超声速飞行器烧蚀与结构热耦合计算及气动伺服弹性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
学位论文的主要研究问题是超声速飞行器在气动加热条件下烧蚀防热层与三维结构的耦合热传导分析技术,以及气动-伺服-弹性耦合动力学建模和分析。结构振动引起非定常气动力,而气动力又将影响结构的运动。在热防护系统的保护下,飞行器结构由于气动加热所引起的结构变形与结构振动引起的变形相比非常有限,因此对非定常气动力的影响很小。结构小幅振动时对气动热的影响可以忽略不计,但是气动加热引起的结构升温会明显改变飞行器结构的固有频率和模态,在最为关心的动气动-弹性问题中,为了提高计算效率,计算往往在模态坐标下进行,因此必须考虑气动加热对结构固有频率和固有模态的影响。
     结构瞬态温度场随时间的变化导致飞行器结构动力学特性也随时间变化,使得结构成为时变系统,但是由于结构振动的周期远小于结构升温的特征时间,因此在较短时程内分析气动-弹性等结构动力学问题时可以凝固结构温度场。将结构近似地作为时不变系统加以分析,利用该时程内的平均温度场对飞行器结构进行热模态分析,进而利用热模态信息进行气动-弹性耦合系统建模。由此,可以将非定常气动力、气动加热和热防护、飞行器结构和伺服控制系统之间的多场耦合动力学问题,在具体求解的时候分解为两个独立的动力学问题来求解:1)烧蚀热防护-结构耦合传热分析;2)非定常气动力-伺服系统-飞行器结构耦合动力学分析。两者之间通过结构热模态分析串联起来。
     学位论文研究的主要内容包括:
     1)提出了一种将自行编制用于烧蚀防热层计算的程序与大型通用有限元程序相结合、解决气动加热作用下带有烧蚀热防热层的复杂飞行器结构的传热和温度场分析方法,并在工程中得到应用。首先针对碳化型烧蚀材料进行研究,根据其数学模型推导了用于求解移动边界传热问题的有限差分计算格式,并对移动边界问题的求解进行了验证。以超声速导弹为研究对象,为需要进行热防护的结构表面按结构表面单元加装一定厚度的防热层,编写程序实现两者之间的数据交换,并通过交替算法来实现两者在界面处的热流平衡和温度协调,最终实现烧蚀防热层-结构耦合传热及温度场分析,得到了烧蚀层的消耗情况和结构的升温情况。并对结构进行热模态计算,分析了结构升温引起的飞行器模态频率的变化。
     2)提出了一种面向耦合系统稳定性分析的统一的非定常气动力数学表达式,分别将结构振动引起的非定常气动力和伺服控制面偏转引起的控制力进行等效变换,将其表示成这种统一的数学形式,并通过引入辅助变量将这一形式的气动力模型转换成与结构动力学方程一致的二阶常微分的形式,作为结构质量、阻尼和刚度的附加项,便于在结构动力学框架下进行非定常气动力-伺服系统-弹性结构相互耦合情况下的动稳定性分析,即气动-伺服-弹性稳定性分析。首先以一大展弦比机翼颤振边界计算作为验证算例,气动力计算采用经典的Theodorsen模型,验证了这种方法的可行性;再以带伺服控制系统的超声速飞行器作为研究对象,气动力用当地流活塞理论计算。将伺服系统的传递函数做类似的等效变换,将控制面偏转引起的气动力同样用上述统一的气动力模型表示,建立了气动-伺服-弹性耦合的新模型实现在结构动力学框架内通过特征值求解来进行气动-伺服-弹性稳定性分析。给出了在不同马赫数和不同攻角下的超声速飞行器的伺服颤振边界。
The research of this thesis is focused on the heat transfer analysis of ablative thermal protection coupled with structure of the supersonic aircraft with the aerodynamic heating and the modeling and analysis of the aero-servo-elasticity. The vibration of the structure induces the unsteady aerodynamic force, and the aerodynamic force changes the structure deformation. Under the protection of the ablative system, the structure deformation of the aircraft caused by aerodynamic heating is much smaller than that caused by structure vibration, so it has little influence on the unsteady aerodynamic force. When the amplitude of structure vibration is small, the influence of it on aero-heating can be neglected, but the temperature rising caused by aerodynamics changes the natural frequencies and modal shapes of structure. In the analysis of dynamic aero-elasticity problem, the governing equations are always established in the modal coordinates, so the influence of the aero-heating on the natural frequencies and modal shapes cannot be ignored.
     The changing of the transient temperature field of the structure with time results that the structural dynamic characteristics also changes with time, which make the structure a time-varying system. It is known that the cycle of the structural vibration is much shorter than the characteristic time of the temperature changing of the structure, so the temperature field can be solidified when the time period of the structural dynamic analysis is short. The structure can be regarded as a time-invariant system approximatively, and the modal analysis with aero-heating can be carried out with the average temperature in that time period. Therefore, the multi-physics coupling dynamic problem considering unsteady aerodynamic force, aerodynamic heating&thermal protection, aircraft structure and servo control system can be divided into two individual dynamic problems:1) thermal protection-structure coupled heat transfer analysis; 2) unsteady aerodynamic force-servo-aircraft structure coupled dynamic analysis. Two problems are connected by modal analysis with aero-heating.
     The main work includes these following sections.
     1).The thesis presents a method which combines the ablative thermal protection program with commercial FEM program. It provides an approach that can handle heat transfer and temperature field analysis of complex aircraft with ablative thermal protection. The method has been used in some engineering applications. First, the finite difference schemes of the moving boundary heat transfer problem of ablative material are deduced, and the finite difference program is validated by a simple heat transfer problem. Taking a supersonic missile as the research object, the ablative layers are installed on the surface elements of the structure where need, computer programs have been designed to exchange the data between two programs. A alternate algorithm is used to ensure that interface temperature and heat flux can satisfy the thermal equilibrium condition. After the coupled analysis of ablative protection layer and structure, the temperature rising of the structure and consumption of the ablative material are gotten. The changing of structural natural frequencies are analyzed resulting from the temperature rising.
     2).An unsteady aerodynamic force expression is presented and used in the aero-servo-elasticity analysis of a supersonic aircraft. Using equivalent transformation to transform some general aerodynamic models into a uniform mathematical model. By introducing some instrumental variables, this kind of mathematical model can be converted into second order differential equations as the addition items of the mass, damping, and stiffness in structural dynamic equations. Through this transformation, the aero-servo-elasticity problem can be studied by the structural dynamic methods. Taking a high-aspect ratio wing as the research object, the aerodynamic force is calculated by Theodorsen model, and the critical velocity of flutter is obtained and the equivalent transformation of the aerodynamic force is validated. Taking a supersonic aircraft with servo control system as the research object, aeordynamic force are computed by local piston theory. Through the transformation of the transfer function, the control force induced by the deflection of the control surface is converted into that uniform expression. The new coupled model of aero-servo-elasticity is obtained and stability analysis is studied by the complex eigenvalues of the system. The servo-flutter boundaries of this supersonic aircraft with different Mach numbers and different angles of attack are calculated.
引文
[1]杨炳渊,史晓鸣,梁强.高超声速有翼导弹多场耦合动力学的研究和进展(下)[J].强度与环境,2008,35(6):55-62.
    [2]杨炳渊,史晓鸣,梁强.高超声速有翼导弹多场耦合动力学的研究和进展(上)[J].强度与环境,2008,35(5):55-63.
    [3]吴志刚,惠俊鹏,杨超.高超声速下翼面的热颤振工程分析[J].北京航空航天大学学报,2005,31(3):270-273.
    [4]张伟伟,夏巍,叶正寅.一种高超音速热气动弹性数值研究方法[J].工程力学,2006,23(2):41-46.
    [5]李增文,林立军,关世义.超声速全动翼面热颤振特性分析[J].战术导弹技术,2008,(5):36-39.
    [6]何煦虹,古雨田.国外高超声速飞行器气动弹性和气动热弹性概述[J].飞航导弹,2010,(09):45-51.
    [7]姜贵庆,刘连元.高速气流传热与烧蚀热防护[M].北京:国防工业出版社,2003.
    [8]张志成.高超声速气动热和热防护[M].北京:国防工业出版社,2003.
    [9]孙兆虎.高超声速飞行器结构热问题讨论[J].航空科学技术,2008,(3):13-16.
    [10]杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展[J].应用数学和力学,2008,29(1):47-56.
    [11]范真祥,程海峰,张长瑞等.热防护材料的研究进展[J].材料导报,2005,19(1):13-16.
    [12]洪长青,张幸红,韩杰才等.热防护用发汗冷却技术的研究进展(Ⅰ)--冷却方式分类、发汗冷却材料及其基本理论模型[J].宇航材料工艺,2005,35(6):7-12.
    [13]宋学智.酚醛树脂烧蚀性能研究进展[J].工程塑料应用,2003,31(7):69-71.
    [14]尹健,张红波,熊翔.C/C复合材料烧蚀性能的研究进展[J].粉末冶金材料 科学与工程,2004,9(1):54-59.
    [15]刘亮,冯志海,郑斌等.氨酚醛树脂投料比与其热解性能、烧蚀性能的关系[J].宇航材料工艺,2009,39(1):93-96.
    [16]尹健,熊翔,张红波.炭纤维增强树脂炭复合材料的烧蚀性能[J].粉末冶金材料科学与工程,2003,8(4):358-362.
    [17]王百亚,王秀云,张炜.碳纤维复合材料壳体用环氧改性有机硅涂料的研制[J].宇航材料工艺,2007,37(1):28-31.
    [18]肖永栋,徐戈,全文华.低密度烧蚀防热材料的工艺性能研究[J].玻璃钢/复合材料,2005,(1):31-32.
    [19]Farhan S, LI K-z, GUO L-j. Effect of density and fibre orientation on the ablation behaviour of carbon-carbon composites[J]. New Carbon Materials,2010, 25(3):161-167.
    [20]Yin J, Xiong X, Zhang H. Micro structure and ablation performances of dual-matrix carbon/carbon composites[J]. Carbon,2006,44(9):1690-1694.
    [21]Venkatapathy E, Laub B, Hartman GJ et al. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions:Examples for Saturn, Titan and Stardust-type sample return[J]. Advances in Space Research,2009,44(1):138-150.
    [22]Goekcen T, Chen YK, Skokova KA, et al. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change. In:10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Chicago:AIAA Journal,2010.
    [23]Upadhyay R, Bauman PT, Stogner R, et al. Steady-State Ablation Model Coupling with Hyper-sonic Flow. In:48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando:AIAA Journal,2010.
    [24]尹莲花,刘莉,张帅.近程高速弹头的温度场与热应力数值仿真研究[J].系统仿真学报,2008,20(5):1170-1173.
    [25]耿湘人,张涵信,沈清等.高速飞行器流场和固体结构温度场一体化计算新 方法的初步研究[J].空气动力学学报,2002,20(4):422-427.
    [26]李鹏飞,吴颂平.类航天飞机前身结构与高超声速流场的耦合传热模拟分析[J].航空动力学报,2010,25(08):1705-1710.
    [27]吴洁,阎超.气动热与热响应的耦合研究[J].导弹与航天运载技术,2009,(4):35-39.
    [28]姜贵庆,马淑雅.防热涂层材料热防护性能预测[J].空气动力学学报,2004,22(1):24-28.
    [29]蔡巧言,陆海波,陈伟芳.碳酚醛材料烧蚀特性分析与工程计算[J].导弹与航天运载技术,2008,(5):46-48.
    [30]陆海波,陈伟芳,袁雷等.再入体碳基材料烧蚀特性分析与工程计算[J].弹道学报,2008,20(3):107-110.
    [31]Dowell EH. A Modern Course in Aeroelasticity[M]. Dordrecht:Kluwer Academic Publishers,2004.
    [32]杨超,许赞,谢长川.高超声速飞行器气动弹性力学研究综述[J].航空学报,2010,31(1):1-11.
    [33]赵永辉.气动弹性力学与控制[M].北京:科学出版社,2007.
    [34]陈桂彬.气动弹性设计基础[M].北京:北京航空航天大学出版社,2004.
    [35]邹丛青,陈桂彬.气动弹性力学的新分支——气动伺服弹性[J].北京航空航天大学学报,1995,21(02):22-27.
    [36]贺天鹏,徐元铭,Hasham HJ计算气动弹性在飞行器设计中的研究与应用[J].飞机设计,2007,27(1):1-6.
    [37]管德.非定常空气动力计算[M].北京:北京航空航天大学出版社,1991.
    [38]Albano E, Rodden W. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows[J]. AIAA Journal,1969,7(2):279-285.
    [39]陈劲松,曹军.超声速和高超声速翼型非定常气动力的一种近似计算方法[J].空气动力学报,1990,8(3):339-343.
    [40]Ashley H, Zartaian G. Piston Theory-a New Aerodynamic Tool for Aeroelastic[J]. Journal of Aemnautical Science,1956,23(12):1109-1118.
    [41]Hall KC, Thomas JP, Do well EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal,2000,38(2):1853-1862.
    [42]Thomas JP, Dowell EH, Hall KC. Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced order models[J]. Journal of Aircraft,2003,40(3):544-551.
    [43]Silva WA, Bartels RE. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code[J]. Journal of Fluids and Structures,2004,19(6):729-745.
    [44]Lucia DJ, Beran PS, Silva WA. Reduced-order modeling:new approaches for computational physics[J]. Progress in Aerospace Sciences,2004,40(12):51-117.
    [45]Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter.1934 TR-496.
    [46]陈桂彬,邹丛青.气动伺服弹性技术在飞机设计中的应用[J].航空学报,1996,17(S1):31-35.
    [47]陈桂彬,邹丛青.气动伺服弹性综合的应用[J].北京航空航天大学学报,1996,22(03):279-283.
    [48]张陈安,张伟伟,叶正寅.一种基于当地流活塞理论的超音速导弹气动伺服弹性分析方法[J].宇航学报,2007,28(1):141-146.
    [49]杨超,吴志刚.导弹气动伺服弹性稳定性分析[J].飞行力学,2000,18(4):1-5.
    [50]樊则文,刘晓宁,杨炳渊.超声速飞行器气动伺服弹性稳定性分析[J].上海航天,2008,25(4):22-25.
    [51]宋晨.3种气动弹性状态空间建模方法的对比[J].航空学报,2007,28(z1):6.
    [52]Karpel M. Extensions to the minimum-state aeroelastic modeling method[J]. AIAA Journal,29(11):2007-2009.
    [53]Livne E. Future of Airplane Aeroelasticity [J]. JOURNAL OF AIRCRAFT,2003, 40(6):1066-1092.
    [54]Livne E. Integrated Aeroservoelastic Optimization:Status and Direction[J]. Journal of Aircraft,1999,36(1):122-145.
    [55]吴志刚,杨超.机翼的气动伺服弹性设计优化研究[J].航空学报,2006,27(4):571-573.
    [56]张伟伟,叶正寅.跨音速颤振的主动抑制研究[J].振动工程学报,2007,20(3):225-231.
    [57]徐敏,陈刚,陈士橹等.基于非定常气动力低阶模型的气动弹性主动控制律设计[J].西北工业大学学报,2004,22(6):748-752.
    [58]杨超,陈桂彬,邹丛青.主动气动弹性机翼技术分析[J].北京航空航天大学学报,1999,25(2):171-175.
    [59]Kamakoti R, Shyy W. Fluid-structure interaction for aeroelastic applications[J]. Progress in Aerospace Sciences,2004,40(8):535-558.
    [60]Chen X, Zha G, Yang M. Numerical simulation of 3-D wing flutter with fully coupled fluid-structural interaction[J]. Computers & Fluids,2007,36(5):856-867.
    [61]Lee-Rausch, M E, Batina et al. Wing flutter boundary prediction using unsteady Euler aerodynamic method[J]. Journal of Aircraft,1995,32(2):416-422.
    [62]Lee-Rausch, M E, Baitina. Wing flutter computations using an aerodynamic model based on the Navier-Stokes equations [J]. Journal of Aircraft,1996, 33(6):1139-1147.
    [63]叶正寅,王刚,杨永年等.利用N-S方程模拟机翼气动弹性的一种计算方法[J].计算物理,2001,18(5):397-401.
    [64]叶正寅,王刚,杨永年等.基于欧拉方程的一种机翼气动弹性计算方法[J].西北工业大学学报,2002,20(2):257-261.
    [65]张伟伟,吕丽丽,叶正寅.一种改进的气动弹性时域推进方法[J].振动与冲击,2005,24(5):118-120.
    [66]徐敏,安晓民,陈士橹.一种CFD/CSD耦合计算方法[J].航空学报,2006,27(1):33-37.
    [67]徐敏,陈士橹CFD/CSD耦合计算研究[J].应用力学学报,2004,21(2):33-36.
    [68]崔鹏,韩景龙.基于CFD/CSD的非线性气动弹性分析方法[J].航空学报,2010,31(3):480-486.
    [69]崔鹏,韩景龙.切尖三角翼极限环振荡的气动弹性模拟[J].航空学报,2010,31(12):2295-2301.
    [70]McNamara J, Friedmann P, Powell K. Three-dimensional aeroelastic and aerothermoelastic behavior in hypersonic flow. In:46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Austin:AIAA Journal,2005:1-47.
    [71]张伟伟,史爱民,王刚等.结合定常CFD技术的当地流活塞理论[J].西北工业大学学报,2004,22(5):545-549.
    [72]张陈安,张伟伟,叶正寅.基于当地流活塞理论的气动弹性稳定性分析方法研究[J].工程力学,2007,24(2):22-27.
    [73]Zhang W-W, Ye Z-Y, Zhang C-A. Supersonic Flutter Analysis Based on a Local Piston Theory[J]. AIAA Journal,2009,47(10):2321-2328.
    [74]史晓鸣,杨炳渊.气动加热环境下大攻角翼面超音速颤振分析[J].强度与环境,2008,35(6):6-13.
    [75]姜贵庆,马淑雅.Tyc-1涂层材料热防护性能预测[J].宇航材料工艺,2002,32(1):42-45.
    [76]STORTI M. Numerical modeling of ablation phenomena as two-phase Stefan problems[J]. International Journal of Heat and Mass Transfer,1995, 38(15):2843-2854.
    [77]姚伟刚,徐敏.基于Volterra级数降阶模型的气动弹性分析[J].宇航学报,2008,29(6):1711-1716.
    [78]徐敏,李勇,曾宪昂等.基于Volterra级数的非定常气动力降阶模型[J].强度与环境,2007,34(5):22-28.
    [79]吴志刚,杨超.基于Volterra级数的跨音速非定常气动力建模[J].北京航空航天大学学报,2006,32(4):373-376.
    [80]高淑华,赵阳,李淑娟等.粘弹性结构动力学分析的等效粘性阻尼算法[J].振动与冲击,2005,24(1):18-21.
    [81]杨炳渊,樊则文.弹性飞行器气动伺服弹性耦合动力学仿真[J].宇航学报,2009,30(1):134-138.
    [82]杨炳渊.防空导弹结构与强度[M].北京:宇航出版社,1993:435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700