火灾安全设计中参数不确定性分析及耦合风险的设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在火灾安全设计中,通常利用火灾动力学模型、探测模型和人员疏散模型来计算得到合理的火灾安全设计方案。由于火灾动力学和疏散过程的高度复杂性,这些模型的输入参数往往具有一定的不确定性。对火灾安全设计中的参数不确定性进行科学有效地量化对于保证火灾安全设计结果的科学性、可信性具有重要意义。在目前的火灾安全设计中,经常忽视这些参数的不确定性,将这些参数视为定值或者通过设定安全系数来表示这些不确定性。这样的处理方法很难对参数不确定性进行有效处理,因而所得到设计结果的准确性和可信性缺乏有效验证。针对这一问题,本论文提出了定量分析参数不确定性影响的方法以及考虑参数不确定性的火灾安全设计方法,主要研究工作与成果如下:
     基于拉丁超立方抽样(LHS)的Monte Carlo模拟建立了分析热释放速率不确定性对可用安全疏散时间(ASET)影响的方法。根据t2火假设,分析了火灾增长系数和最大热释放速率的不确定性,并采用概率方法来表征其不确定性。在分析了确定性火灾增长系数和最大热释放速率对ASET的影响基础上,利用基于拉丁超立方抽样(Latin Hypercube Sampling, LHS)的Monte Carlo模拟分析了当分别考虑火灾增长系数和最大热释放速率的不确定性时对ASET的影响,最后讨论了二者均为不确定性参数时对ASET的影响。此外,本部分还给出了如何利用概率信息如累积概率函数和补充累积概率函数来帮助火灾安全设计人员设定合理的火灾规模。
     提出了RSET相关计算模型的全局参数敏感性分析方法。为减少参数不确定性分析的计算量并保证计算的精度,需要利用参数敏感性分析方法确定各输入参数对结果的影响程度。由于RSET计算所涉及模型的复杂性,模型的输入参数与输出结果之间往往是非线性的且输入参数之间的交互作用也会对模型输出产生影响。因此,传统的局部参数敏感性分析方法不适合RSET相关计算模型的参数敏感性分析。为此,本研究提出了适用于RSET计算模型的全局参数敏感性分析方法,包括输入参数不确定性的表征、基于散点图的初步敏感性分析以及傅里叶谱敏感性测试(Fourier amplitude sensitivity test,FAST)和Sobol指数法的全局参数敏感性分析方法。在给定参数取值范围和分布的情况下,对感温探测模型和人员疏散模型进行了全局参数敏感性分析。首先利用散点图来检验输入参数与输出结果之间是否存在线性关系。基于散点图的分析结果,利用FAST和Sobol一阶指数对感温探测模型和疏散模型进行了全局参数敏感性分析;以Sobol二阶指数为指标定量分析了输入参数的交互作用对探测时间和疏散时间的影响;通过将某一不确定性参数取做定值时的累积概率曲线与考虑所有参数不确定性时的累积概率曲线比较,验证了本研究中参数敏感性分析方法的有效性。
     在分析了热释放速率不确定性对ASET影响的基础上,提出了一种火灾安全设计中火灾规模的定量计算方法。该方法将可接受风险水平的概念引入到了目标失效概率的设定中,在考虑热释放速率不确定性的前提下,提出利用可靠性理论和全局优化算法来计算不同火灾场景下所需要设定的火灾规模。工程算例分析结果表明该方法可以用于火灾安全设计中火灾规模的定量计算。
     提出了将安全系数与目标失效概率联系起来的计算方法。由于目前安全系数取值依赖设计人员的主观判断且设计人员无法确定所选定的安全系数对应多大的失效概率,在考虑ASET和RSET计算过程中参数不确定性的前提下,将传统的安全系数概念进行了拓展,提出了随机安全系数的概念。基于随机安全系数的概率分布,建立了安全系数与失效概率之间的关系。针对ASET和RSET的概率分布较为复杂,无法得到随机安全系数的概率分布表达式的不足,利用基于LHS的Monte Carlo模拟确定随机安全系数的概率分布。工程算例分析结果表明,本文所提出的方法可以有效地将安全系数与失效概率联系起来,从而使得火灾安全设计人员在选取安全系数时能够充分考虑可接受的火灾风险水平,为安全系数的选取提供科学依据。此外,该方法也能够为设计人员提供现有设计方案的改进建议,使最终的设计结果更为科学可信。
In fire safety design, various models including the fire dynamic models, detection models and evacuation models, are being employed to derive reasonable fire protection design solution. Due to the complexity of the fire dynamics and the evacuation process, many uncertainties are inevitably associated with the fire safety design. However, these uncertainties are simply ignored or represented by conservative values or by an assigned safety factor in the current fire safety design. Such methods are difficult to be believed effective way to treat uncertainties. Correspondingly, the results derived from these methods are hardly reasonable and credible. Thus, how to treat these uncertainties quantitatively in the fire protection design is essential for obtaining reasonable and credible results.
     In this dissertation, the quantitative methods of analyzing the effect of uncertainties and treating such uncertainties in fire safety design are proposed. The main studies are focused on these following aspects:
     A Monte Carlo analysis method of quantifying the influence of heat release rate uncertainties on available safe egress time (ASET) is established. The heat release rate is characterized by a time-squared fire. The uncertainties with peak heat release rate and the fire growth rate are discussed:the former parameter is characterized by normal distribution while the latter one is characterized by log-normal distribution. The deterministic effect of both parameters is first studied. Then, the effect of uncertainties in peak heat release rate and fire growth rate is investigated separately. Finally, the effect of uncertainties in both parameters is analyzed. How to employ the probability information to help the fire safety engineers develop the proper design fires is also illustrated.
     Taking the calculation model of RSET as an example, the global sensitivity analysis method for the related models in fire safety design is developed. Since the models currently employed in fire safety design are high complex, such models are usually nonlinear and the interaction between input parameters may exist. The local sensitivity analysis methods, which are main sensitivity analysis methods in the current fire safety design, cannot effectively deal with the nonlinear models and quantify the effect of parameter interaction. Thus, a systematic global sensitivity analysis method is proposed in our study, which includes the characterization of uncertainties with input parameters, a preliminary sensitivity analysis by scatter plots and global sensitivity analysis by Fourier amplitude sensitivity test (FAST) method and Sobol indices method. A case study of analyzing the sensitivity of input parameters on the model of RSET is demonstrated. A scatter plots were first employed to obtain a visual identification of the important parameters and identify if there is a linear relationship between input and output. Based on the preliminary sensitivity analysis results from scatter plots, the global sensitivity analyses of heat fire detection model and evacuation model were made by the first order indices of FAST and Sobol. The second order of Sobol indices were also calculated to quantify the effect of the interaction of input parameters on the detection time and evacuation time. The comparison of the CDF curves of fixing one uncertain parameter at its base value with the CDF curve of all uncertain parameter was employed to validate the sensitivity analysis results. The conclusions drawn from the comparison of CDF curves are consistent with that from the sensitivity analysis, which indicates the sensitivity analysis procedure in this study is suitable and the sensitivity analysis results are reasonable.
     Based on the analysis of the effect of uncertain heat release rate on ASET and considering the high importance of the prescribing a proper heat release rate, a method of quantitatively deriving the value of proper heat release rate is proposed. In the proposed method, the acceptable fire risk level is integrated into the determination of the target probability of failure for each fire scenario. With consideration of uncertainties with heat release rate, the reliability theory and the optimization procedure are employed to determine the values of the heat release rate for each fire scenario. A case study is provided to illustrate that the proposed method can be applied into the practical fire safety design.
     Aiming at the defect that there is little effort on linking the safety factor and the probability of failure, a method of bridging these two concepts are developed. The concept of random safety factor is proposed considering uncertainties with the calculation of ASET and RSET. Based on the distribution of the random safety factor, the relationship between safety factor and the probability of failure can be established. Due to the complexity of the distribution of ASET and RSET, the Monte Carlo simulation using LHS is employed to determine the distribution of random safety factor. The case study demonstrates that the proposed method could link the safety factor and the probability of failure effectively and provide the fire safety designers with a reasonable guide in selecting an appropriate safety factor to meet the required safety level. Such method can also provide suggestions for the improvement of the current design solution and make the final design results more reasonable and credible.
引文
Abrahamsson, M. (2002). Uncertainty in Quantitative Risk Analysis-Characterisation and Methods of Treatment [D]. Doctor of Philosophy, Lund University.
    Ah-S, A. (1975). Probability Concepts in Engineering Planning and Design, Volume 1-Basic Principles[M], New York, John Wiley & Sons.
    Albrecht, C. and Hosser, D. A Response Surface Methodology for Probabilisitic Life Safety Analysis Using Advanced Fire Engineering Tools[C]. Proceedings of the Tenth International Sympoisum on Fire Safety Science,2011 Marryland, USA. The International Association for Fire Safety Science.
    Alpert, R. (1972). Calculation of Response Time of Ceiling-Mounted Fire Detectors[J]. Fire Technology,8(3):181-195.
    Alpert, R. L. (2002). Ceiling Jets Flows. In:DINENNO, P. J., DRYSDALE, D., CRAIG L, B. & WALTON, W. D. (eds.) Sfpe Handbook of Fire Protection Engineering. Quincy:The National Fire Protection Association.
    Apostolakis, G. (1990). The Concept of Probability in Safety Assessment of Technological Systems[J]. Science,250:1359-64.
    Apostolakis, G.1994. A Commentary on Model Uncertainty. Proc. Workshop I in Advanced Topics in Risk and Reliability Analysis, Model Uncertainty:Its Characterization and Quantification.
    Association, N. F. P. (2007). Sfpe Engineering Guide to Performance-Based Fire Protection.
    Au, S. K., Wang, Z.-H. and Lo, S.-M. (2007). Compartment Fire Risk Analysis by Advanced Monte Carlo Simulation[J]. Engineering Structures,29(9):2381-2390.
    Aven, T. (2012). Foundational Issues in Risk Assessment and Risk Management [J]. Risk Analysis,32(10):1647-1656.
    Aven, T. and Zio, E. (2011). Some Considerations on the Treatment of Uncertainties in Risk Assessment for Practical Decision Making[J]. Reliability Engineering & System Safety,96(1):64-74.
    Bensilum, M. and Purser, D. A. Gridflow:An Object-Oriented Building Evacuation Model Combining Pre-Movement and Movent Behavior for Performance-Based Design[C]. Proceedings of the seventh international sympoisum on fire safety science,2002 Evans. International Association on Fire Safety Science.
    Beyler, C. (1984). A Design Method for Flaming Fire Detection[J]. Fire Technology, 20(4):5-16.
    Borgonovo, E., Apostolakis, G. E., Tarantola, S. and Saltelli, A. (2003). Comparison of Global Sensitivity Analysis Techniques and Importance Measures in Psa[J]. Reliability Engineering & System Safety,79(2):175-185.
    Breeding, R. J., Helton, J. C., Gorham, E. D. and Harper, F. T. (1992). Summary Description of the Methods Used in the Probabilistic Risk Assessments for Nureg-1150[J]. Nuclear Engineering and Design,135(1):1-27.
    Cacuci, D. G. (2003). Sensitivity and Uncertainty Analysis[M], Bocan Raton, FL, Chapman & Hall/CRC Press.
    Charters, D., Holborn, P. and Townsend, N.2001. Analysis of the Number of Occupants, Detection Times and Pre-Movement Times.2nd International Sympoisum on Human Behavior in Fire.
    Cheng, T. (1991). Epq with Process Capability and Quality Assurance Considerations [J]. Journal of the Operational Research Society:713-720.
    Chu, G. and Sun, J. (2006a). The Effect of Pre-Movement Time and Occupant Density on Evacuation Time[J]. Journal of Fire Sciences,24(3):237-259.
    Chu, G. and Sun, J. (2008a). Decision Analysis on Fire Safety Design Based on Evaluating Building Fire Risk to Life[J]. Safety Science,46(7):1125-1136.
    Chu, G. and Sun, J. (2008b). Quantitative Assessment of Building Fire Risk to Life Safety[J]. Risk Analysis,28(3):615-25.
    Chu, G., Sun, J., Wang, Q. and Chen, S. (2006b). Simulation Study on the Effect of Pre-Evacuation Time and Exit Width on Evacuation[J]. Chinese Science Bulletin, 51(11):1381-1388.
    Chu, G., Wang, J. and Wang, Q. (2012). Time-Dependent Fire Risk Assessment for Occupant Evacuation in Public Assembly Buildings[J]. Structural Safety,38: 22-31.
    Chu, G. Q., Chen, T., Sun, Z. H. and Sun, J. H. (2007). Probabilistic Risk Assessment for Evacuees in Building Fires[J]. Building and Environment,42(3):1283-1290.
    Covello, V. T. and Merkhoher, M. W. (1993). Risk Assessment Methods:Approaches for Assessing Health and Environmental Risks[M], Springer.
    Cronsioe, C., Stromgren, M., Tonegran, D. and Bjelland, H.2012. New Swedish Building Regulations and a Framework for Fire Safety Engineering 9th International Conference on Performance-based Codes and Fire Safety Deisgn Methods. Hong Kong:the Society of Fire Protection Engineers.
    Cukier, R. I., Schaibly, J. H. and Shuler, K. E. (1975). Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients. Iii. Analysis of the Approximations [J]. Journal of Chemical Physics,63(3):1140-1149.
    D.W.Stroup, D.D.Evans and P.Amrtin 1986. Nbs Special Publication 712. Gaithersburg:National Bureau of Standards.
    Deguchi, Y., Notake, H., Yamaguchi, J. I. and Tanaka, T. Statistical Estimations of the Distribution of Fire Growth Factor-Study on Risk-Based Evacuation Safety Design Method[C]. Proceedings of the Tenth International Sympoisum on Fire Safety Science,2011 Marryland, USA. The International Association for Fire Safety Science.
    Dubois, D. and Prade, H. (1988). Possibility Theory and Statistical Reasoning[M], New York, Plenum Press.
    Durga Rao, K., Kushwaha, H. S., Verma, A. K. and Srividya, A. (2007). Quantification of Epistemic and Aleatory Uncertainties in Level-1 Probabilistic Safety Assessment Studies[J]. Reliability Engineering & System Safety,92(7): 947-956.
    Energistyrelsen (1996). Uncertainty in Quantitative Risk Analysis-Vejledning.[J]. EFP-93 og EFP-96,1313/93-0016.
    Evans, D. and Stroup, D. (1986). Methods to Calculate the Response Time of Heat and Smoke Detectors Installed Below Large Unobstructed Ceilings[J]. Fire Technology,22(1):54-65.
    Fcrc (1996). Fire Engineering Guidelines.
    Ferson, S. and Ginzburg, L. R. (1996). Different Methods Are Needed to Propagate Ignorance and Variability[J]. Reliability Engineering & System Safety 54(2-3): 133-144.
    Francisco, J., Frederick, M. and Mohammad, M. (2005). A Probabilistic Model for Fire Detection with Applications [J]. Fire Technology, 41(3):151-172.
    Frantzich, H.1997. Fire Safety Risk Analysis of a Hotel. Lund:Lund University.
    Frantzich, H. (1998). Uncertainty and Risk Analysis in Fire Safety Engineering[D]. PhD, Lund University.
    Frantzich, H. and Magnusson, S. E. Derivation of Partial Safety Factors for Fire Safety Evaluation Using the Reliability Index Bmethod[C]. Fire safety science proceedings of the fifth international symposium,1997. International Association of Fire Safety Science,667-678.
    Frey, H. C. and Patil, S. R. (2002). Identification and Review of Sensitivity Analysis Methods[J]. Risk Analysis:An International Journal,22(3):553-578.
    Fruin, J. J. (1971). Pedestrain Planning and Design[M], New Yok, Metropolitan Association of Urban Designer and Environmental Planners.
    Fu, Z. and Fan, W. (1996). A Zone-Type Model for a Building Fire and Its Sensitivity Analysis[J]. Fire and Materials,20(5):215-224.
    Geiman, J. A. (2003). Evaluation of Smoke Detector Response Estimation Methods[D]. Mater of Science, University of Maryland, College Park.
    Gordon, G. and Debbie, S. The Characterisation of Fires for Design[C]. Interflam '99, Proceedings of the 8th International Conference on Fire Science and Engineering, June 29-July 11999 Edingburgh, Scotland, UK.555-566.
    Grote, G. (2009). Defining and Identifying Uncertainties in Organizations. Management of Uncertainty. Springer London.
    Guo, T. and Fu, Z. (2007). The Fire Situation and Progress in Fire Safety Science and Technology in China[J]. Fire Safety Journal,42(3):171-182.
    Gwynne, S. and Boswell, D. (2009). Pre-Evacuation Data Collected from a Mid-Rise Evacuation Exercise[J]. Journal of Fire Protection Engineering,19(1):5-29.
    Gwynne, S. and Rosenbaum, E. (2008). Employing the Hydraulic Model in Assessing Emergency Movement. In:DINENNO, P. J. (ed.) Sfpe Handbook of Fire Protection Engineering. Quincy, MA, USA:Society of Fire Protection Engineers.
    Hall, J., Jr. and Sekizawa, A. (1991). Fire Risk Analysis:General Conceptual Framework for Describing Models [J]. Fire Technology,27(1):33-53.
    Hamby, D. M. (1994). A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models[J]. Environmental Monitoring and Assessment,32(2): 135-154.
    Hanea, D. and Ale, B. (2009). Risk of Human Fatality in Building Fires:A Decision Tool Using Bayesian Networks [J]. Fire Safety Journal,44(5):704-710.
    Hankin, B. D. and Wright, R. A. (1985). Passenger Flow in Subways[J]. Operational Resaerch Quarterly, (9):81-88.
    Harrison, M. A., Gottuk, D. T., Rose-Pehrsson, S. L., Owrutsky, J. C., Williams, F. W. and P, F. J.2003. Video Image Detection(Vid) Systems and Fire Detection Technologies:Preliminary Results from the Magazine Detection System Response Tests. Naval Research Laboratory.
    Hasofer, A. M. (2009). Modern Sensitivity Analysis of the Cesare-Risk Computer Fire Model [J]. Fire Safety Journal,44(3):330-338.
    Hasofer, A. M., Beck, V. R. and Bennetts, I. D. (2007). Risk Analysis in Building Fire Safety Engineering[M], Breat Britain, Linacre House.
    He, Y. P. (2010). Linking Safety Factor and Failure Probability for Fire Safety Engineering [J]. Journal of Fire Protection Engineering,20(3):199-217.
    He, Y. P., Horasan, M., Taylor, P. and Ramsay, C. Stochastic Modeling for Risk Assessment[C]. In:EVANS, ed. Procedings of the 7th international symposium on fire safety science,2002a Worcester. International association for fire safety science,333-344.
    He, Y. P., Wang, J., Wu, Z. K., Hu, L., Xiong, Y. and Fan, W. C. (2002b). Smoke Venting and Fire Safety in an Industrial Warehouse[J]. Fire Safety Journal,37(2): 191-215.
    Helton, J. C. (1993). Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal [J]. Reliability Engineering & System Safety,42(2-3):327-367.
    Helton, J. C. (1994). Treatment of Uncertainty in Performance Assessments for Complex-Systems[J]. Risk Analysis,14(4):483-511.
    Helton, J. C. and Davis, F. J. (2002). Illustration of Sampling-Based Methods for Uncertainty and Sensitivity Analysis [J]. Risk Analysis,22(3):591-622.
    Helton, J. C. and Davis, F. J. (2003). Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems[J]. Reliability Engineering & System Safety,81(1):23-69.
    Helton, J. C., Davis, F. J. and Johnson, J. D. (2005). A Comparison of Uncertainty and Sensitivity Analysis Results Obtained with Random and Latin Hypercube Sampling[J]. Reliability Engineering & System Safety,89(3):305-330.
    Helton, J. C., Johnson, J. D., Sallaberry, C. J. and Storlie, C. B. (2006). Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis [J]. Reliability Engineering & System Safety,91(10-11):1175-1209.
    Helton, J. C., Johnson, J. D., Shiver, A. W. and Sprung, J. L. (1995). Uncertainty and Sensitivity Analysis of Early Exposure Results with the Maces Reactor Accident Consequence Model[J]. Reliability Engineering & System Safety,48(2): 91-127.
    Heskestad, G. and Bill Jr, R. G. (1988). Quantification of Thermal Responsiveness of Automatic Sprinklers Including Conduction Effects [J]. Fire Safety Journal,14(1-2): 113-125.
    Heskestad, G. and Delichatsios, M. A.1977. Enviroment of Fire Detectors Phases I: Effects of Fire Size, Ceiling Height and Material. Vol. II-Analysis, technical report serial No.22427,. Factory Mutual Research Corporation.
    Heskestad, G. and Smith, H.1976. Fmrc Serial. Norwood, MA:Factory Mutual Research Corp.
    Holborn, P., Nolan, P. and Golt, J. (2004). An Analysis of Fire Sizes, Fire Growth Rates and Times between Events Using Data from Fire Investigations [J]. Fire Safety Journal,39(6):481-524.
    Hostikka, S. and Keski-Rahkonen, O. (2003). Probabilistic Simulation of Fire Scenarios[J]. Nuclear Engineering and Design,224(3):301-311.
    Hostikka, S., Korhnen, T. and Rahkonen, O. K. Two-Model Monte Carlo Simulation of Fire Scenarios[C]. In:GOTTUK, D. & LATTIMER, B., eds. Proceedings of the Eighth International Sympoisum on Fire Safety Science,2005 Beijing. International Association for Fire Safety Science.
    Hurley, M. J. (2012). Uncertainty in Fire Protection Engineering Design[J]. Journal of Testing and Evaluation,40(1):JTE103915 (6 pp.)-JTE103915 (6 pp.).
    Hurley, M. J. and Madrzykowski, D. Evaluation of the Computer Fire Model Detact-Qs[C]. In:ALMAND, K., COATE, C., ENGLAND, P. & GORDON, J., eds. Performance-based Codes and Fire Safety Design Methods, Fourth International Conference Proceedings,2002 Melbourne, Australia.241-252.
    Iman, R. L. and Helton, J. C. (1988a). An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer-Models[J]. Risk Analysis,8(1):71-90.
    Iman, R. L. and Helton, J. C. (1988b). An Investigation of Uncertainty and Sensitivity Analysis Techniques for Computer Models[J]. Risk Analysis,8(1):71-90.
    Institute, S. F. R. (2006). Technical Specification for Building Smoke Control.
    Jia, C., Liu, C., Xiang, T. and Zeng, D. (2002). The Study of Evacuation Start Time in Fires(Chinese)[J]. Fire safety science,11(3):176-179.
    Joglar, F., Mowrer, F. and Modarres, M. (2005). A Probabilistic Model for Fire Detection with Applications [J]. Fire Technology,41(3):151-172.
    Jones, W. W., Peacock, R. D., Forney, G. P. and Pa, R.2004. Cfast-Consolidated Model of Fire Growth and Smoke Transport (Version 5):Technical Reference Guide. Gaithersburg:National Institution of Standards and Technology.
    Jorion, P. (2007). Value at Risk:The New Benchmark for Managing Financial Risk[M], McGraw-Hill New York.
    Kaplan, E. L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observations [J]. Journal of the American Statistical Society,53(28):457-481.
    Kaplan, S. and Garrick, B. J. (1981). On the Quantitative Definition of Risk[J]. Risk Analysis,1(1):11-27.
    Karlsson, B. and Quintiere, J. G. (2000). Enclosure Fire Dynamics[M], New York, CRC Press.
    Khoudja, N. (1988). Procedures for Quantitative Snesitivity and Performance Validation of a Deterministic Fire Safety Model[D]. PhD Texas A&M University
    Kong, D., Lu, S., Feng, L. and Xie, Q. (2011). Uncertainty and Sensitivity Analyses of Heat Fire Detector Model Based on Monte Carlo Simulation[J]. Journal of Fire Sciences,29(4):317-337.
    Krieger, T. J., Durston, C. and Albright, D. C. (1977). Statistical Determination of Effective Variables in Sensitivity Analysis [J]. Transactions of the American Nuclear Society,28:515-516.
    Kristiansson, G. H. (1997). On Probabilistic Assessment of Life Safety in Building on Fire[D]. Master, Lund University.
    Lindstrom, T. (2009). A Method of Quantifying User Uncertainty in Fds by Using Monte Carlo Analysis[D]. Lund University.
    Lundin, J.1999. Model Uncertainty in Fire Safety Engineering. Lund, Sweden:Lund University.
    Lundin, J. (2005). Safety in Case of Fire-the Effect of Changing Regulations[D]. Doctor of Philosophy, Lund University.
    Magnusson, S. E., Frantzich, H. and Harada, K.1995. Fire Safety Design Based on Calculations:Uncertainty Analysis and Safety Verification. Lund:Department of Fire Safety Engineering.
    Magnusson, S. E., Frantzich, H. and Harada, K. (1996). Fire Safety Design Based on Calculations:Uncertainty Analysis and Safety Verification[J]. Fire Safety Journal, 27:305-334.
    Matala, A.2008. Sample Size Requirement for Monte Carlo Simulations Using Latin Hypercube Sampling. Helsinki University of Technology:System Analysis Laboratory.
    Merz, J. F., Small, M. J. and Fischbeck, P. S. (1992). Measuring Decision Sensitivity a Combined Monte Carlo-Logistic Regression Approach[J]. Medical Decision Making,12(3):189-196.
    Ministry, C. P. S. (2006). Code of Design on Building Fire Proection and Prevention
    Morgan, H. P. (1998). Sprinklers and Fire Safety Design[J]. Fire Safety Engineering, 5(1):16-20.
    Morgan, H. P. and Gardner, J. P.1990. Design Principles for Smoke Ventilation in Enclosed Shopping Centres. Garston, Watford:Fire Research Station, Building Research Establishment.
    Morris, M. (1991). Factorial Sampling Plans for Preliminary Computational Experiments [J]. Technometrics,33(2):161-174.
    Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M. and Kowalski, S. M. (2004). Response Surface Methodology:A Retrospective and Literature Review[J]. Journal of Quality Technology,36(1):53-77.
    Nelson, H. E.1987. Engineering Analysis of the Early Stages of Fire Development-the Fire at the Dupont Plaza Hotel and Casino--December 31,1986. Washington DC:US National Bureau of Standards.
    Nilsen, T. and Aven, T. (2003). Models and Model Uncertainty in the Context of Risk Analysis[J]. Reliability Engineering & System Safety,79(3):309-317.
    Notarianni, K. A. (2000). The Role of Uncertainty in Improving Fire Prtoection Regulation[D]. PhD, Carnegie Mellon University.
    Oh, B. H. and Yang, I. H. (2000). Sensitivity Analysis of Time-Dependent Behavior in Psc Box Girder Bridges[J]. Journal of Structural Engineering,126(2):171-179.
    Ohmiya, Y., Tanaka, T. and Notake, H. (2002). Design Fire and Load Density Based on Risk Concept[J]. Journal of Architecture, Planning and Evironmental Engineering, (551):1-8.
    Ontiveros, V. L. (2010). An Integrated Methodology for Assessing Fire Simulation Code Uncertainty[D]. Master, University of Maryland, College Park.
    Parry, G. W. (1996). The Characterization of Uncertainty in Probabilistic Risk Assessments of Complex Systems[J]. Reliability Engineering and System Safety, 54(2-3):119-126.
    Parry, G. W. Uncertainty in Pra and Its Implications for Use in Risk-Informed Decision Making[C]. In:MOSLEH, A. & BARI, R. A., eds. Proceedings of the 4th International Conference on Probabilistic Safety Assessment and Management, 1998 New York. PSAM 4.
    Pate-Cornell, M. E. (1996). Uncertainties in Risk Analysis:Six Levels of Treatment[J]. Reliability Engineering and System Safety,54(2-3):95-111.
    Peacock, R. D., Jones, W. W. and Bukowski, R. W. (1993). Verification of a Model of Fire and Smoke Transport[J]. Fire Safety Journal,21(2):89-129.
    Peacock, R. D., Jones, W. W. and Forney, G. P.2004. Cfast-Consolidated Model of Fire Growth and Smoke Transport(Version 5) User's Guide. Building and Fire Research Laboratory.
    Peacock, R. D., Reneke, P. A., Forney, C. L. and Kostreva, M. M. (1998). Issues in Evaluation of Complex Fire Models [J]. Fire Safety Journal,30(2):103-136.
    People's Republic of China State General Administration of Quality Supervision, I. a. Q., Standardization Administration of China(in Chinese) (2005). Chinese National Standards-Point Type Heat Fire Detectors (Gb4716-2005).
    Polus, A., Schofer, J. L. and Ushpiz, A. (1983). Pedestrain Flow and Level of Service[J]. Journal of Transportation Engineering. PROCASCE,109:46-47.
    Pukelsheim, F. (1994). The Three Sigma Rule[J]. The American Statistician,48(2): 88-91.
    Purser, D. A. and Bensilum, M. (2001). Quantification of Behaviour for Engineering Design Standards and Escape Time Calculations [J]. Safety Science,38(2): 157-182.
    Qu, J. G. (2003). Response Surface Modelling of Monte-Carlo Fire Data[D]. PhD, Victoria University of Technology,.
    Rackwitz, R. and Flessler, B. (1978). Structural Reliability under Combined Random Load Sequences[J]. Computers & Structures,9(5):489-494.
    Ramachandran, G. (1995). Probability-Based Building Design for Fire Safety:Part 2[J]. Fire Technology,31(4):355-368.
    Rasmussen, N. C. (1981). The Application of Probabilistic Risk Assessment Techniques to Energy Technologies [J]. Annual Review of Energy,6(1):123-138.
    Rowe, W. D. (1994). Understanding Uncertainty [J]. Risk Analysis,14(5):743-750.
    Saltelli, A. (1999). Sensitivity Analysis:Could Better Methods Be Used?[J]. Journal of Geophysical Research:Atmospheres,104(D3):3789-3793.
    Saltelli, A., Chan, K. and Scott, E. (2004). Introduction to Sensitivity Analysis. Sensitivity Analysis. New York:Wiley
    Saltelli, A., Ratto, M., Tarantola, S. and Campolongo, F. (2005). Sensitivity Analysis for Chemical Models[J]. Chemical Reviews,105(7):2811-2828.
    Schifiliti, R. P., Meacham, B. J. and Custer, R. L. P. (eds.) (2002). Design of Detection Systems, Quincy, Massachusetts:the National Fire Protection Association.
    Schifiliti, R. P. and Pucci, W. E.1996. Fire Detection Modeling:State of the Art. Bloomfield:Fire Detection Institute.
    Sekizawa, A. Fire Risk Analysis:Its Validity and Potiential for Application in Fire Safety [C].8th international Symposium Proceedings on Fire Safety Science, 2005 Beijing.
    Shi, L., Xie, Q., Cheng, X., Chen, L., Zhou, Y. and Zhang, R. (2009). Developing a Database for Emergency Evacuation Model[J]. Building and Environment,44(8): 1724-1729.
    Sobol, I. M. (1993). Sensitivity Analysis for Nonlinear Mathematical Models[J]. Mathematical Models and Computer Experiment,1:407-414.
    Staffansson, L.2010. Selecting Design Fires. Department of Fire Safety Engineering and System Safety, Lund University.
    Su, J. Z., Crampton, G. P., Carpenter, D. W., Mccartney, C. and Leroux, P.2003. Kemano Fire Stuides-Part 1:Response of Residental Smoke Alarms. Ottawa, Canada:National Research Council of Canada.
    Swedish National Board of Housing, B. a. P. (2011). Analytisk Dimensionering Av Brandskydd [Analytical Design of Fire Protection].
    Tewarson, A. (2004). Combustion Efficiency and Its Radiative Component[J]. Fire safety journal,39(2):131-141.
    Thomas, P. H. (1981). Testing Products and Materials for Their Contribution to Flashover in Rooms[J]. Fire and Materials,5(3):103-111.
    Thompson, K. M., Deisler, P. F. and Schwing, R. C. (2005). Interdisciplinary Vision: The First 25 Years of the Society for Risk Analysis (Sra),1980-2005[J]. Risk Analysis,25(6):1333-1386.
    Togawa, K.1955. Study on Fire Escapes Basing on the Observation of Multitude Currents. Tokyo:Building Research Institute, Ministry of Construction.
    Upadhyay, R. R. and Ezekoye, O. A. (2008). Treatment of Design Fire Uncertainty Using Quadrature Method of Moments[J]. Fire Safety Journal,43(2):127-139.
    Vettori, R. L.1998. Effect of an Obstructed Ceiling on the Activation Time of a Residential Sprinkler. Gaithersburg, MD.
    Walker, A. M.1997. Uncertainty Analysis of Zone Fire Models. New Zealand: University of Canterbury.
    Wynne, B.1992. Risk and Social Learning:Refication to Engagement. In:KRIMSKY & GOLDING (eds.) Social Thoeries of Risk. Praeger.
    Xu, C. and Gertner, G. Z. (2008a). A General First-Order Global Sensitivity Analysis Method[J]. Reliability Engineering & System Safety,93(7):1060-1071.
    Xu, C. G. and Gertner, G. Z. (2008b). Uncertainty and Sensitivity Analysis for Models with Correlated Parameters [J]. Reliability Engineering & System Safety, 93(10):1563-1573.
    Yuen, W. W. and Chow, W. K. (2005). A Monte Carlo Approach for the Layout Design of Thermal Fire Detection System[J]. Fire Technology,41(2):93-104.
    Zadeh, L. A. (1965). Fuzzy Sets[J]. Information and Control Theory,8:338-353.
    Zhang, S. and Jing, Y. (2004). Research of Evacuation Crowd in the Business Hall of Large Department Stores (Chinese)[J]. Fire Science and Technology,23(2): 133-136.
    Zhao, C. M., Lo, S. M., Zhang, S. P. and Liu, M. (2009). A Post-Fire Survey on the Pre-Evacuation Human Behavior[J]. Fire Technology,45(1):71-95.
    陈涛(2004).火灾情况下人员疏散模型及应用研究[D].博士,中国科学技术大学.
    褚冠全(2007).基于火灾动力学与统计理论耦合的风险评估方法研究[D].博士,中国科学技术大学.
    冯磊(2009).建筑火灾中人员安全疏散的不确定性及参数敏感性分析[D].硕士,中国科学技术大学.
    公安部上海消防研究所(2006).民用建筑防排烟技术规程.
    霍然,袁宏永(2003).性能化建筑防火分析与设计[M],安徽,安徽科学技术出版社.
    刘芳,廖曙江(2007).建筑防火性能化设计[M],重庆,重庆大学出版社.
    汪金辉(2008).建筑火灾环境下人员安全疏散不确定性研究[D].博士,中国科学技术大学.
    汪金辉,陆守香(2006).建筑火灾中人员安全疏散的可靠概率分析模型[J].中国科学技术大学学报,(1):116—118.
    王福亮(2007).基于蒙特卡罗模拟的人员疏散时间不确定性分析[D].硕士,中国科学技术大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700