几类捕食系统的分支问题与周期解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文考虑了几类捕食系统.运用微分方程的定性理论,分支理论和泛函微分方程理论研究其动力学行为,并探讨了系统中参数(如时滞,扩散及非单调功能反应函数等)对其动力学行为的影响,为解释,预测和控制生态学中的一些现象提供相应的理论依据.具体而言,本文做了以下工作.
     首先,研究了具有多个离散时滞的二维Lotka-Volterra捕食系统,给出了系统出现Hopf分支的条件;运用规范形理论和中心流形定理,讨论了分支周期解的性质.结果表明,在适当的假设下,即使捕食系统的时滞选取不同,但系统产生Hopf分支的临界时滞参数是相同的.进一步,研究了系统分支周期解的大范围存在性.对于一般的Holling型捕食系统,从理论上证明了只有具有非单调功能反应函数的Holling型捕食系统才会出现退化的Bogdanov-Takens奇点.基于此,我们考虑了同时含有时滞和非单调功能反应函数的捕食系统,研究了系统的Hopf分支和Bogdanov-Takens分支,并给出Hopf分支的方向和分支周期解的稳定性,同时计算了Bogdanov-Takens分支的普适开折.结果表明,系统在选取不同的参数值时,分别会出现极限环和同宿轨.
     其次,考虑具有扩散影响的Leslie型时滞捕食系统.通过分析正常数平衡态处的线性化系统和相应的特征方程,研究了正常数平衡态的渐近稳定性和系统存在Hopf分支的条件.运用偏泛函微分方程的规范形理论和已知的相应结果,讨论空间齐次Hopf分支的性质.特别地,我们研究了扩散对Hopf分支的影响,发现大扩散不影响系统对应的泛函微分方程的Hopf分支,而小扩散可使系统在正平衡点附近分支出空间非齐次的周期解,同时获得了决定空间非奇次Hopf分支的方向以及分支周期解的稳定性的公式.
     最后,考虑具有非单调功能反应函数的Leslie-Gower型捕食系统.虽然这类系统中不含时滞,但是由于系统的正平衡点无法显式表出,所以研究系统的动力学行为是比较困难的.我们运用微分方程定性理论讨论了系统的Bogdanov-Takens分支.数值模拟表明,非单调功能反应函数导致系统出现复杂的动力学行为,如随着参数的变化,系统会出现两个极限环共存,或者极限环和同宿轨共存的现象.
This thesis is concerned with several predator-prey systems.By using the qualitative theory,bifurcation theory for differential equations and theory for functional differential equations,we study the effects of parameters on these systems(for example, time delay,diffusion,non-monotonic functional response and so on),which provide corresponding theory basis for explaining,predicting and controlling some phenomena arising in ecology.Concretely speaking,this paper have done the following works.
     Firstly,we study two dimension Lotka-Volterra predator-prey system with multiple discrete time delays and some conditions for the appearance of Hopf bifurcation are given.By applying the normal form theory and center manifold theorem,we discuss the property of bifurcation periodic solutions.Under suitable assumption,even if the time delays in predator-prey are different,the system has the same critical delay parameter at which the Hopf bifurcation appears.Furthermore,we give the global existence of bifurcation periodic solutions for the system.As to the general Holling type predator-prey system,we prove theoretically that Bogdanov-Takens singularity appears only in the predator-prey system with non-monotonic functional response.In view of this,we consider the Hopf bifurcation and Bogdanov-Takens bifurcation for the predator-prey system with delay and non-monotonic functional response,and investigate the direction of Hopf bifurcation and stability of bifurcation periodic solutions.What's more,we calculate the universal fold of Bogdanov-Takens bifurcation.Our results shows that there are different parameter values for which system has a limit cycle and homoclinic loop.
     Secondly,we consider Leslie type predator-prey system with delay and diffusion. By analyzing the linearized system at the positive constant steady state and the corresponding characteristic equation,we study the asymptotic stability of the positive constant steady state and the conditions for the existence of Hopf bifurcation. By applying the normal form theory of partial functional differential equations and some known results,the property of spatially homogeneous Hopf bifurcation is discussed.Particularly,we investigate the effect of diffusion on Hopf bifurcation. Our results show that large diffusivity has no effect on the Hopf bifurcation of the corresponding functional differential equations,while small diffusivity can lead to the fact that the system bifurcates a spatially inhomogeneous periodic solutions at the positive equilibrium.Meantime,we obtain a formula which can determine the direction and stability of spatially inhomogeneous Hopf bifurcation.
     Finally,we consider the Leslie-Gower predator-prey system with non-monotonic functional response.Even if this system has no delays,it is difficult to discuss the dynamical behaviors of this system since the positive equilibrium can not be expressed explicitly.By applying the qualitative theory for differential equations,we discuss the Bogdanov-Takens bifurcation of this system.Numerical simulations show that non-monotonic functional response can lead to complex dynamical behavior for this system.For example,with the change of parameters,there are some new phenomena in this system,such as the coexistence of two limit cycles,or coexistence of limit cycle and homoclinic loop.
引文
[1]W.G.Aiello,H.I.Freedman,A time-delay model of single species growth with stage structure.Math.Biosci.,101(1990),139-153.
    [2]E.Beretta,Y.Kuang,Convergence results in a well-known delayed predatorprey system,J.Math.Anal.Appl.,204(1996),840-853.
    [3]E.Beretta,Y.Kuang,Geometric stability switch criteria in delay differential systems with delay-dependent parameters,J.Math.Anal.Appl.,33(2002),1144-1165.
    [4]R.Bogdanov,Bifurcations of a limit cycle for a family of vector fields on the plane,Selecta Math.Soviet,1(1981) 373-388.
    [5]R.Bogdanov,Versal deformations of a singular point on the plane in the case of zero eigenvalues,Selecta Math.Soviet,1(1981) 389-421.
    [6]S.Busenberg,W.Huang,Stability and Hopf bifurcation for a population delay model with diffusion effects,J.Differential Equations.,124(1996),80-107.
    [7]C.Celik,The stability and Hopf bifurcation for a predator-prey system with time delay,Chaos,Solitons and Fractals,37(2008),87-99.
    [8]陈兰荪,数学生态学模型与研究方法,北京:科学出版社,1991.
    [9]L.Chen,Z.Lu and W.Wang,The effect of delays on the permanence for Lotka-Volterra systems,Appl.Math.Lett.,8(1995),71-73.
    [10]Y.Chen,C.Song,Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay,Chaos,Solitons and Fractals,38(2008),1104-1119.
    [11]S.-N.Chow,J.K.Hale,Methods of Bifurcation Theory,Springer,NewYork,1982.
    [12]B.O.Coleman,Nonantonomous logistic equations as models of the adjustment of populations to environmental change,Math.Biosci.,45(1979),159-176.
    [13]J.B.Collings,The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model,J.Math.Biol.,36(1997) 149-168.
    [14]Y.H.Fan,W.T.Li,Permanence in delayed ratio-dependent predator-prey models with monotonic functional responses Nonlinear Analysis:Real World Applications,8(2007),424-434.
    [15]Y.H.Fan,W.T.Li,L.L.Wang,Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional responses Nonlinear Analysis:Real World Applications,5(2004),247-263.
    [16]T.Faria,Normal forms and Hopf bifurcation for partial differential equations with delays,Tran.Amer.Math.Soci.,352(2000),2217-2238.
    [17]T.Faria,On a planar system modelling a neuron network with memony,J.Differential Equations.,168(2000),129-149.
    [181 T.Faria,Normal forms for semilinear functional differential equations in Banach Spaces and application.Part Ⅱ,Disc.Cont.Dyna.Syst.,7(2001),155-176.
    [19]T.Faria,Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,J.Math.Anal.Appl.,254(2001),433-463.
    [20]T.Faria,L.T.Magalh(?)es,Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation,J.Differential Equations.,122(1995) 181-200.
    [21]T.Faria,L.T.Magalh(?)es,Normal form for retarded functional differential equations and applications to Bogdanov-Takens singularity,J.Differential Equations.,122(1995) 201-224.
    [22]M.S.Fowler,G.D.Ruxton,Population dynamic consequences of Allee effects,J Theor Biol,42(1980),728-37.
    [23]H.I.Freedman and V.S.H.Rao,Stability for a system involving two time delays,SIAM J.Appl.Math.,46(1986),552-560.
    [24]H.I.Freedman,S.Ruan,Uniform persistence in functional differential equations,J.Differential Equations.,115(1995) 173-192.
    [25]H.I.Freedman,S.Rush,Hopf bifurcation in three-species food chain models with group defense,Math.Biosci.,111(1992) 73-87.
    [26]B.S.Goh,Stability in models of mutualism,Amer.Natural.113(1979),261-275.
    [27]D.Hadjiavgousti,S.Ichtiaroglou,Allee effect in a predator-prey system,Chaos,Solitons and Fractals,36(2008),334-42.
    [28]J.K.Hale,"Theory of Functional Differential Equations," Spring-Verlag,New York,1977.
    [29]韩茂安,动力系统的周期解与分支理论,北京:科学出版社,2002。
    [30]B.D.Hassard,N.D.Kazarinoff,Y.H.Wan,"Theory and Applications of Hopf Bifurcation",Cambridge Univ.Press,Cambridge,1981.
    [31]N.Hayes,Roots of the transcendental equation associated to a certain difference differential equation,J.London Math.Soc.,25(1950),226-232.
    [32]X.Z.He,Stability and delays in a predator-prey system,J.Math.Anal.Appl.,198(1996),335-370.
    [33]X.He,K.Gopalsamy,Persistence,attractivity and delay in fraultative mutualism,J.Math.Anal.Appl.,215(1997),154-173.
    [34]N.Hirano,S.Rybicki,Existence of periodic solutions for the Lotka-Volterra type systems,J.Differential Equations.,229(2006),121-137.
    [35]C.S.Holling,The functional respones of predators to prey density and its role in mimicry and population regulation,Mem.Ent.Soc.Can.,46(1965) 1-60.
    [36]S.B.Hsu,T.W.Hwang,Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type,Taiwan J.Math,3(1999) 35-53.
    [37]W.Huang,On asymptotical stability for linear delay equations,J.Diff.Integ.Equations.,4(1991),1303-1316.
    [38]W.Huang,Global Dynamics for a Reaction-Diffusion Equation with Time Delay,J.Differential Equations.,143(1998),293-326.
    [39]H.F.Huo,W.T.Li,Periodic solutions of delayed Leslie-Gower predator-prey modeles,Appl.Math.Comput.,155(2004) 591-605.
    [40]H.F.Huo,W.T.Li,Stable periodic solution of the discrete periodic Leslie-Gower predator-prey modele,Math.Comput.Mode.,40(2004) 261-269.
    [41]G.H.Hutchinson,Circular causal systems in ecology,Ann.N.Y.Acad.Sci.,50(1948),221-246.
    [42]S.R.J.Jang,Allee effects in a discrete-time host-parasitoid model,J.Difference Equations Appl,12(2006),165-181.
    [43]W.Jiang,H.Wang and J.Wei,A study of singularities for magnetic bearing systems with time delays,Chaos,Solitons and Fractals,36(2008) 715-719.
    [44]R.E.Kooij,A.Zegeling,A predator-prey model with Ivlev,s functional response ,J.Math.Anal.Appl.,198(1996),473-489.
    [45]Y.Kuang,"Delay Differential Equations with Application in Population Dynamics",Academic Press,New York,1993.
    [46]Y.Kuang and H.L.Smith,Global stability in diffusive delay Lotka-Volterra systems,Differential Integral Equations.,4(1991),117-128.
    [47]Y.Kuang and H.L.Smith,Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,J.Austral.Math.Soc.Ser.B,34(1993),471-493.
    [48]Yu.A.Kuznetsov,Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations,Int.J.Bifurcation and Chaos,11(2005),3535-3546.
    [49]Yu.A.Kuznetsov,"Elements of Applied Bifurcation Theory",Springer-Verlag,New York,1998.
    [50]P.H.Leslie,some further notes on the use of matrices in population mathematics,Biometrika,35(1948),213-245.
    [51]P.H.Leslie,A stochastic model for studying the properties of certain biological systems by numerical methods,Biometrika,45(1958),16-31.
    [52]P.H.Leslie,J.C.Gower,The properties of a stochastic model for the predatorprey type of interaction between two species,Biometrika,47(1960),219-234.
    [53]A.Leung,Periodic solutions for a prey-predator delay equation,J.Differential Equations.,26(1977),391-403.
    [54]W.T.Li,Y.H.Fan,Periodic solutions in a delayed predator-prey models with nonmonotonic functional response,Disc.Cont.Dyna.Syst.,8B(2007) 175-185.
    [55]X.Li,H.Liu,Three dimensional nilpotent singularity and Silnikov bifurcation,Chaos,Solitons and Fractals,31(2007) 75-84.
    [56]S.Lin,Z.Lu,Permanence for two-species Lotka-Volterra systems with deays,Math.Biosci.Engi.,3(2006),137-144.
    [57]Y.Li,D.Xiao,Bifurcations of a predator-prey system of Holling and Leslie types,Chaos,Solitons and Fractals,34(2007) 606-620.
    [58]W.T.Li,X.P.Yan,C.Zhang,Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions,Chaos,Solitons and Fractals,38(2008),227-237.
    [59]X.Lin,J.W.-H.So,J.Wu,"Centre manifolds for partial differential equations with delays," Proc.Roy.Soc.Edinburgh.,122(1992),237-254.
    [60]Z.Liu,R.Yuan,Stability and bifurcation in a hamonic osciiator with delays,Choas,Solitons and Fractals,23(2005),551-562.
    [61]Z.Liu,R.Yuan,Stability and bifurcation in a delayed predator-prey system with Beddington- DeAngelis functional response,J.Math.Anal.Appl.,296(2004),512-537.
    [62]Z.Liu,R.Yuan,Bifurcations in predator-prey systems with nonmonotonic functional response,Nonlinear Analysis:Real World Applications,6(2005),187-205.
    [63]Z.Liu,R.Yuan,The effect of diffusion for a predator-prey system with nonmonotonic functional response,Int.J.Bifurcation and Chaos,12(2004),4309-4316.
    [64]A.J.Lotka,Elements of Physical Biology,New York:Williams and Wilkins,1925.
    [65]陆启韶,分岔与奇异性,上海:上海科技教育出版社,1995。
    [66]Z.Y.Lu,W.D.Wang,Global stability for two-species Lotka-Volterra systems with delay,Proc.Amer.Math.Soc.,96(1986),75-78.
    [67]W.Ma,Y.Takeuchi,Stability analysis on a predator-prey system with distributed delays,J.Comput.Appl.Math.,88(1998),79-94.
    [68]R.M.May,Time delay versus stability in population models with two and three trophic levels,Ecology,4(1973),315-325.
    [69]Margaret C.Memory,Bifurcation and asymptotic behavior solutions of a delaydifferential equation with diffusion,SIAM J.Math Anal.,20(1989),533-546.
    [70]Margaret C.Memory,Stable and unstable manifolds for partial functional differential equations,Nonlinear Analysis:Theory,Methods & Applications,16(1991),131-142.
    [71]A.Pazy,Semigroups of linear operators and applications to partial differential equations,Springer-Verlag,New York,1983.
    [72]S.Ruan,J.Wei,On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion,IMA J.Math.Appl.Med.Biol.,18(2001),41-52.
    [73]S.Ruan,J.Wei,On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,Dyna.Cont.Disc.Impu.Syst.,10(2003),863-874.
    [74]S.Ruan,J.Wei,Periodic solutions of planar systems with two delays,Pro.Roy.Soc.Edinburgh Sect.,A 129(1999),1017-1032.
    [75]S.Ruan,D.Xiao,Global analysis in a predator-prey system with nonmonotonic functional response,SIAM J.Appl.Math.,61(2001) 1445-1472.
    [76]I.Scheuring,Allee effect increases the dynamical stability of populations,J.Theor.Biol,199(1999),407-14.
    [77]Y.Song,J.Wei,Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system,J.Math.Anal.Appl.,301(2005),1-21.
    [78]V.Volterra,Variazoni e uttuazioni del numero dindivdui in specie animal conviventi,Mem.Acad.Licei.,2(1926) 31-113.
    [79]L.L.Wang,Y.H.Fan and W.T.Li,Multiple bifurcations in a predator-prey system with nonmonotonic functional response,Appl.Math.Comput.,172(2006)1103-1120.
    [80]W.Wang,Z.Ma,Harmless delays for uniform persistence,J.Math.Anal.Appl.,158(1991),256-268.
    [81]J.Wei,S.Ruan,Stability and bifurcation in a neural network model with two delays,Physica D,130(1999),255-272.
    [82]D.J.Wollkind,J.B.Collings,J.A.Logan,Metastability in a temperaturedependent model system for predator-prey mite outbreak interactions on friut trees,J.Math.Biol.,50(1988) 379-409.
    [83]J.Wu,Symmetric functional differential equations and neural networks with memory,Trans.Amer.Math.Soc.,350(1998),4799-4838.
    [84]J.Wu,"Theory and Applications of Partial Functional Differential Equations",Springer-Verlag,New York.1996.
    [85]D.Xiao,Lfslie Stephen Jennings,Bifurcations of a ratio-dependent predatorprey system with constant rate harvesting,SIAM J.Appl.Math.,65(2005)737-753.
    [86]D.Xiao,S.Ruan,Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response,J.Differential Equations.,176(2001)494-510.
    [87]D.Xiao,S.Ruan,Bogdanov-Tankens bifurcations in predator-prey system with constant rate harvesting,Fieids Institute Commun,21(1999) 493-506.
    [88]D.Xiao,S.Ruan,Codimension two bifurcations in a predator-prey system with group defense,Int.J.Bifurcation and Chaos,11(2001) 2123-2131.
    [89]颜向平,时滞Lotka-Volterra扩散系统的分支与周期解,兰州大学博士学位论文,2007.
    [90]X.P.Yan,Y.D.Chu,Stability and bifurcation analysis for a delayed Lokta-Volterra predator-prey system,J.Comp.Appl.Math.,196(2006),579-595.
    [91]X.P.Yan,W.T.Li,Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects,Int.J.Bifurcation and Chaos,18(2008),441-453.
    [92]X.P.Yan,W.T.Li,Bifurcation and global periodic solutions in a delayed facultative mutualism system,Physica D.,227(2007),51-69.
    [93]X.P.Yan,C.H.Zhang,Hopf bifurcation in a delayed Lokta-Volterra predatorprey system,Nonliear Analysis:Real World Applications,9(2008),114-127.
    [94]X.P.Yan,Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects,Appl.Math.Comput.,192(2007),552-566.
    [95]X.P.Yan and W.T.Li,Hopf bifurcation and global periodic solutions in a delayed predator-prey system,Appl.Math.Comput.,177(2006),427-425.
    [96]Y.Yang,J.Ye,Hopf bifurcation in a predator-prey system with discrete and distributed delays,Chaos,Solitons and Fractals,In press.
    [97]张锦炎,冯贝叶,常微分方程的几何理论与分支问题,北京:北京大学出版社,1998.
    [98]W.Zhang,J.Wu,Homoclinic orbits on invariant manifolds of a functional differential equation,J.Differential Equations.,165(2000),414-429.
    [99]郑祖庥,泛函微分方程理论,安徽教育出版社,1992.
    [100]L.Zhou,Y.Tang,S.Hussein,Stability and Hopf bifurcation for a delay competitive diffusion system,Chaos,Solitons and Fractals,14(2002),1201-1225.
    [101]Z.Zhou,J.Wu,Stable periodic orbits in nonlinear discrete-time neural networks with delayed feedback,Comput.Math.,Appl,45(2003),935-942.
    [102]Ch.Zhu,W.Zhang,Computation of bifurcation manifolds of linearly independent homoclinic orbits,J.Differential Equations.,245(2008),1975-1994.
    [103]Ch.Zhu,W.Zhang,Linearly independent homoclinic bifurcations parameterized by a small function,J.Differential Equations.,240(2007),38-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700