先进电力录波系统信息处理与数据压缩技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力录波系统是为电力系统各种状态分析提供信息的主要设备之一,根据电力录波系统记录下来的数据,分析正常及故障状态下的电力系统的运行规律,对预防、处理故障都有极其重要的现实意义。随着电力系统互联和电力市场的发展,近年来电力系统出现了多次大面积、长过程、发展性的事故,对电力录波广域同步、数据吞吐能力、自动化程度等都提出了新的需求。本文分析以上要求,针对新一代电力录波系统关键技术开展研究。
     研究电力录波系统的三层信息处理模型,基于此模型实现了基于GPS精确授时的同步数据采集、基于双级环型数据结构的DMA传输控制和基于高效数据压缩技术的数据存储与通信。实现了基于双级环型数据结构的DMA传输控制机制和总线间FIFO机制,有利于提高系统效率与平均无故障时间;采用采样保持与多路复用电路,实现同步采样,最终实现高速、高效率动态数据采集系统。
     在电源管理系统方面,研究电力录波系统数字化电源管理方法。数字化DC-DC变换器控制律的计算采用浮点乘累加器,提出了基于查表法的定点-浮点、浮点-定点快速转换机制和一种针对数字控制的乘累加过程优化机制,提高了计算速度;提出了一种控制器时序和状态机优化机制,避免了数字控制计算、模数转换等过程产生的延迟;采用双模式DPWM解决DPWM分辨率和占空比调整频率之间的矛盾,实现了高动态响应、无极限环的稳定输出;针对开关电源对模数转换的噪声干扰,基于数字化DC-DC变换器精确的时序控制提出用采样时刻与PWM同步的方法进行噪声抑制,有利于数据压缩品质的提高。
     在电力系统精确授时方面,提出用时间序列分析法基于GPS时钟和晶振时钟精度互补模型实现精确授时。通过IRIG-B同步解码获得原始时间序列,进而根据模型周期稳定性确定时间序列分析的最优时间尺度;由于外界干扰、天气等因素,GPS产生秒时标具有不可靠性,存在秒脉冲丢失现象而产生缺损值,偶尔会出现偏离真实值过大的现象而产生离群点,本文以原始时间序列的一阶差分序列为参考,基于53H法提出了一种实时判断缺损值和离群点的方法,消除缺损值和离群点对精确授时的不利影响。
     精确授时采取两种方法,第一种方法是确定性分析方法,采用基于Cramer分解定理把原始时间序列分解为由多项式决定的确定性趋势成分和平稳的零均值误差成分,利用趋势成分进行外推实现精确授时;第二种方法采用随机性分析方法,分析原始序列的平稳性,建立ARI模型,用有限的样本序列进行模式识别得到高精度模型,基于此模型用自适应卡尔曼滤波进行预测,实现精确授时,进一步提高了授时和同步精度。
     在以上研究基础上,针对数据传输瓶颈,本文分析电力系统采样数据特性,基于信息重组思想提出了一种电力系统超长采样序列二维压缩算法。针对电网频率的波动和非整周期采样造成的等间隔采样序列循环间和循环内信息的耦合,采用两种方法对算法进行改进,第一种方法是插值预处理法,采用样条插值方法对等间隔采样序列进行重采样转换为等相位采样序列,对重采样之后的数据进行信息重组和压缩;第二种方法是同步采样法,用同步采样法直接产生等相位采样序列,对等相位采样序列进行信息重组和压缩。
     本文研究工作提升了电力录波系统的数据吞吐和处理能力,实现了精确授时与同步,适应了电力系统广域测量与控制的需求,满足了电力系统的发展需求。
Analyzing the system operation under normal and fault states according to the data provided by power system recorders is the key point for prevention and treatment of failure in power system. This paper investigates into the key technologies of power system recorders to develop new generation of power system recorders.
     The dynamic data acquisition and processing unit of power system recorders is discussed and a three-level information processing model for power system recorder is proposed. Based on this model, the synchronous data acquisition based on high-precision GPS timing, DMA transfer control mechanism based on two-stage ring-type data structure and high-efficient data storage and transfer based on large ratio data compression technology are realized. The DMA transfer and an inter-bus FIFO mechanism are developed to improve the system efficiency and increase MTBF (mean time between failures). Sample and hold and multiplexing circuit are designed to realize multi-channel synchronized data acquisition. Eventually a high-efficiency data acquisition system combined with high-speed buffer, DMA and high-speed bus are realized.
     Digital power management system is developed for power system recorders. A multi-output digital DC-DC converter is designed. DPWM based on second-order sigma-delta modulator is designed to avoid limit cycle. The controller uses floating-point multiply-accumulator as its operation unit. We developed fast integer-float and float-integer conversion mechanism based on look-up tables and a control law computing optimization mechanism to enhance floating-point operation speed, and further propose a controller timing and state machine optimization mechanism to avoid the delay generated by control law calculations, analog-digital conversion, etc.. Dual-mode compensator is implemented to resolve the contradiction between DPWM resolution and the duty cycle adjust frequency to achieve a high dynamic response, no limit cycle stable output. For the switching power supply interference on analog-digital conversion, a noise suppression method is proposed by sampling time synchronized with PWM period based on digital DC-DC converters.
     Based on GPS clock and crystal oscillator clock accuracy complementary model, precise timing is achieved by time series analysis method. The original time series is generated by IRIG-B synchronized decoding. The time scale for time series analysis is determined according to period stability of the model. For the unreliability characteristic of GPS PPS, a real-time missing values and outliers judging method is proposed to make time-series analysis pre-processing.
     Precise timing is achieved in two methods. The first one is based on Cramer decomposition theorem certainty analysis methods. The second is to use stochastic analysis, using stochastic analysis to establish time series ARI model, then the model is applied to adaptive kalman filtering to achieve precise timing. The second method can get higher precision than the first one.
     A power system long sampling series two-dimensional data compression algorithm algorithm based on information reordering is proposed. In order to eliminate coupling of information-within-cycles and information-between-cycles of the asynchronous sampling data, spline interpolation methods is used to convert asynchronous sampling data into synchronous sampling data before data compression. The improved algorithm achieves large ratio data compression. An alternative synchronous sampling method is further proposed. Using synchronous sampling method to generate synchronous sampling data, then the sampling data is reordered and compressed. This method can also achieve large compression ratios, and the calculation speed is higher then the first one.
     The research in this work enhanced the power system recorder data throughput and processing capacity and met the power system development needs.
引文
1何赞峰,赵东梅,高曙,等.一种基于故障录波信息的电网故障诊断方法[J].电网技术. 2002, 26(5): 40-43
    2 Zheng Chen, Chengmu Luo, Jinxin Su, et al. A Fault Location Algorithm for Transmission Line Based on Distributed Parameter[C]. IEE Seventh International Conference on Developments in Power System Protection. Amsterdam,USA, 2001: 410-412
    3王哲,焦彦军,张新国,等.高性能故障录波器的方案设计[J].电力自动化设备. 2003, 23(3): 40-42
    4张延冬,焦彦军,张举.基于嵌入式系统的故障录波器设计[J].继电器. 2005, 33(3): 62-65
    5夏芳,刘沛.变电站微机故障录波装置设计方案[J].继电器. 2000, 28(3):40-43.
    6杨廷方,刘沛.基于工控机的集中式录波器设计[J].电力系统自动化设备. 2001, 21(6): 26-29.
    7王哲,焦彦军,张新国,等.高性能故障录波器的方案设计[J].电力自动化设备. 2003, 23(3): 40-42.
    8赵自刚,赵春雷.国产故障录波器现状分析及新型录波器展望明[J].电网技术. 1999, 23(3): 44-46, 50.
    9牟晓勇,黄益庄,李志康,等.嵌入式双速暂态信号同步录波装置[J].电力系统自动化. 2003, 27(20): 92-94.
    10胡林献,杜万森,李剑新.基于DSP+MCU技术的新型故障录波器[J].继电器. 2005, 33(9): 40-43.
    11骆健,丁网林,唐涛.国内外故障录波器的比较[J].电力自动化设备. 2001, 21(7): 28-31.
    12罗毅.分布式故障录波系统[J].电力系统自动化. 2001, 25(20): 59-62.
    13丁书文.电力系统微机型自动装置[M].中国电力出版社, 2005: 1-16
    14葛耀中.新型继电保护与故障测距原理与技术[M].西安交通大学出版社. 1996: 1-33
    15黄文韬,王卓敏,刘永康架空输电线路故障测距的方法及应用[J].广东电力. 2005, 18(1): 23-25,44
    16 Thomas D W P, Christopoulos C, Tang Y, et al. A Single Ended Fault Location Scheme[C]. IEE Seventh International Conference on Developments in Power System Protection. Amsterdam,USA, 2001: 414-417
    17 Heng-xu Ha, Bao-hui Zhang, Zhi-lai Lv. A Novel Principle of Single-Ended Fault Location Technique for EHV Transmission Lines[J]. IEEE Transactions on Power Delivery. 2003, 18(4): 1147-1151
    18 Popovic L M. A Digital Fault-Location Algorithm Taking into Account the Imaginary Part of the Grounding Impedance at the Fault Place[J]. IEEE Transactions on Power Delivery. 2003, 18(4): 1489-1496.
    19董新洲,葛耀中,徐丙垠,等.利用GPS的输电线路行波故障测距研究[J].电力系统自动化. 1996, 20(12): 37-40
    20鹿洪刚,覃剑,陈祥训,等.电力电缆故障测距综述[J].电网技术. 2004, 28(20): 58-63
    21陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用-A型原理[J].继电器. 2004, 32(2): 13-18,43
    22陈平,葛耀中,徐丙垠,等.现代行波故障测距原理及其在实测故障分析中的应用-D型原理[J].继电器. 2004, 32(3): 14-17, 28
    23 Gale P F, Crossley P A, Xu Bingyin, et al. Fault location based on travelling waves[C]. Fifth Intenrational Conference on Developments in Power System Protection. York, USA, 1993: 54-59
    24 Gale P F, Stokoe J, Crossley P A. Practical experience with travelling wave fault locators on Scotish power's 275 & 400 kV transmission system[C]. Proceedings of the 1997 6th International Conference on Developments in Power System Protection. Nottingham, USA 1997: 19-196
    25李友军,王俊生,郑玉平,等.几种行波测距算法的比较[J],电力系统自动化. 2001, (14): 36-39
    26柳树平,刘景勤,沈立宏.现代行波测距技术及系统在绥化电网的应用[J].黑龙江电力. 2003, 25(4): 277-283
    27 Girgis A A, Fallon C M. Fault Location Techniques for Radial and Loop Transmission Systems Using Digital Fault Recorded Data[J]. IEEE Transaction on Power Delivery. 1992, 7(4): 1936-1945
    28 Thomas D W P, Christopoulos C, Carvalho R J O, et al. Single and double ended travelling-wave faultlocation on a MV system[C]. Eighth IEEE InternationalConference on Developments in Power System Protection. Amsterdam, USA, 2004: 200-203
    29 Evrenosoglu C Y, Abur A. Travelling wave based fault location for teed circuits[J]. IEEE Transactions on Power Delivery. 2005, 20(21): 1115-1121
    30徐丙垠,李京,陈平,等.现代行波测距技术及其应用[J].电力系统自动化. 2001, (23): 62-65
    31陈平,葛耀中,索南加乐,等.基于故障开断暂态行波信息输电线路故障测距研究[J].中国电机工程学报. 2000, 20(8): 56-59, 64
    32陈平,葛耀中,徐丙垠.利用故障线路分闸暂态行波的故障测距研究[J].电力系统自动化. 2004, 28(1): 53-58
    33李强,石新生,龚庆武输电线路故障定位新技术应用综述[J].高压电器. 2005, 41(1): 51-54
    34陈平,牛燕雄,徐丙垠,等.现代行波故障测距系统的研制[J].电力系统自动化, 2003, 27(12): 81-85
    35 Karlsson D, Broski L, Ganesan S. Maximizing power system stability through wide area protection. 57th Annual conference for protective relay engineers. Sweden, 2004: 403-418
    36向龙,宜扬,张俊敏.电能质最及其数字检测方法[J].高电压技术. 2003, 29(4): 46-48.
    37文继锋,刘沛.一种电能质量扰动检测的新方法[J].中国电机工程学报. 2002, 2(12): 14-20
    38朱桂平,王树民.电能质量控制技术综述[J].电力系统自动化. 2002, 26(19): 28-31.
    39杨淑英.电能质量测量方法及其监测装置研究[J].华北电力大学学报. 2003, 30(5): 136-140.
    40国家技术监督局.电能质量供电电压允许偏差(GB12325-1990)[S].中国标准出版社, 1990.
    41国家技术监督局.电能质量公用电网谐波(GB/T14549-1993)[S].中国标准出版社, 1993.
    42国家技术监督局.电能质量电力系统频率允许偏差(GB/T15945-1995)[S].中国标准出版社, 1995.
    43国家技术监督局.电能质量二相电压允许不平衡度(GB/T15543-1995)[S].中国标准出版社, 1995.
    44国家技术监督局.电能质量电压允许波动与闪变(GB12326-2000)[S].中国标准出版社, 2000.
    45国家技术监督局.电能质量电压允许波动与闪变(CB/T18481-2001)[S].中国标准出版社, 2001.
    46于永源,杨绮雯.电力系统分析[M].第2版.中国电力出版社, 2004.
    47 Zewen Li, Xiangjun Zeng, Fangliang Pang, et al. High Accurate Clock in Synchronism with GPS for Power System Simultaneous Measurement[C]. IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific. Dalian, China. 2005: 1-4
    48 Wilson R E. Methods and Uses of Precise Time in power systems[J]. IEEE Transactions on Power Delivery. 1992, 7(1): 126-132
    49 Phadke A G. Synchronized Phasor Measurements in Power Systems[J]. IEEE Computer Applications in Power. 1993, 6(2):10-15
    50蔡舒平,张保会,薛岩.一种新型故障录波装置的构成原理及设计[J].电气传动自动化. 2003, 25(3): 40-45
    51郝琳娜,张新国,等.以太网在变电站微机型故障录波器中的应用[J].中国电力. 2002(5): 45-47
    52 Liu S G, Ding L Y, Zeng H H. Design and implementation of integrated protection apparatus in prefabricated substation[C]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Shanghai, 2004: 2804-2808
    53 Huang S J, Yang T M, Huang J T. FPGA realization of wavelet transform for detection of electric power system disturbances[J]. IEEE Transactions on Power Delivery. 2002, 17(2):388-394
    54 Mekhilef S, Rahim N A. Xilinx FPGA based three-phase PWM inverter and its application for utility connected PV system. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering[C]. Kuala Lumpur, Malaysia, 2002: 2079-2082
    55王诚,吴继华,范丽珍,等. Altera FPGA/CPLD设计(基础篇)[M].人民邮电出版社, 2005: 1-28
    56 Toledo J, Muller H, Buytaert J. A plug and play approach to data acquisition[J]. IEEE Transactions on Nuclear Science. 2002, 49(3): 1190-1194
    57 Klak M, Rybarczyk A. Universal card for data acquisition. Proceedings of theFourth International Workshop on Robot Motion and Control[C]. Puszczykowo, USA, 2004: 351-355
    58 Abhyankar Y, Sajish C, Kulkarni P. Design of a FPGA based data acquisition system for radio astronomy applications[C]. 16th Intenrational Conference on Microelectronics. Tunis, 2004: 555-557
    59于振宇.德州仪器数字电源解决方案. http://www.ti.com/digitalpower, 2005
    60 Silicon Laboratory. Si8250 Datasheet. 2006:1-19
    61 M. Ravi, Brett Etter.一种最佳的数字开关电源控制器架构.电子设计应用. 2006, (9):60-64
    62 B. Erickson, D. Maksimovic, R. Zane. Advancing Digital Control of Switched-Mode Converters. http://ece.colorado.edu/~pwrelect, 2004
    63 Freescale Semiconductor. 56F8013 Datasheet. 2007:4-6
    64 H. Bill. Implementing a Digital AC/DC Switched-Mode Power Supply using a
    56F8300 Digital Signal Controller. Freescale Semiconductor Application Note 3115. 2005
    65陈路.从IC看电源管理新趋势——数字电源开始进入高端应用.电子工程专辑. http:// www.eetchina.com/ART_8800457221_628868_ed3ecba0200 703.htm
    66 Primarion. Px7510 Datasheet. 2006:1-2
    67 Power Controllers Promise Digital Benefits at Analog Prices. Power Electronic Technology. 2006, (1):10
    68 Power-One’s Z-One Digital IBA Integrates Power Conversion, Control & Communications,Micro Tech Consultant. 2005, (112): 6-7
    69 Mehta K, Russell B D. Data compression for digital data from Power systems disturbances: requirements and technique evaluation[J]. IEEE Transactions on Power Delivery. 1989, 4(3): 1683-1688
    70 Giri C, Chattopadhyay S. Reducing Test-bus Power Consumption in Huffman Coding Based Test Data Compression for SOCs[C]. IEEE International Symposium on Circuits and Systems. New Orleans, USA, 2007: 3679-3682
    71苗世洪,王少荣,刘沛,等.数据压缩技术在电力系统通信中的应用[J].电力自动化设备. 1999, 19(3): 32-33
    72黄荣辉,周明天,曾家智.动态哈夫曼算法在电力线计算机网络数据压缩中的应用[J].计算机科学. 2000, 27(11): 36-38
    73朱怀宏,吴楠,夏黎春.利用优化哈夫曼编码进行数据压缩的探索[J].微机发展. 2002, (5): 1-5
    74苗世洪,孙扬声,自适应哈夫曼编码的数据压缩与解压缩技术研究[J].微型机及应用. 1996, (4): 18-25
    75 Tehranipour M H, Nourani M, Arabi K, ea al. Mixed RL-Huffman encoding for Power reduction and data compression in scan test[C]. Proeeedings of the 2004 International Symposium on Circuits and Systems. 2004: II-681-4 Vol.2
    76 Hsieh C T, Huang S J. Disturbance data Compression of a Power system using the Huffman coding approach with Wavelet transform enhancement[J]. IEE Proceedings-Generation, Transmission and Distribution. 2003, 150(1): 7-14
    77王成山,王继东,基于能量阈值和自适应算术编码的数据压缩方法[J].电力系统自动化. 2004, 28(24): 56-60
    78谭兆信.数据压缩的综合字典模型[J].计算机工程与设计. 1997, 18(1): 10-15
    79 Kinsner W, Greenfield R H. The Lempel-Ziv-Weleh (LZW) data compression algorithm for packet radio[C]. WESCANEX’91’IEEE Western Canada Conference on Computer, Power and Communications Systems in a Rural Envirotunent'. 1991: 225-229
    80苗世洪,孙扬声,吴小辰.基于电力系统故障信息远程通信的高效数据压缩与解压缩技术研究[J].电力系统自动化. 1996, 20(5): 53-55
    81陈海宴,崔东艳,聂辉哲.小波变换在电力系统应用中的发展前景研究[J].仪器仪表学报. 2004, 25(4): 627-630
    82刘志刚,张友刚,钱清泉.小波网络在电力系统故障信号处理中的应用研究[J].电网技术. 2003, 27(4): 7-10
    83乐全明,费铭薇,张沛超,等.超高压电网故障录波数据自适应压缩新方法[J].电力系统自动化. 2006, 30(21): 61-65
    84黄天戍,汪阳,吴迪,等.基于第二代小波变换的电力系统故障录波数据压缩方法[J].电力自动化设备. 2004, 24(3): 59-62
    85李鹏,杨洪耕.非参数统计模型选择在SDVC数据压缩中的应用[J].电力系统自动化. 2004, 28(20): 47-51
    86欧阳森,宋政湘,陈德桂,等.小波软阐值去噪技术在电能质量检测中的应用[J].电力系统自动化. 2002, 26(19): 56-60
    87剧高峰,罗安.离散小波变换用于电能质量扰动数据实时压缩[J].电力系统及其自动化. 2002, 26(19): 61-63
    88周瑞,鲍文.基于小波变换和RBF神经网络的电力数据压缩算法[J].哈尔滨工程大学学报. 2006, 7, 32-35
    89 Dash P K, Panigrahi B K, Sahoo D K, et al. Power quality disturbance data compression, detection, and classification using integrated spline Wavelet and S-transform[J]. IEEE Transactions on Power Delivery. 2003, 18(2): 595-600
    90丁泽京,谢胜曙,曹志瑞,等.基于B样条小波的电力系统故障录波信号的数据压缩技术[J].电气应用. 2006, 25(8): 31-34
    91乐全明,郁惟铺,柏传军,等.基于提升算法的电力系统故障录波数据压缩新方案[J].电力系统自动化. 2005, 29(5): 74-78
    92费铭薇,乐全明,张沛超,等.电力系统故障录波数据压缩与重构小波基选择[J].电力系统自动化. 2005, 29(17):64-67
    93任明明,张彦斌,贾立新.一种基于提升小波和零树编码的录波数据压缩算法[J].西安交通大学学报. 200640(4):494-496
    94刘志刚,钱清泉.基于多小波的电力系统故障暂态数据压缩研究[J].中国电机工程学报, 2003, 23(10):22-26
    95刘志刚,何正友,钱清泉.基于最优预处理方法的多小波故障数据压缩方案[J].电网技术. 2005, 29(11):40-43
    96何正友,钱清泉,王晓茹.基于优化小波基的电力故障暂态数据压缩研究[J].西南交通大学学报. 2000, 35(5): 526-530
    97何正友,钱清泉.电力系统暂态信号分析中小波基的选择原则[J].电力系统自动化. 2003, 27(10): 45-48
    98何正友,钱清泉,刘志刚.一种基于优化小波基的电力系统故障暂态数据压缩方法[J].中国电机工程学报. 2002, 22(6):1-5
    99 Shyh-Jier Huang, Ming-Jong Jou. Application of arithmetic coding for electric power disturbance data compression with wavelet packet enhancement[J]. IEEE Transaetions on Power Systems. 2004, 19(3): 1334-1341
    100徐凌,喻文焕.一种基于正交小波包变换的数据压缩方法[J].信号处理. 2001, 17(5): 459-462
    101李龙云.利用小波包最优基进行图像数据压缩[J].山东工业大学学报. 2001, 31(1): 30-34
    102任震,何建军,黄雯莹,等.基于小波包算法的电机故障信号的压缩和重构[J].中国电机工程学报. 2001, 21(1):25-29
    103郭彬彬,黄纯.基于小波包变换的电能质量扰动数据压缩[J].电力自动化设备. 2005, 25(11):34-37
    104成敬周,张举.基于小波包分析的录波数据压缩原理[J].电力自动化设备. 2004, 24(7):53-56
    105项秀玉,林军,曾焕岩.基于小波包最优小波树在故障录波数据压缩中的应用[J].福州大学学报(自然科学版). 2005, 33(5):605-609
    106林震宇,李智勇,吴为麟.基于嵌入式零树编码的电力系统数据压缩[J].浙江大学学报(工学版). 2007, 41(2): 291-293
    107 Jaehak C, Powers E J, Grady W M, ea al. Veriable rate power disturbance signal compression using embedded zerotree wavelet transform coding[C]. Power Engineering Soeiety 1999 Winter Meeting. 1999, 2(1999): 1305-1309
    108 Ryan B. The Use of Digital Fault Recorder Records and Other Transient Waveform Records in Tests on Protection Relays[C]. Sixth International Conference on Developments in Power System Protection. Nottingham, 1997: 398-401.
    109 Wiot D A. New adaptive transient monitoring scheme for detection of power system events[J]. IEEE Transactions on Power Delivery. 2004, 19(1): 42-48.
    110 Clewes T W, Hardy R H S. A digital transient recorder for power system monitoring and analysis[J]. IEEE Transactions on Power Apparatus and Systems. 1983, PAS-102(7): 2186-2193.
    111 Coggins D P, Thomas D W P. A New High Speed FPGA based Travelling Wave Fault Recorder for MV Distribution Systems[J]. IET 9th International Conference on Developments in Power System Protection. Glasgow, UK, 2008: 579– 583.
    112 Elhaffar A, Lehtonen M. An Improved GPS Current Traveling-Wave Fault Locator in EHV Transmission Networks using Few Recordings[C]. 2005 International Conference on Future Power Systems. Amsterdam,USA, 2005: 5.
    113 Leong C, Bento P, Lousa P, et al. Design and test issues of an FPGA based data acquisition system for medical imaging using PEM[J]. IEEE Transactions on Nuclear Science. 2006, 53(3): 761-769
    114 Robson C C W, Bousselham A, Bohm C. An FPGA Based General-Purpose Data Acquisition Controller[J]. IEEE Transactions on Nuclear Science. 2006, 53(4): 2092-2096
    115 Laymon C M, Miyaoka R S, Park B K, et al. Simplified FPGA-based data acquisition system for PET[J]. IEEE Transactions on Nuclear Science. 2003,50(5): 1483-1486
    116 Brandao R F M, Beleza Carvalho J A, Barbosa F M. GPS Synchronized Measurements in Power Systems State Estimation: An Overview[C]. Proceedings of the 41st International Universities Power Engineering Conference. 2006: 452-456
    117 Chen E, Timorabadi H S, Dawson F P. Real-time phasor measurement method including a GPS common time-stamp for distributed power system monitoring and control[C]. Canadian Conference on Electrical and Computer Engineering. 2005: 441-444
    118 Hsegawa T, Imashima K, Ohtaka T, ea al. Power system stabilization using GPS and second-order eigenvalue sensitivity. IEEE/PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. 2002: 1670-1675 vol.3
    119 Van As M T S, Vermeulen H J. A GPS based time-stamping and scheduling system for wide area power system measurements[C]. IEEE AFRICON 6th Africon Conference in Africa. 2002, 2(2002): 853-857
    120 Zhou Jie, Zhang Changyin, He Wei, et al. Precise measurement of power system frequency and absolute phase based on GPS. International Conference on Power System Technology. 2002, 3(2002): 1947-1951
    121 Bruce J D, Li H W, Baker R J. Analog Layout Using ALAS [J]. IEEE Journal of Solid-State Circuits, 1996, 31(2): 271-274
    122 Hannon J, Wegener C. Strategic ADC Design Evaluation Based on Error Sources. 5th IEE International Conference on ADDA 2005. Limerick, Ireland, 2005, 21(2005): 153-156
    123 Bin Le, Rondeau T W, Reed J H, et al. Analog-to-digital converters[J]. IEEE Signal Processing Magazine. 2005, 22(6):69-77
    124 Abuaham Peled, Bede Liu. Digital Signal Processing: Theory, Design, and Implementation [M]. New York, Wiley, 1976: 20-27
    125 National Semiconductor. Specifications and Architectures of Sample-and-Hold Amplifiers. http://www.national.com, 2005
    126马明建.数据采集与处理技术.第2版.西安交通大学出版社, 2005: 64-73
    127 Analog Devices Corporation. LC2MOS 8-/16-Channel High Performance Analog Multiplexers (ADG426). http://www.analog.com, 2005
    128 Analog Devices Corporation. 16-Bit 1 MSPS SAR Unipolar ADC with Ref (AD7671). http://www.analog.com, 2005
    129 Analog Devices Corporation. Low Noise, High Speed Amplifier for 16-Bit Systems (AD8021). http://www.analog.com, 2005
    130 Aleksandar Prodic, Dragan Maksimovic, Robert W Erickson. Design and implementation of a digital PWM controller for a high-frequency switching DC-DC power converter[C]. The 27th Annual Conference of the IEEE Industrial Electronics Society. Denver,USA, 2001, 2(2001): 893 - 898.
    131 Ka Leung, Don Alfano. Design and implementation of a practical digital PWM controller[C]. Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition. 2006: 6 pp.
    132 Petercheve A V, Sanders S R. Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters[J]. IEEE Transactions on Power Electronics. 2003,18(1):301-306
    133 Hao Peng, Aleksandar Prodic, Eduard Alarcon, Dragan Maksimovic. Modeling of Quantization Effects in Digitally Controlled DC–DC Converters[J]. IEEE Transactions on Power Electronics. 2007, 22(1): 208-215
    134曾勇,吕征宇,钱照明,汪槱生.高频DC/DC电路中数字脉宽调制极限环的抑制方法[J].中国电机工程学报,2002,22(8):22-25
    135 Li Peng, Yong Kang, Xuejun Pei, Jian Chen. A Novel PWM Technique in Digital Control[J]. IEEE Transactions on Industrial Electronics. 2007, 54(1): 338-346
    136周熙,郭健民,李文宏.高精度混合型DPWM设计和实现[J].半导体学报, 2007, 28(6): 967-974.
    137 Lukic Z, Rahman N, Prodic A. MultibitΣ-? PWM Digital Controller IC for DC–DC Converters Operating at Switching Frequencies Beyond 10 MHz[J]. IEEE Transactions on Power Electronics, 2007, 22(5): 1693-1707
    138 Lukic Z, Blake C, Huerta S C, et al. Universal and Fault-Tolerant Multiphase Digital PWM Controller IC for High-Frequency DC-DC Converters[C]. Twenty Second Annual IEEE Applied Power Electronics Conference. Anaheim, USA, 2007: 42-47
    139 Yousefzadeh V, Babazadeh A. Ramachandran B, et al. Proximate Time-Optimal Digital Control for DC-DC Converters[C]. IEEE Power Electronics Specialists Conference. Orlando, USA, 2007: 124-130
    140 Perry A G, Feng G, Liu Y F, et al. A Design Method for PI-like Fuzzy Logic Controllers for DC–DC Converter[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2688-2696
    141 Stefanutti W, Mattavelli P, Saggini S, et al, Autotuning of Digitally Controlled DC–DC Converters Based on Relay Feedback[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 199– 207
    142 Starman L A. Dynamic performance of PWM DC-DC Boost Converter with Input Voltage Feed-forward Control[J]. IEEE Transactions on Circuits and Systems. 1999, 46(12): 1473-1481
    143 Sun J, Schoneman G K, Jenkins D E. Small-signal Characterization of a Zero-Voltage Switching DC-DC Converter for Pulse-load Applications[C]. IEEE Power Electronics Specialists Conference. Charleston, USA, 1999: 439-444
    144 Ren Y C, Wu X H, Qian Z M. A Novel Unified Average Model for Single Switch DC-DC Converter[C]. IEEE Applied Power Electronics Conference and Exposition, New Orleans, USA, 2000: 263-268
    145 Kazimierczuk M K, Edstrom A J. DC and AC Analysis of Buck PWM DC-DC Converter with Peak-Voltage-Modulation Feedforward Control[C]. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Orlando, USA, 1999:246-249
    146 Mahdavi J, Emaadi A, Bellar M D. Analysis of Power Electronic Converters using the Generalized State-space Averaging Approach[J]. IEEE Transactions on circuit and systems: Fundamental Theory and Applications. 1997, 44(8):767-770
    147 Sun J, Mitchell D M, Greuel M F. Averaged Modeling of PWM Converters Operating in Discontinuous Conduction Mode[J]. IEEE Transactions on Power Electronics. 2001,16(4):482-492
    148 Sun J, Heck B, Lehman B. Continuous Approximation and the Stability of Averaging[C]. Proceedings of the 7th Workshop on Computers in Power Electronics, Blacksburg, USA, 2000:139-144
    149 Forsyth A J, Mollov S V. Modelling and Control of DC-DC Converters[J]. Power Engineering Journal. 1998:229-236
    150 Erickson R W, Maksimovic D. Fundamentals of Power Electronics[M]. Second Edition. Kluwer Academic Publishers, 2001: 51~83
    151马西奎,李明,戴栋,等.电力电子电路与系统中的复杂行为研究综述[J].电工技术学报. 2006,21(12): 3-11
    152李崇坚,韦立祥,寿晓强,等.用D-d方法分析单周期控制Cuk电路的动态特性[J].中国电机工程学报. 1999, 19(2): 32-36
    153 Fuad Y, de Koning W L, vander Woude J W. On the Stability of the Pulse-width-Modulated Cuk Converter[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs. 2004,51(8): 412-420
    154 Dancy A P, Amirtharajah R, Chandrakasan A P. High-efficiency Multiple-output DC-DC Conversion for Low-Voltage Systems[J[. IEEE Transactions on VLSI Sys. 2000, 8(3):252-263
    155 Patella B J, Prodic A, Zirger A. High-frequency Digital PWM Controller IC for DC-DC Converters[J]. IEEE Transactions on Power Electronics. 2003,18(I-II): 438-446
    156 Wei G Y, Kim J, Liu D. A Variable-frequency Parallel I/O Interface with Adaptive Power-supply Regulation[J]. IEEE Journal of Solid-State Circuit. 2000, 35(11):1600-1610
    157 Peterchev A V. Digital Pulse Width Modulation Control in Power Electronic Circuits: Theory and Applications[D]. University of California, Berkeley, PhD thesis. 2005: 1-13
    158 Franklin G F, Powell J D, Workman M. Digital Control of Dynamic Systems[M]. Third Edition. Addison-Wesley, 1998:73-149
    159 Scrofano R, Ling Zhuo, Prasanna V K. Area-Efficient Arithmetic Expression Evaluation Using Deeply Pipelined Floating-Point Cores[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2008, 16(2): 167-176
    160 Beauchamp M J, Hauck S, Underwood K D, et al. Architectural Modifications to Enhance the Floating-Point Performance of FPGAs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2008, 16(2): 177-187
    161 Oberman S, Al-Twaijry H, Flynn M. The SNAP Project: Design of Floating Point Arithmetic Units[C]. 13th IEEE Symposium on Computer Arithmetic. Asilomar, USA, 1997: 156-165
    162 Oklobdzija V G. An algorithmic and novel design of a leading zero detector circuit: Comparison with logic synthesis[J]. IEEE Transactions on VLSI Systems, 1993, 2(1): 124-128.
    163 Bruguera J D, Lang T. Leading–one prediction with concurrent positioncorrection[J]. IEEE Transactions on Computers, 1999, 48(10): 1083–1097.
    164 Institute of Electrical and Electronics Engineers. IEEE754 Standard for Binary Floating-Point Arithmetic[S], 1984.
    165 SCHREIRAR R, TEMES G C, Understanding Delta-Sigma Data Converters[M]. New York: Wiley, 2005.
    166 Lewandowski W, Petit G, Thomas C. Precision and accuracy of GPS time transfer[J]. IEEE Transactions on Instrumentation and Measurement, 1993, 42(2): 474-479.
    167王元虎,周东明.卫星时钟在电网中应用的若干技术问题[J].中国电力. 1998, 31(2): 10-13.
    168张鹏,王少荣,程时杰.电网状态监测系统GPS同步时钟的稳定性研究[J].继电器. 2004, 32(23): 18-22
    169 Weiss M, Zhang V, Nelson L, et al. Delay variations in some GPS timing receivers[C]. Proceedings of the 1997 IEEE International Frequency Control Symposium. Orlando, USA, 1997: 304-312
    170 Conley R, Lavrakas J W. Global implications on the removal of selective availability [C]. Proceedings of the 2000 IEEE Position Location and Navigation Symposium. San Diego, USA, 2000: 506-513.
    171龚庆武,刘美观,左克锋,等. GPS同步采样装置中防止干扰GPS秒脉冲信号的措施[J].电力系统自动化. 2000, 24(1): 45-47.
    172曾祥君,尹项根. GPS时钟在线监测与修正方法[J].中国电机工程学报. 2002, 22(12): 41-46.
    173吴宁,潘小龙,虞皆侠.高精度GPS同步时钟的研究与实现[J].电力系统自动化. 2008, 32(10): 61-65.
    174曾祥君,尹项根,林干,周延龄.晶振信号同步GPS信号产生高精度时钟的方法及实现[J].电力系统自动化. 2003, 27(8): 49-53.
    175 Jefferson D C, Lichten S M, Young L E. A test of precision GPS clock synchronization[C]. Proceedings of the 1996 IEEE International Frequency Control Symposium. Honolulu, USA, 1996: 1206-1210
    176 Jefferson D C, Lichten S M, Young L E. GPS: Primary Tool for Time Transfer[C]. Proceedings of the IEEE. 1999, 87(1): 163-172
    177 Martin K E, Benmouyal G. IEEE Standard for Synchro phasors for Power Systems[S]. IEEE Power Engineering Society. 1998, 13(1):73-77
    178 Lewandowski W, Petit G, Thomas C. Precision and accuracy of GPS time transfer[J]. IEEE Transactions on Instrumentation and Measurement, 1993, 42(2): 474-479.
    179杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报. 2005, 25(11): 1-5.
    180杨建萍.基于ARIMA模型的用电量时间序列建模和预报[J].工程数学学报. 2008, 25(4): 611-615
    181韩敏,席剑辉,范明明.神经网络应用于多元变量时间序列的建模研究[J].仪器仪表学报. 2006, 27(3): 275-279
    182曲国福,刘宏昭.梳状音叉MEMS陀螺漂移时间序列建模方法研究[J].传感器与微系统. 2008, 27(6): 21-23
    183赵盈.我国GDP时间序列模型的建立与实证分析[J].西安财经学院学报. 2006, 19(3): 11-14
    184王沁.时间序列分析及其应用[M].西南交通大学出版社, 2008
    185张高煜,赵恒,杨万海.一种新的模糊-卡尔曼滤波器的控制算法及应用[J].控制理论与应用. 2005, 22(6): 861-864
    186罗谌持,张明.基于Sigma点卡尔曼滤波器的电力频率跟踪新算法[J].电力系统自动化. 2008, 32(13): 35-39
    187马静波,杨洪耕.自适应卡尔曼滤波在电力系统短期负荷预测中的应用[J].电网技术. 2005, 29(1): 75-79.
    188李明干,孙健利,刘沛.基于卡尔曼滤波的电力系统短期负荷预测[J].继电器. 2004, 32(4): 9-12.
    189 [美]James D. Hamilton.刘明志,译.时间序列分析[M].中国社会科学出版社, 1999
    190黄天戌,汪洋,吴迪,等.基于第二代的小波变换的电力系统故障录波数据压缩方法[J].电力自动化设备. 2004, 24(3): 59-62
    191闫常友,杨奇逊,刘万顺.基于提升格式的实时数据压缩和重构算法[J].中国电机工程学报. 2005, 25(9): 6-10
    192汪大全.电力录波数据压缩技术的研究.西南交通大学硕士学位论文[D]. 2003: 18~52
    193潘文霞,李春林,史林军.基于最佳小波包基的电能质量暂态数据压缩[J].电力系统及其自动化学报. 2005, 17(3): 50-54
    194刘志刚,钱清泉.基于多小波的电力系统故障暂态数据的压缩技术[J].中国电机工程学报. 2003, 23(10): 22-26
    195 Hamid E Y, Kawasaki, Z I. Wavelet-Based Data Compression of Power System Disturbances Using the Minimum Description Length Criterion[J]. IEEE Transactions on Power Delivery. 2002, 17(2): 460-466
    196张昊,刘沛.基于双正交的电力系统故障录波数据压缩[J].电网技术. 2000, 11(11): 41-43, 64
    197张超,房若季.改进的LZSS压缩算法在故障信息文件远传中的应用[J].电网技术. 2003, 27(6): 42-44
    198 Pol Nisenblat, Mordehay Broshi, Ofir Efrati. Method of compressing values of a monitored electrical power signal[P]. US Patent: 7415370 B2, Aug. 19, 2008.
    199 David Salomon. Data Compression[M]. BeiJing Publishing House of Electronics Industry. 2003:51~55, 393~403
    200鲍文,周瑞,刘金福.基于二维提升小波的火电厂周期性数据压缩算法[J].中国电机工程学报, 2007, 27(29): 96-101
    201 Bilgin A, Marcellin M W, Altbach M I.Compression of electrocardiogram signals using JPEG2000[J].IEEE Transactions on Consumer Electronics, 2003,
    49(4): 833-840.
    202 Gerek O N, Ece D G. 2-D analysis and compression of power-quality event data[J]. IEEE Transactions on Power Delivery. 2004, 19(2): 791-798
    203 Lee C H, Wang Y J, Huang W L.A literature survey of wavelets in power engineering applications[J].Physical Science and Engineering, 2000, 24(4): 249-258.
    204 Santoso S, Powers E J, Grady W M.Power quality disturbance data compression using wavelet transform methods[J].IEEE Transactions on Power Delivery, 1997, 12(3): 1250-1257.
    205 Meher S K, Pradhan A K, Panda G.An integrated data compression scheme for power quality events using spline wavelet and neural network[J].Electric Power Systems Research, 2004, 69(3): 213-220.
    206闫常友,杨奇逊,刘万顺.基于提升格式的实时数据压缩和重构算法[J].中国电机工程学报. 2005, 25(9): 6-10.
    207常文革,宋千梁,甸农.重采样插值技术实现与应用[J].系统工程与电子技术. 2000, 22(5): 87-89
    208谢文龙.三次样条函数的构造方法[J].江南学院学报. 2000, 15(2): 90-93
    209侯云山,刘宏兵.一种约束三次样条函数的构造方法及应用[J].信阳师范学院学报. 2004, 17(4): 403-405
    210 Oppenheim A V, Schafer R W. Discrete-Time Signal Processing[M]. Prentice-Hall, 1989: 311-312.
    211曹孝宁,吴华仁,龙可微,李晓慧.锁相环同步采样技术在电网数据采集中的应用[J].电力自动化设备. 1996, 4: 58-60
    212杜广宇,陈小桥,万中田.锁相倍频和准同步采样法在谐波测量中的应用[J].武汉大学学报. 2001, 34(5): 39-44
    213李根,庞浩,徐建飞,等.一种基于改进锁相环的谐波分析逻辑电路[J].电力系统自动化. 2007, 31(21): 82-85.
    214周军,李孝文,盛艳.双速率同步采样法在电力系统谐波测量中的应用[J].计量学报. 1999, 20(2): 151-154
    215蔡菲娜,左伍衡.改进的双速率同步采样法及其傅里叶变换[J].浙江大学学报. 2005, 39(3): 414-417
    216黄纯,彭建春,刘光晔,江亚群.周期电气信号测量中软件同步采样方法的研究[J].电工技术学报. 2004, 19(1): 75-79
    217黄纯,何怡刚,江亚群,彭建春.交流采样同步方法的分析与改进[J].中国电机工程学报. 2002, 22(9): 38-42
    218门长有,王荣华,谭年熊.一种用于谐波测量的全数字同步采样算法[J].电力系统自动化. 2008, 32(22): 83-86
    219胡虔生,马宏忠.非正弦周期信号测量同步误差研究[J].中国电机工程学报. 2000, 20(9): 35-40
    220马宏忠,胡虔生.软件实现同步采样的误差分析[J].电工技术学报. 1996, 11(1): 43-47
    221 Shinagawa M, Akazawa Y, Wakimoto T. Jitter analysis of high-speed sampling systems[J]. IEEE Journal of Solid-State Circuits, 1990, 25(1): 220-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700