小天体撞击探测光学成像仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深空探测对人类认识宇宙的起源与演化有着重要的意义,随着人类对深空探测脚步的迈进,世界各国都相继开展了对小行星的探测,利用可视化仿真手段探测任务进行地面验证是其中一项关键技术,本文对小天体撞击探测中的光学成像仿真等相关技术进行了较为深入的研究,论文的主要研究成果和创新点如下:
     1.系统论述了几何光学理论、辐射理论以及光电理论基本原理,结合摄影测量原理和光学原理,建立并简化了小天体光学成像几何模型与辐射模型。
     2.深入研究并分析了光学成像的仿真算法,提出了一种基于全透镜物理模型的摄像机仿真方法。利用OpenGL图形界面库仿真光学相机的相关参数,并结合渲染到纹理技术与图形硬件编程技术,根据数字图像处理与光学系统的相关原理,实现了相机的一些物理效果,简化并加速了传统的基于CPU的图像处理编程算法,有效地提高了绘制效率;综合运用凸凹映射与多重纹理映射技术,设计并实现了小天体表面凸凹不平形貌与小范围精细形貌的建模,提高了仿真成像质量与真实感。
     3.进行了基于物理模型的撞击产物仿真算法的深入研究。建立了一种简化的圆环波面模型,实现了冲击波传播的模拟;在流体力学方程解算及简化方法研究的基础上,提出了一种基于GPU的三维烟雾仿真的加速算法,较好地解决了复杂物理计算实时性差的难题,提高了渲染效率;针对基于纹理映射的粒子系统缺乏真实感的问题,提出了一种改进的基于三维粒子模型的粒子系统方法,实现了飞溅物的实时模拟。
     4.设计并开发了一个功能较强、性能稳定、实时性较好的小天体光学成像仿真原型系统,取得了较好的实际应用效果。
The exploration of deep space plays an important role for human beings to understand the origin and evolvement of the universe. With the development of deep space exploration, countries of the world have begined to explore the asteroids. It is a key technology to test the projects in ground in manner of visualization simulation. In this thesis, technologies of optical imaging simulation are in-depth researched and some significant results are achieved. The major production the thesis researches and main innovation are presented as follows:
     1.Geometrical optics, radiant and electro-optical theories are discussed ,Geometrical and radiant model of optical imaging established and simplified, following photogrammetric and optical principles.
     2.Simulating algorithms of optical imaging are analyzed and researched, a method of full-lens based physical model is put forward. Relative parameters of the camera are simulated with the OpenGL application programming interface. By integrating rendering to textures and graphic hardware programming technologies, some physical effects of camera are realized on the basis of digital image processing and optical system theories, Traditional CPU based programming algorithms for image processing are simplified and accelerated, the render efficiency is effectively raised. Wrinkled and small-range subtle physiognomies are designed and realized by combining with bump mapping and multi-textures mapping technologies.
     3.In-depth researches are made for simulating the results of impacting on the basis of physical models. A simple torus model is established to simulate the spreading of shock wave. Methods are researched on solving and simplifying the hydromechanical equation, and based of which, an accelerated algorithm of three-demission smoke on the basis of GPU is put forward, and the problem that complicated physical calculation is short of real time is solved to raise the render efficiency. Aiming at the issue that traditional particle systems based on texture mapping are lack of reality, an advanced particle systems which based three-demission particles model is brought forward, which result in real time simulation of splash objects.
     4.An archetypal system that simulating the optical imaging of small celestial bodies is designed and programmed, a flat roof with better functions, steady capability and real time characteristics is established for imaging simulation, which has get better application effects.
引文
[1]康凤举,翔华,李宏宏,张博,苏曼.可视化仿真技术发展综述[J].系统仿真学报.2009,21(17): 5310-5313.
    [2]胡峰,孙国基.航天仿真技术的现状及展望[J].系统仿真学报.1999,10(2):83-88.
    [3]徐庚保,曾莲芝.航天仿真[J].计算机仿真. 2003, 20(10): 1-4.
    [4] Kerekes J P. Simulation of Optical Remote Sensing Systems[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. 1989, 127(6): 726-771.
    [5] B?rner A, Wiest L. SENSOR: a tool for the simulation of hyper spectral remote sensing systems[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2001, 55(6): 299.
    [6]王刚,禹秉熙.基于图像仿真的对地遥感过程科学可视化研究[J].系统仿真学报. 2002, 14(6): 756-760.
    [7]意韩,孙华燕,李迎春,宇郭,吴伟伟.用Vega生成真实传感器效果的光电成像模拟方法[J].计算机应用. 2009, 29(6): 342-344.
    [8]张智丰.太空场景的可见光与红外波段真实感成像研究[D].浙江大学, 2004.
    [9]蓝朝桢.天基空间目标光学监视系统研究[D].郑州:解放军信息工程大学, 2009.
    [10]王兆魁,张育林.面向空间目标监视的星图模拟器设计与实现[J].系统仿真学报. 2006, 18(5): 1195-1198.
    [11]刘建斌,吴健.空间目标的光散射研究[J].宇航学报. 2006, 27(4): 802.
    [12]李斌成.空间目标的光学特性分析[J].光学工程. 1989(2): 21.
    [13]李道勇,王增玉,张艳群.空间目标可见光散射特性与可视条件研究[J].光学与光电技术. 2005, 3(5): 5-8.
    [14]吴开峰,董雁冰,蓉邓.卫星的光散射建模研究[J].航天电子对抗. 2006, 22(4): 25-31.
    [15]斌谈,姚东升,向春生,张己化.类柱体空间目标的星等计算模型研究[J].光电工程. 2008, 35(7): 33-37.
    [16]彭华峰.天基光电望远镜系统建模仿真研究[D].四川大学, 2006.
    [17]彭华峰,陈鲸,张彬.天基光电望远镜对空间目标成像的模拟[J].光电工程. 2005, 32(10): 14-17.
    [18]彭华峰,陈鲸,张彬.天基光电望远镜空间多目标成像模拟技术研究[J].光学技术. 2007, 33(2): 222.
    [19]陈维真,张春华,王学伟,周晓东.空间观测序列图像目标运动成像仿真[J].激光与红外. 2008, 38(3): 300-303.
    [20]陈维真,张春华,周晓东.空间目标的光度特性及其成像信噪比研究[J].红外技术. 2007, 29(12): 716-719.
    [21]李骏,高源,安玮,周一宇.天基光学空间目标监视图像仿真研究[J].系统仿真学报. 2008, 20(15): 3951-3954.
    [22] Barsky B A, Horn D R, Klein S A, Pang J A, Mengyu. Camera Models and Optical SystemsUsed in Computer Graphics:Part I, Object-Based Techniques[C]. Montreal: 2003.
    [23] Kolb C, Mitchell D, Hanrahan A P. A realistic camera model for computer graphics[C]. Los Angeles: 1995.
    [24]郁道银,谈恒英.工程光学[M].机械工业出版社, 2008.
    [25]严瑛白.应用物理光学[M].机械工业出版社, 1990.
    [26]胡鸿章,凌世德.应用光学原理[M].机械工业出版社, 1993.
    [27]钟锡华.现代光学基础[M].北京大学出版社, 2003.
    [28]陈利红,毛剑飞,诸静. CCD摄像机标定与修正的简便方法[J].浙江大学学报工学版. 2003, 37(4): 406.
    [29]苏小华,赵继广,张慧星. CCD摄像机成像畸变的研究[J].物理实验. 2003, 23(9): 39.
    [30]朱铮涛,黎绍发.镜头畸变及其校正技术[J].光学技术. 2005, 31(1): 136.
    [31]彭华峰,陈鲸,张彬.空间目标在天基光电望远镜中的光度特征研究[J].光电工程. 2006, 33(12): 9.
    [32] Akenine-Moller T, Haines E.实时计算机图形学(第2版)[M].北京大学出版社, 2004.
    [33]袁家虎.受限于CCD光子噪声的探测能力分析[J].测试技术学报. 1998, 12(3): 71.
    [34]陈维真,张春华,周晓东.空间目标的光度特性及其成像信噪比研究[J].红外技术. 2007, 29(12): 716.
    [35]张科科,付丹鹰,周峰,和涛.空间目标可见光相机探测能力理论计算方法研究[J].航天返回与遥感. 2006, 27(4): 22.
    [36]许秀贞,李自田,薛利军. CCD噪声分析及处理技术[J].红外与激光工程. 2004, 33(4): 343.
    [37]谢杰成,张大力,徐文立.小波图像去噪综述[J].中国图象图形学报. 2002(7).
    [38] Peters R A. A New Algorithm for Image Noise Reduction using Mathematical MorPhology[C]. 1995.
    [39] Shreiner D, Woo M, Neider J, Davis T. OpenGL编程指南(第四版)[M].人民邮电出版社, 2006.
    [40]苏国中,郑顺义,张剑清,张祖勋. OpenGL模拟摄影测量方法研究[J].中国图象图形学报. 2006, 11(4): 540.
    [41]张祖勋,苏国中,郑顺义,张剑清. OpenGL成像机理及其与摄影测量方位元素的相关分析[J].武汉大学学报信息科学版. 2004, 29(7): 570.
    [42]彭文彪,戴树岭,彭俊毅.摄像机的计算机仿真研究[J].系统仿真学报. 2004, 16(9): 2109.
    [43]王滨,戴树岭.虚拟现实系统中的可见光成像仿真[J].系统仿真学报. 2007, 19(6): 1312.
    [44]赵羲,马东洋,刘毅锟,蓝朝桢.基于GPU的小行星实时成像模拟[J].系统仿真学报. 2009, 21(增刊1): 110.
    [45]张钧萍,林涛,周建林,钱国蕙.一种模拟CCD星图的方法[J].中国空间科学技术. 1996(3): 64-68.
    [46]欧阳桦.基于CCD星敏感器的星图模拟和导航星提取的方法研究[D].华中科技大学, 2005.
    [47]高源,林再平.基于CCD点扩散和拖尾特性的星空模拟方法研究[J].电子信息对抗技术. 2008, 23(2): 58-62.
    [48] Blinn, James. Simulation of wrinkled surfaces[C]. 1978.
    [49]王世元.基于GPU的光线跟踪算法的加速结构比较研究[D].华中师范大学, 2008.
    [50] Whitted T. An improved illumination model for shaded display[C]. 1980.
    [51]高军峰.基于光线跟踪算法的真实感图形的研究与实现[D].武汉理工大学, 2005.
    [52] J.purcell T, Buck I, R.marl W, Hanraban P. Ray tracing on programmable graphics hardware[J]. ACM Transactions on Graphics. 2002, 21(3): 703-712.
    [53] Yngve D, O'Brien F, Hodgins K. Animating explosions[C]. New York: 2000.
    [54] Sewall J, Galoppo N, Tsankov G. Visual Simulation of Shockwaves[C]. New York: 2008.
    [55] Reeves W T. Particle systems—a technique for modelinga class of fuzzy objects[J]. Computer Graphic. 1983, 17(3): 359-376.
    [56]董志明,彭文成,郭齐胜.基于粒子系统的战场环境特效仿真[J].系统仿真学报. 2006, 18(增刊2): 470.
    [57]张汉清,张科.基于GPU粒子系统的战场实时雨雪效果模拟[J].计算机仿真. 2007, 24(10): 200.
    [58]李苏军,吴玲达.基于粒子系统的实时雨模拟[J].计算机工程. 2007, 33(18): 236.
    [59]姜洪洲,黄会林.视景系统云层的特效模拟[J].计算机仿真. 2007, 24(7): 225.
    [60]贾彦国,张伟,唐勇.一种基于粒子的火焰模拟方法[J].系统仿真学报. 2006, 18(增刊1): 60.
    [61] Stam J. Stable fluids[C]. New York: 1999.
    [62] Stam J. Real-Time Fluid Dynamics for Games[C]. New York: 2003.
    [63] Fedkiw R, Stam J, Wann Jensen H. Visual simulation of smoke[C]. New York: 2001.
    [64] Selle A, Rasmussen N, Fedkiw R. A vortex particle method for smoke,water and explosions[C]. 2005.
    [65] Fernando R. GPU精粹-实时图形编程的技术、技巧和技艺[M].人民邮电出版社, 2005.
    [66]李建明,吴云龙,迟忠先,何荣盛.基于流体模型和GPU加速的火焰实时仿真[J].系统仿真学报. 2007, 19(19): 4382.
    [67]湛永松,石民勇,费广正.基于物理模型的实时卡通烟雾模拟算法[J].中国图象图形学报. 2007, 12(2): 261-265.
    [68]马东洋,赵羲,徐青.基于GPU的大规模爆炸效果模拟[J].测绘科学技术学报. 2009, 26(5): 351.
    [69]http://deepspace.jpl.nasa.gov/dsn/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700