镇建设,2005,(7):24-26
    [212]文晓慧.重庆市三峡库区丰都县倒流子滑坡特征及其稳定性分析[J].湖南水利水电,2006,(4):35~37
    [213]陈海鹏.长江三峡库区大河坝滑坡治理工程研究[D].重庆大学,2002
    [214]王桂林,张永兴,文海家,等.大河坝古滑坡复活变形特征及成因分析[J].重庆建筑大学学报,2003,25(5):1~4
    [215]刘必强.长江三峡库区重庆市奉节县卧龙岗滑坡防治工程措施研究[D].重庆大学,2004
    [216]吴荣燕.三峡库区奉节大河沟口滑坡治理工程可靠性评价[D].西南交通大学,2003
    [217]孙青兰,刘承新,刘聪元,等.三峡库区奉节县164段库岸塌岸预测[J].人民长江,2007,38(9):74-76
    [218]长江水利委员会第九工程勘测院.巫山县城北门坡变形体治理工程地质勘察报告[R].长江水利委员会综合勘测局,2001
    [219]蒋德明,靳拥护,付治国.重庆忠县泔井滑坡物性特征及稳定性研究[J].中国地质灾害与防治学报,2008,19(3):6~12
    [220]刘玉国.三峡库区云阳县杨家坝滑坡稳定性评价[D].成都理工大学,2007
    [221]长江水利委员会第九工程勘测院.重庆市三峡库区巫山县城库岸综合治理工程地质勘察报告 [R].长江勘测规划设计研究院,2002
    [222]王海波.草街子滑坡稳定性的影响因素及演化机制探讨[J].西部探矿工程,2005,113(9):212-213
    [223]李治民,聂守智,杨超,等.江南镇滑坡的成因分析与稳定性评价[J].地下空间与工程学报,2009,5(S1):1365-1369
    [224]李焕.三峡工程水库135m初期蓄水运行期野猫面滑坡稳定性研究[J].资源环境与工程,2008,22(S1):122-125
    [225]孙青兰,彭荣,刘聪元.三峡库区野猫面滑坡体工程地质特征及稳定性分析[J].资源环境与工程,2004,18(3):36~40
    [226]桂树强,李强,吴秋军.三峡库区近坝库段野猫面滑坡治理必要性论证及防治方案研究[J].资源环境与工程,2008,22(S1):178-184
    [227]冯永能,周成涛.云阳张飞庙滑坡成因机制与稳定性分析[J].城市勘测,2009,(3):150-152
    [228]陈卫兵.考虑岩土材料流变特性的强度折减法研究[D].中国科学院武汉岩土力学研究所,2008
    [229]王少飞.重庆奉节大坪滑坡稳定性分析及评价[D].西安科技大学,2008
    [230]付志成,李勇,周志诚.基于强度折减法的三峡库区滑坡稳定性分析[J].西部探矿工程,2009,(11):119-122
    [231]王淼,钱磊,高立华.长江三峡马家沟滑坡稳定性评价及治理措施[J].山西建筑,2006,32(7):100-102
    [232]青海九○六工程勘察设计院.湖北省三峡库区秭归县马家沟滑坡防治工程地质勘查报告[R].青海九○六工程勘察设计院,2005
    [233]付昱凯,钱磊,杨世新,等.长江三峡归州老城滑坡稳定性评价及治理方案论证[J].地质灾害与环境保护,2006,17(4):18-22
    [234]梁燕,李同录,李萍,等.优化方法在库岸斜坡稳定性评价中的应用[J].水文地质工程地质,2009,(6):114~117
    [235]秦凯旭,石豫川,刘汉超,等.三峡库区某滑坡体成因机制分析与稳定性评价[J].水土保持研究,2006,13(5):84-86
    [236]夏元友,朱瑞赓.新滩滑坡滑动机理及稳定性评价研究[J].中国地质灾害与防治学报,1996,7(3):49~53
    [237]汪洋,殷坤龙.新滩滑坡稳定性的有限元分析[J].安全与环境工程,2002,9(1):1-4
    [238]许向宁.三峡库区奉节县向家淌滑坡防治方案研究[J].中国地质灾害与防治学报,2004,15(2):89-93
    [239]罗云,秦立科,刘明振.三峡库区龙马溪深沟滑坡灾害治理[J].水利与建筑工程学报,2007,5(2):66-68
    [240]贾玉武.三峡库区兴山县电厂滑坡的稳定性分析[J].西部探矿工程,2010,(8):28-30
    [241]冯文凯,石豫川,柴贺军,等.三峡库区渝巴公路马道子滑坡岸段动态风险评价[J].灾害学,2007,22(1):54-59
    [242]李欣,王宝亮.三峡库区云阳故陵滑坡形成机制与防治对策[J].现代交通技术,2010,7(2):32-36
    [243]刘会迎,时锋.三峡库区詹家湾滑坡成因及防治对策研究[J].中国水运(学术版),2006,6(6):100-102
    [244]胡新丽,Potts D. M., Zdravkovic L. D. J.,等.三峡水库运行条件下金乐滑坡稳定性评价[J].地球科学-中国地质大学学报,2007,32(3):403-408
    [245]邢丽霞,杨成永.三峡鱼鳅洞滑坡滑动带土工程地质特征[J].水文地质工程地质,2003,(1):52-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700