分离流动的电磁力主动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动流动控制是控制科学和流体力学交叉所产生的一个新的研究领域。主动流动控制通过向流场注入可控的能量,可抑制流动分离和转捩、提高流动稳定性,达到减少航行器在流体中的阻力、减少压力脉动、降低辐射噪声等效果。与被动控制方式相比,主动流动控制具有更高的效率和鲁棒性,因而具有广阔的应用前景,但也面临着更加复杂的理论和实际应用问题。
     利用海水的弱导电性,通过电磁力来改变局部流场,是一种新兴的主动流动控制方式。本文以电磁力作用下圆柱绕流和大功角翼型绕流两种分离流动为控制对象,研究了有关的模型降阶、控制器设计和分析问题。
     一般主动流动控制分为基于模型和不依赖模型两类方式,本文对两类控制方式都进行了研究。首先,在模型降阶研究中,利用有限体积法得到的流场分析数据,基于快照式本征正交分解和Galerkin投影方法,建立了电磁力作用下圆柱绕流的降阶模型,并利用改进的粒子群优化算法进行模型参数的校准,提高了降阶模型的精度。在降阶模型的基础上,应用非线性系统的耗散性理论设计了控制器。利用POD分解证明了当圆柱绕流处于稳定的振荡状态时,圆柱所受升力的频率与流场中任一点速.度振荡的频率相同,因此可以利用升力的测量信号来估计流场的状态。该控制器以布置在圆柱表面的电极和磁极作为作动器,将升力作为传感器反馈信号。通过改变圆柱壁面上的电极电压来耗散尾流中的脉动能量,设计的控制器能有效地减少圆柱绕流的振荡幅度。
     其次,在不依赖于模型的主动流动控制策略研究中,提出了基于粒子群优化的极值搜索控制算法(PSOESC)。该算法可通过在线测量和寻优,使得控制器工作在最佳状态附近;为提高该算法的实用性,针对粒子群优化的随机性、群体性特点,提出状态序列的重排算法,以减少控制过程中的振荡和增益过大现象;还针对粒子群优化和分离流动的极限环振荡周期性特点,提出了PSOESC加速收敛算法。
     最后,利用随机差分方程理论分析了PSOESC在噪声环境中的稳定性,给出了测量噪声干扰下保证粒子群优化算法收敛的充分条件,并分析了目标函数性态和噪声强度对寻优精度的影响。证明了有界测量噪声干扰的作用下标准PSO算法产生的序列所满足的动态方程的稳定性判据与无干扰时的一致。当标准PSO的参数满足条件时,噪声不会影响标准PSO算法是否收敛。该结论也可推广到时变参数PSO算法中去。但是,噪声会影响标准PSO寻优的准确性,即在噪声干扰下,PSO将只是收敛到真最优值的附近,其误差限的大小与目标函数的性态和噪声的强度有关。
     数值分析和模型实验表明,本文提出的两种主动流动控制策略均可达到较好的控制效果。采用闭环控制可提高主动流动控制的效率,减少功率消耗、电化学腐蚀等不利影响。利用提出的模型降阶方法得到的电磁力作用下分离流动的低阶模型,可精确地描述流动的主要特征,并且具有较高的鲁棒性;基于低阶模型设计的控制策略可有效地抑制流动分离,从而减少圆柱绕流所产生的横向振荡力和阻力,或提高翼型的升阻比。提出的不依赖于模型的PSOESC控制策略可以得到相近的控制效果,并且鲁棒性更好。
Active flow control (AFC) is a new, interdisciplinary study area that crosses control sci-ence and fluid mechanics. By injecting energy into the flow, AFC can control the separation and transition, and reduce the drags of vehicles by improving the flow stability, or reduce the pressure fluctuations, or reduce the radiation noises and other effects. Compared with the passive control, active flow control is more efficient and robust, and thus has broad ap-plication prospects. However, AFC also faces with more complex theocratical and practical problems than passive flow control.
     Applying electromagnetic force to to change the local flow field of weak electrical conductivity media, is a new active flow control approach. In this dissertation, two separated flow pattern, cylinder wake and high-attack-angle hydrofoil, controlled by the Lorentz force are studied. To fill the gap between theory and engineering, the model reduction, controller design and analysis issues are studied.
     Active flow control can be classified into two types, model-based and model-independent. Both types of AFC are studied in this dissertation. First, the model reduction study, obtained using the finite volume method of data flow analysis, based on the snapshot-style proper orthogonal decomposition and Galerkin projection method, the electromagnetic force was established under the reduced-order model for flow around a cylinder. We apply the improved particle swarm optimization algorithm for model parameter calibration, to improve the accuracy of the model reduction. Based on the reduced order model, and by applying nonlinear system theory, a dissipative controller is designed.
     Second, in the study of the model-independent control method, we propose a novel swarm-intelligent based control algorithm-particle swarm optimisation based extremum seeking control algorithm (PSOESC). The proposed PSOESC algorithm can steer the sys-tem state to the vicinity of the best point through online measurement and optimization. Furthermore, to enhance the practicality of the algorithm, we propose a state sequence re-arrangements algorithm to handle the random, swarm characteristics of the PSO. In the proposed algorithm, the control process is smoothed by reshuffle-then-insertion procedure to reduce the oscillation and to avoid large control gains. We also propose an accelerat-ing algorithm for PSOESC to accelerate the convergence rate of PSOESC for limit cycle control, by employing the periodical nature of the limit cycle and the characteristics of PSO.
     Finally, we conduct a theoretical analysis of the stability of PSOESC in a noisy environ- ment by stochastic differential equations theory. Sufficient condition is given to guarantee the convergence of PSO in noisy environment. We also analyse the influence of the objective function and the noise intensity on the optimisation accuracy.
     Numerical analysis and model experiments show that the proposed control strategies of the two studied active flow control method can both achieve better results than literatures. Closed-loop control can improve the efficiency and reduce the electrochemical corrosion. Using the proposed model reduction method, the flow separations are controlled by the electromagnetic force. The obtained reduced order model can accurately describe the main flow characteristics, and has high robustness. The control law designed based on the reduced order model can effectively reduce the flow separation, thereby reducing the resulting flow around a cylinder oscillating transverse force and resistance, or increase the airfoil lift-drag ratio. The proposed PSOESC can obtain similar results, but more robust.
引文
[1]Collis S S, Joslin R D, Seifert A, et al. Issues in active flow control:theory, control, simulation, and experiment. Progress in Aerospace Sciences,2004,40(4-5):237-289.
    [2]Karniadakis G E, Choi K S. Mechanisms on transverse motions in turbulent wall flows. Annual Review of Fluid Mechanics,2003,35:45-62.
    [3]Bewley T R, Protas B. Skin friction and pressure:the "footprints" of turbulence. Physica D-Nonlinear Phenomena,2004,196(1-2):28-44.
    [4]Bagheri S, Henningson D S, Hoepffner J, et al. Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows. Applied Mechanics Reviews,2009,62(2):27.
    [5]Bagheri S, Brandt L, Henningson D S. Input-output analysis, model reduction and control of the flat-plate boundary layer. Journal of Fluid Mechanics,2009,620:263-298.
    [6]Norberg C. Fluctuating lift on a circular cylinder:review and new measurements. Journal of Fluids and Structures,2003,17(1):57-96.
    [7]Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures,2004,19(4):389-447.
    [8]Cattafesta L N, Song Q, Williams D R, et al. Active control of flow-induced cavity oscillations. Progress in Aerospace Sciences,2008,44(7-8):479-502.
    [9]Choi H, Jeon W P, Kim J. Control of flow over a bluff body. Annual Review of Fluid Mechanics, 2008,40:113-139.
    [10]Landau L D, Lifshtz E M. Fluid Mechanics (English Version),2nd Ed. Butterworth Heinemann, 1987.
    [11]Chang Y, Collis S S, Ramakrishnan S. Viscous effects in control of near-wall turbulence. Physics of Fluids,2002,14(11):4069-4080.
    [12]Protas B. Vortex dynamics models in flow control problems. Nonlinearity,2008,21(9):R203-R250.
    [13]Caraballo E, Little J, Debiasi M, et al. Development and implementation of an experimental-based reduced-order model for feedback control of subsonic cavity flows. Journal of Fluids Engineering-Transactions of the Asme,2007,129(7):813-824.
    [14]Gloerfelt X. Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity. Physics of Fluids,2008,20(11).
    [15]Bergmann M, Cordier L, Brancher J P. Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Physics of Fluids,2005,17(9):21.
    [16]Yuan X. Model-based feedback control of subsonic cavity flows-control design:[PhD Disserta-tion]. Ohio State University,2006.
    [17]Tadmor G, Noack B R, Morzynski M. Control Oriented Models & Feedback Design in Fluid Flow Systems:A Review. in:Proceedings of Control and Automation,2006. MED'06.14th Mediterranean Conference on,2006,1-12.
    [18]Bergmann M, Bruneau C H, Iollo A. Enablers for robust POD models. Journal of Computational Physics,2009,228(2):516-538.
    [19]Kasnakoglu C, Serrani A, Efe M O. Control input separation by actuation mode expansion for flow control problems. International Journal of Control,2008,81(9):1475-1492.
    [20]Caraballo E, Kasnakoglu C, Serrani A, et al. Control input separation methods for reduced-order model-based feedback flow control. Aiaa Journal,2008,46(9):2306-2322.
    [21]Noack B R, Afanasiev K, Morzynski M, et al. A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. Journal of Fluid Mechanics,2003,497:335-363.
    [22]Tadmor G, Lehmann O, Noack B R, et al. Mean field representation of the natural and actuated cylinder wake. Physics of Fluids,2010,22(3):034102.
    [23]Milano M, Koumoutsakos P. Neural network modeling for near wall turbulent flow. Journal of Computational Physics,2002,182(1):1-26.
    [24]Bewley T R. Flow control:new challenges for a new Renaissance. Progress in Aerospace Sciences, 2001,37(1):21-58.
    [25]Bewley T. Linear control and estimation of nonlinear chaotic convection:harnessing the butterfly effect. Physics of fluids,1999,11:1169.
    [26]Amonlirdviman K, Breuer K S. Linear predictive filtering in a numerically simulated turbulent flow. Physics of Fluids,2000,12(12):3221-3228.
    [27]Hogberg M, Bewley T R, Henningson D S. Linear feedback control and estimation of transition in plane channel flow. Journal of Fluid Mechanics,2003,481:149-175.
    [28]Lim J, Kim J. A singular value analysis of boundary layer control. Physics of Fluids,2004, 16(6):1980-1988.
    [29]Lauga E, Bewley T R. Performance of a linear robust control strategy on a nonlinear model of spatially developing flows. Journal of Fluid Mechanics,2004,512:343-374.
    [30]Kim J, Bewley T R. A linear systems approach to flow control. Annual Review of Fluid Mechanics, 2007,39:383-417.
    [31]Bewley T R, Liu S. Optimal and robust control and estimation of linear paths to transition. Journal of Fluid Mechanics,1998,365:305-349.
    [32]Bewley T R, Teman R, Ziane M. A general framework for robust control in fluid mechanics. Physica D-Nonlinear Phenomena,2000,138(3-4):360-392.
    [33]Protas B, Styczek A. Optimal rotary control of the cylinder wake in the laminar regime. Physics of Fluids,2002,14(7):2073-2087.
    [34]Burns J A, King B B, Krueger D, et al. Computation of feedback operators for distributed param-eter systems with non-normal linearizations. in:Proceedings of American Control Conference, 2003. Proceedings of the 2003,2003,2083-2088 vol.3.
    [35]Hintermuller M, Kunisch T K, Spasov Y, et al. Dynamical systems-based optimal control of incompressible fluids. International Journal for Numerical Methods in Fluids,2004,46(4):345-359.
    [36]Medjo T T, Tebou L R T. Adjoint-based iterative method for robust control problems in fluid mechanics. Siam Journal on Numerical Analysis,2004,42(1):302-325.
    [37]Rowley C W, Juttijudata V, IEEE. Model-based control and estimation of cavity flow oscillations. in:Proceedings of 2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, IEEE Conference on Decision and Control-Proceedings, pages 512-517. 2005.
    [38]Mcdjo T T, Temam R, Zianc M. Optimal and robust control of fluid flows:Some theoretical and computational aspects. Applied Mechanics Reviews,2008,61(1).
    [39]Smyshlyaev A, Krstic M. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Transactions on Automatic Control,2004,49(12):2185-2202.
    [40]Schuster E, Luo L X, Krstic M. MHD channel flow control in 2D:Mixing enhancement by boundary feedback. Automatica,2008,44(10):2498-2507.
    [41]Vazquez R, Schuster E, Krstic M. A Closed-Form Full-State Feedback Controller for Stabilization of 3D Magnetohydrodynamic Channel Flow. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme,2009,131 (4):10.
    [42]Tadmor G, Noack B R, Dillmann A, et al. Control, observation and energy regulation of wake flow instabilities. in:Proceedings of Decision and Control,2003. Proceedings.42nd IEEE Conference on,2003,2334-2339 Vol.3.
    [43]Tadmor G. Observers and feedback control for a rotating vortex pair. IEEE Transactions on Control Systems Technology,2004,12(1):36-51.
    [44]Tadmor G, Noack B R. Dynamic estimation for reduced Galerkin models of fluid flows. in: Proceedings of Proceedings of the American Control Conference,2004,746-751 vol.1.
    [45]Luchtenburg D, Aleksic K, Schlegel M, et al. Turbulence control based on reduced-order models and nonlinear control design. Active Flow Control Ⅱ,2010, pages 341-356.
    [46]Becker R, King R, Pctz R, et al. Adaptive closed-loop separation controlon a high-lift configuration using extremum seeking. Aiaa Journal,2007,45(6):1382-1392.
    [47]Kim K, Kasnakoglu C, Serrani A, et al. Extremum-Seeking Control of Subsonic Cavity Flow. AIAA Journal,2009,47(1):195-205.
    [48]Beaudoin J F, Cadot O, Aider J L, et al. Bluff-body drag reduction by extremum-seeking control. Journal of Fluids and Structures,2006,22(6-7):973-978.
    [49]Henning L, Becker R, Feuerbach G, et al. Extensions of adaptive slope-seeking for active flow control. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Control Engineering,2008,222(5):309-322.
    [50]Kim S J, Lee C M. Control of flows around a circular cylinder:suppression of oscillatory lift force. Fluid Dynamics Research,2001,29(1):47-63.
    [51]Meunier M. Simulation and Optimization of Flow Control Strategies for Novel High-Lift Config-urations. Amer Inst Aeronaut Astronaut,2009,1145-1157.
    [52]Weller J, Camarri S, Iollo A. Feedback control by low-order modelling of the laminar flow past a bluff body. Journal of Fluid Mechanics,2009,634:405-418.
    [53]Yuan X, Caraballo E, Little J, et al. Feedback Control Design for Subsonic Cavity Flows. Applied and Computational Mathematics,2009,8(1):70-91.
    [54]Itoh M, Tamano S, Yokota K, et al. Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. Journal of Turbulence,2006,7(27):1-17.
    [55]Konstantinidis E, Balabani S. Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. Journal of Fluids and Structures,2007,23(7):1047-1063.
    [56]Lee C, Hong G, Ha Q, et al. A piezoeleetrically actuated micro synthetic jet for active flow control. Sensors and Actuators A:Physical,2003,108(1-3):168-174.
    [57]Pernod P, Preobrazhensky V, Merlen A, et al. MEMS magneto-mechanical microvalves (MMMS) for aerodynamic active flow control. Journal of Magnetism and Magnetic Materials,2010,322(9-12):1642-1646.
    [58]Yoshino T, Suzuki Y, Kasagi N. Drag reduction of turbulence air channel flow with distributed micro sensors and actuators. Journal of Fluid Science and Technology,2008,3(1):137-148.
    [59]Kasagi N, Suzuki Y, Fukagata K. Microelectromechanical Systems-Based Feedback Control of Turbulence for Skin Friction Reduction. Annual Review of Fluid Mechanics,2009,41:231-251.
    [60]Monokrousos A, Brandt L, Schlatter P, et al. DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence. Elsevier Science Inc,2008,841-855.
    [61]Cohen K, Siegel S,McLaughlin T, et al. Closed-loop approaches to control of a wake flow modeled by the Ginzburg-Landau equation. Computers & Fluids,2005,34(8):927-949.
    [62]Roussopoulos K, Monkewitz P A. Nonlinear modelling of vortex shedding control in cylinder wakes. Physica D:Nonlinear Phenomena,1996,97(1-3):264-273.
    [63]Rumsey C L. Successes and Challenges for Flow Control Simulations. International Journal of Flow Control,2009,1:1-27.
    [64]Weier T, Cierpka C, Gerbeth G. Coherent structure eduction from PIV data of an electromagneti-cally forced separated flow. Journal of Fluids and Structures,2008,24(8):1339-1348.
    [65]Weier T, Shatrov V, Gerbeth G. Flow control and propulsion in weak conductors. in:Molokov S, Moreau R, Moffatt H K, editors, Proceedings of Magnetohydrodynamics-Historical Evolution and Trends, Dordrecht:Springer,2007,295-312.
    [66]Weier T, Gerbeth G. Control of separated flows by time periodic Lorentz forces. European Journal of Mechanics B-Fluids,2004,23(6):835-849.
    [67]Henoch C, Stace J. Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force. Physics of Fluids,1995,7:1371.
    [68]Meir A J, Schmidt P G. Analysis And Finite Element Simulation Of Mhd Flows, With An Appli-cation To Seawater Drag Reduction. in:Proceedings of in:Proceedings, International Symposium on Seawater Drag Reduction,1998,401-406.
    [69]Weier T, Gerbeth G, Mutschke G, et al. Experiments on cylinder wake stabilization in an elec-trolyte solution by means of electromagnetic forces localized on the cylinder surface. Experimental Thermal and Fluid Science,1998,16(1-2):84-91.
    [70]Weier T, Fey G, Mutschke G, et al. Boundary Layer Control by Means of Wall Parallel Lorentz Forces. Magnetohydrodynamics,2001,37(1/2):177-186.
    [71]张辉,范宝春,陈志华,et al电磁场中圆柱绕流的开环和优化控制.科学通报,2008,53(009):1026-1031.
    [72]Berger T W, Kim J, Lee C, et al. Turbulent boundary layer control utilizing the Lorentz force. Physics of Fluids,2000,12(3):631-649.
    [73]Du Y, Karniadakis G E. Suppressing Wall Turbulence by Means of a Transverse Traveling Wave. Science,2000,288(5469):1230-1234.
    [74]Du Y Q, Symeonidis V, Karniadakis G E. Drag reduction in wall-bounded turbulence via a trans-verse travelling wave. Journal of Fluid Mechanics,2002,457:1-34.
    [75]Qin T, Gao P, Liu N S, et al. Turbulent boundary layer control via a streamwise travelling wave induced by an external force. Chinese Physics Letters,2008,25(10):3700-3703.
    [76]O'Sullivan P L, Biringen S. Numerical experiments on feedback EMHD control of large scale coherent structures in channel turbulence. Acta Mechanica,2001,152(1-4):9-17.
    [77]Thibault J P, Rossi L. Electromagnetic flow control:characteristic numbers and flow regimes of a wall-normal actuator. Journal of Physics D:Applied Physics,2003, (20):2559.
    [78]Debbagh K, Cathalifaud P, Airiau C. Optimal and robust control of small disturbances in a channel flow with a normal magnetic field. Physics of Fluids,2007,19(1):14.
    [79]Breuer K S, Park J, Henoch C. Actuation and control of a turbulent channel flow using Lorentz forces. Physics of Fluids,2004,16(4):897-907.
    [80]Pang J G, Choi K S. Turbulent drag reduction by Lorentz force oscillation. Physics of Fluids, 2004,16(5):L35-L38.
    [81]Pantokratoras A, Magyari E. EMHD free-convection boundary-layer flow from a Riga-plate. Jour-nal of Engineering Mathematics,2009,64(3):303-315.
    [82]Chen Z, Aubry N. Active control of cylinder wake. Communications in Nonlinear Science and Numerical Simulation,2005,10(2):205-216.
    [83]周本谋,范宝春,陈志华,et al流体边界层上电磁力的控制效应研究.力学学报,2004,36(004):472-478.
    [84]张辉,范宝春,陈志华,et al. Lorentz力对弱导电流体中圆柱受力的影响.水动力学研究与进展:A辑,2007,22(006):766-773.
    [85]Chen Z, Aubry N. Closed-loop control of vortex-induced vibration. Communications in Nonlinear Science and Numerical Simulation,2005,10(3):287-297.
    [86]Chen Y H, Fan B C, Chen Z H, et al. Flow pattern and lift evolution of hydrofoil with control of electro-magnetic forces. Science in China Series G-Physics Mechanics & Astronomy,2009, 52(9):1364-1374.
    [87]Chen Y H, Fan B C, Chen Z H, et al. Influences of Lorentz force on the hydrofoil lift. Acta Mechanica Sinica,2009,25(5):589-595.
    [88]Dattarajan S, Johari H. Control of a separating boundary layer with Lorentz force actuators. Physics of Fluids,2008,20(4):15.
    [89]Cierpka C, Weier T, Gerbeth G. Evolution of vortex structures in an electromagnetically excited separated flow. Experiments in Fluids,2008,45(5):943-953.
    [90]Posdziech O, Grundmann R. Electromagnetic control of seawater flow around circular cylinders. European Journal of Mechanics-B/Fluids,2001,20(2):255-274.
    [91]Shatrov V, Gerbeth G. Electromagnetic flow control leading to a strong drag reduction of a sphere. Fluid Dynamics Research,2005,36(3):153-173.
    [92]Corke T, Mertz B, Patel M. Plasma flow control optimized airfoil. AIAA paper,2006,1208:2006.
    [93]Utkin Y, Keshav S, Kim J, et al. Development and use of localized arc filament plasma actuators for high-speed flow control. Journal of Physics D:Applied Physics,2007,40:685.
    [94]Shatrov V, Gerbeth G. Magnetohydrodynamic drag reduction and its efficiency. Physics of Fluids, 2007,19(3):12.
    [95]Spong E, Reizes J A, Lconardi E. Efficiency improvements of electromagnetic flow control. In-ternational Journal of Heat and Fluid Flow,2005,26(4):635-655.
    [96]Albrecht T, Aetzkes H, Grundmann R, et al. Tollmien-Schlichting Wave Dampling by a Stream-wise oscillating Lorentz Force. Magnetohydrodynamics,2008,44(3):205-222.
    [97]Bandyopadhyay P R, Castano J M, Thivierge D P. Experiments on three-dimensional wall-layer scale Lorentz actuators in high-Reynolds-number axisymmetric turbulent boundary layers. Physics of Fluids,2008,20(3):14.
    [98]Ravindran S S. Real-time computational algorithm for optimal control of an MHD flow system. Siam Journal on Scientific Computing,2005,26(4):1369-1388.
    [99]Smyshlyaev A, Krstic M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters,2005,54(7):613-625.
    [100]Xu C, Schuster E, Vazquez R, et al. Stabilization of linearized 2D magnetohydrodynamic channel flow by backstepping boundary control. Systems & Control Letters,2008,57(10):805-812.
    [101]Zhang H, Fan B c, Chen Z h. Optimal control of cylinder wake flow by electro-magnetic force based on adjoint flow field. European Journal of Mechanics-B/Fluids,2010,29(l):53-60.
    [102]Zhang H, Fan B C, Chen Z H, et al. Open-loop and optimal control of cylinder wake via electro-magnetic fields. Chinese Science Bulletin,2008,53(19):2946-2952.
    [103]陈耀慧,范宝春,陈志华,et al电磁力控制下的翼型绕流和升力.中国科学:G辑,2009,39(8):1141-1150.
    [104]Luo L, Schuster E. Mixing enhancement in 2D magnetohydrodynamic channel flow by extremum seeking boundary control. in:Proceedings of American Control Conference,2009. ACC'09., 2009,1530-1535.
    [105]Luo L, Schuster E. Boundary feedback control for heat exchange enhancement in 2D magnetohy-drodynamic channel flow by extremum seeking. in:Proceedings of Decision and Control,2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on. IEEE,2010,8272-8277.
    [106]Wesseling P. Principles of Computational Fluid Dynamics. Springer-Verlag Berlin Heidelberg, 2001.
    [107]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.清华大学出版社,2008.
    [108]Eberhart R, Kennedy J. A new optimizer using particle swarm theory. in:Proceedings of Micro Machine and Human Science,1995. MHS'95., Proceedings of the Sixth International Symposium on,1995,39-43.
    [109]Kennedy J, Eberhart R. Particle swarm optimization. in:Proceedings of Neural Networks,1995. Proceedings., IEEE International Conference on. IEEE Press,1995,1942-1948.
    [110]Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior. in: Proceedings of Congress on Evolutionary Computation. IEEE Press,2004.
    [111]Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimen-sional complex space. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [112]Fang W, Sun J, Ding Y, et al. A Review of Quantum-behaved Particle Optimization. IETE Tech-nical Review,2010,27(4):336-348.
    [113]蒋耀林.模型降阶方法.科学出版社,2010.
    [114]Kasnakoglu C, Camphouse R C, Serrani A. Reduced-Order Model-Based Feedback Control of Flow Over an Obstacle Using Center Manifold Methods. Journal of Dynamic Systems Measure-ment and Control-Transactions of the Asme,2009,131(1).
    [115]Bewley T R. A fundamental limit on the balance of power in a transpiration-controlled channel flow. Journal of Fluid Mechanics,2009,632:443-446.
    [116]Cordier L, Bergmann M. Proper orthogonal decomposition:an overview. Lecture series of von Karman Institute of Fluid Dynamics,2003,4.
    [117]Theodoridis S, Koutroumbas K. Pattern Recognition (4th Edition). Elsevier,2009.
    [118]Marzouk O. Simulation, modeling, and characterization of the wakes of fixed and moving cylin-ders:[PhD Dissertation].2009.
    [119]Mathclin L, Le Maitre O P. Robust control of uncertain cylinder wake flows based on robust reduced order models. Computers & Fluids,2009,38(6):1168-1182.
    [120]Agudelo O, Baes M, Espinosa J, et al. Positive Polynomial Constraints for POD-based Model Predictive Controllers. IEEE Transactions on Automatic Control,2009,54(5):988-999.
    [121]Noack B, Papas P, Monkewitz P. The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech.,2005,523:339-365.
    [122]Morzynsxi M, Noack B R, Tadmor G. Global flow stability analysis and reduced order modeling for bluff-body flow control. Journal of Theoretical and Applied Mechanics,2007,45(3):621-642.
    [123]Gerhard J, Pastoor M, King R, et al. Model-based control of vortex shedding using low-dimensional Galerkin models. AIAA Paper 2003-4262,2003.
    [124]Siegel S G, Seidel J, Fagley C, et al. Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. Journal of Fluid Mechanics,2008,610:1-42.
    [125]Lehmann O, Luchtenburg M, Noack B R, et al. Wake stabilization using POD Galerkin models with interpolated modes. in:Proceedings of Decision and Control,2005 and 2005 European Control Conference. CDC-ECC'05.44th IEEE Conference on,2005,500-505.
    [126]Luchtenburg D, Noack B, Schlegel M. An introduction to the POD Galerkin method for fluid fows with analytical examples and MATLAB source codes. Technical report, Berlin Institute of Technology MB1, Berlin, Germany,2009.
    [127]Tadmor G, Noack B R, Morzinski M, et al. Low-Dimensional Models For Feedback Flow Control. Part II:Control Design and Dynamic Estimation. in:Proceedings of 2nd AIAA Flow Control Conference, June 28-July 1,2004, Portland, OR, USA,2004.
    [128]Protas B.; Wesfreid J E. On the relation betwwen the global modes and the spectra of drag and lift in periodic wake flows. Mechanique,2003,331:49-54.
    [129]Krstic M, Wang H H. Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica,2000,36(4):595-601.
    [130]Zhong Z d, Huo H b, Zhu X j, et al. Adaptive maximum power point tracking control of fuel cell power plants. J. Power Sources,2008,176(1):259-269.
    [131]Hudon N, Guay M, Perrier M, et al. Adaptive extremum-seeking control of convection-reaction distributed reactor with limited actuation. Comput. Chem. Eng.,2008,32(12):2994-3001.
    [132]Dower P M, Farrell P M, Nesic D. Extremum Seeking Control of Cascaded Raman Optical Am-plifiers. IEEE Transactions on Control System Technology,2008,16(3):396-407.
    [133]Zhang C, Ordonez R. Numerical Optimization-Based Extremum Seeking Control With Applica-tion to ABS Design. IEEE Transactions on Automatic Control,2007,52(3):454-467.
    [134]Li Y Y, Rotea M A, Chiu G T C, et al. Extremum seeking control of a tunable thermoacoustic cooler. IEEE Transactions on Control System Technology,2005,13(4):527-536.
    [135]Liu S J, Krstic M. Stochastic averaging in continuous time and its applications to extremum seeking. IEEE Transactions on Automatic Control,2010,55(10):2235-2250.
    [136]Killingsworth N, Krstic M. PID tuning using extremum seeking:online, model-free performance optimization. IEEE Contr. Syst. Mag.,2006,26(l):70-79.
    [137]Guay M, Zhang T. Adaptive extremum seeking control of nonlinear dynamic systems with para-metric uncertainties. Automatica,2003,39(7):1283-1293.
    [138]Wang H H, M. K. Extremum Seeking for Limit Cycle Minimization. IEEE Transactions on Automatic Control,2000,45(12):2432-2437.
    [139]K. T, Rowley C. Feedback Control of High-Lift State for a Low-Aspect-Ration Wing. in:Proceed-ings of 48th AIAA Aerospace Science Meeting, Orlando, Florida, Jan.,2010, AIAA,2010-357.
    [140]Liu S J, Krstic M. Stochastic source seeking for nonholonomic unicycle. Automatica,2010, 46:1443-1453.
    [141]Meneses A A d M, Machado M D, Schirru R. Particle Swarm Optimization applied to the nuclear reload problem of a Pressurized Water Reactor. Progress in Nuclear Energy,2009,51(2):319-326.
    [142]Luitel B, Venayagamoorthy G K. Particle swarm optimization with quantum infusion for system identification. Engineering Applications of Artificial Intelligence,2010,23(5):635-649.
    [143]Shayeghi H, Shayanfar H, Jalilzadeh S, et al. Tuning of damping controller for UPFC using quantum particle swarm optimizer. Energy Conversion and Management,2010,51(11):2299-2306.
    [144]Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters,2007,102(1):8-16.
    [145]Bergh F, Engelbrecht A P. A new locally convergent particle swarm optimiser. in:Proceedings of Systems, Man and Cybernetics,2002 IEEE International Conference on,2002,6 pp. vol.3.
    [146]Xin C, Yangmin L. A Modified PSO Structure Resulting in High Exploration Ability With Con-vergence Guaranteed. IEEE J. SMCB,2007,37(5):1271-1289.
    [147]高浩,冷文浩,须文波.一种全局收敛的PSO算法及其收敛性分析.控制与决策,2009,24(2):196-201.
    [148]Zhang C, Ordonez R. Robust and adaptive design of numerical optimization-based extremum seeking control. Automatica,2009,45(3):634-646.
    [149]Khalil H. Nonlinear systems (3rd ed.). Englewood Cliffs, New Jersey:Prentice-Hall,2002.
    [150]S. Kabadi A P, editor. The Bottleneck TSP. The Traveling Salesman Problem and Its Variation. Netherlands:Kluwer Acadamic Publishers,2002.
    [151]Nichols J W, Schmid P J, Riley J J. Selfsustained oscillations in variable-density round jets. Journal of Fl,2007,582(6):341-376.
    [152]Barbagallo A, Sipp D, Schmid P J. Closed-loop control of an open cavity flow using reduced-order models. Journal of Fluid Mechanics,2009,641:1-50.
    [153]Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders. Journal of Sound and Vibration,2005,282(3-5):575-616.
    [154]Mittal S, Singh S P, Kumar B, et al. Flow past bluff bodies:effect of blockage. Taylor & Francis Ltd,2006,163-173.
    [155]Morse T L, Williamson C H K. Fluid forcing, wake modes, and transitions for a cylinder under-going controlled oscillations. Journal of Fluids and Structures,2009,25(4):697-712.
    [156]Yigit F. Active control of flow-induced vibrations via feedback decoupling. Journal of Vibration and Control,2008,14(4):591-608.
    [157]Teel A, Popovic D. Solving smooth and nonsmooth multivariable extremum seeking problem by the methods of nonlinear programming. in:Proceedings of Proceedings of the American Control Conference, Arlington, VA:AACC, June,2001,2394-2399.
    [158]Rapaic M R, Kanovic Z. Time-varying PSO-convergence analysis, convergence-related pa-rameterization and new parameter adjustment schemes. Information Processing Letters,2009, 109(11):548-552.
    [159]Wang D, Zhou S, Yu J. The existence of closed trjectory in the Van der Pol oscillator. in:Pro-ceedings of IEEE International Conference on Communications, Circuits and System,2002,1629-1635.
    [160]Parsopoulos K E, Vrahatis M N. Particle Swarm Optimizer in Noisy and Continously Changing Enviroments. in:C. C, editor, Proceedings of Proceeding of the LASTED International Conference on Artificial Intelligence and Soft Computing. IASTED/ACTA Press,2001,289-294.
    [161]E.O,K.M C. Particle Swarm Optimization:Surfing the Waves. in:Proceedings of IEEE Congress on Evolutionary Computation (CEC 1999). IEEE Press, July,1999,1939-1944.
    [162]Bergh F. An analysis of particle swarm optimizers:[PhD Dissertation]. University of Prestoria, 2001.
    [163]Emara H M, Fattah A H. Continuous swarm optimization technique with stability analysis. in: Proceedings of Proceedings of American Control Conference, Cairo, Egypt,2004,2811-2817.
    [164]李宁,孙德宝,邹彤,et al基于差分方程的PSO算法粒子运动轨迹分析.计算机学报,2006,29(11):2052-2061.
    [165]金欣磊,马龙华,吴铁军,et al基于随机过程的PSO收敛性分析.自动化学报,2007,33(12):1263-1268.
    [166]潘峰,陈杰,甘明刚,et al粒子群优化算法模型分析.自动化学报,2006,32(2):368-377.
    [167]潘峰,陈杰,辛斌,et al粒子群优化方法若干特性分析.自动化学报,2009,35(7):1010-1016.
    [168]冯远静,俞立,冯祖仁.采样粒子群优化模型及其动力学行为模型.控制理论与应用,2009,26(1):28-34.
    [169]苏守宝,曹喜滨,孔敏.群活性与粒子群优化的稳定性分析.控制理论与应用,2010,27(10):1411-1417.
    [170]Chen Y, Jiang P. Analysis of particle interaction in particle swarm optimization. Theoretical Computer Science,2010,411(21):2101-2115.
    [171]Liu Y, Passino K M. Stable social foraging swarms in a noisy environment. IEEE Transactions on Automatic Control,2004,49(l):30-44.
    [172]Jin Y, Branke J. Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation,2005,9(3):303-317.
    [173]Arnold D, Beyer H. A general noise model and its effects on evolution strategy performance. IEEE Transactions on Evolutionary Computation,2006,10(4):380-391.
    [174]Zhan J L Y C H H. Adaptive Particle Swarm Optimization. IEEE Transactions on Systems, Man, and Cybernetics,2009,39(6):1362-1381.
    [175]Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006,10(3):281-295.
    [176]Sun T Y, Lin C L, Liu C C. Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer. IEEE Transactions on Evolutionary Computation, 2008,12(2):242-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700