溶磷微生物分离、应用及其相关基因的克隆与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从适应土壤定殖的溶磷微生物中筛选到一株适应生产的溶磷真菌,并进行了其土壤溶磷特性和溶磷机理初步研究,选取溶磷效果较好的菌株进行了溶磷相关基因的克隆、表达和功能鉴定,取得以下主要结果:
     在磷酸三钙为唯一磷源的无机盐培养基上,以透明圈为指示,通过初筛和复筛,获得效果稳定的细菌23株,分属6个属11个种;真菌16株,其中有9株草酸青霉(Penicillium oxalicum),2株变幻青霉(Penicillium variabile),1株刺孢青霉(Penicillium aculeatum)、1株绿色木霉(Trichoderma viride)、2株黑曲霉(Aspergillus niger)、1株构巢曲霉(Aspergillus nidulans)。
     菌株对不同难溶磷(磷酸三钙、磷酸锌、磷酸铝和磷酸铁)的溶解能力实验表明:细菌对不同种类难溶磷溶解能力差异显著,真菌的溶磷效果显著高于细菌,16株真菌显著降低PDB培养液的pH值,最低达到1.43,固体培养基上培养5 d能将各种难溶磷全部溶解。
     通过16株真菌在不同土壤中的定殖能力和释放难溶磷的效果比较,筛选土壤中定殖和溶磷效果好的菌株。土培实验结果表明:真菌在土壤中具有较强的定殖能力;不同土壤中真菌的定殖能力差异显著,同一种的真菌在土壤中的定殖能力也差异显著。真菌释放土壤难溶磷的能力与其土壤定殖的能力显著相关,菌株定殖能力越强,释放土壤难溶磷效果越好。其中,真菌Z33、Zh、ZC、Zh3、ZI1、Z15、ZQ3和Z30在土壤中定殖效果较好,28 d时,菌株数量能达到起始值的10~48倍,有效磷含量增加44%~160%。
     通过微生物与作物、土壤的匹配性实验,筛选适应玉米生产的溶磷真菌,并开展了溶磷菌对土壤微生物多样性影响分析。溶磷微生物与作物的匹配性实验表明:16株真菌在平板上对玉米根系分泌物的适应性差异显著, Z15+、Zh、ZQ3、ZI1、ZJ1和Z30能够利用玉米的根系分泌物快速生长,并且能溶解平板中的磷酸三钙。选取这6株真菌进行土培实验,结果也证明Z15~+、ZQ3、ZI1、Zh和Z30都能以玉米根系分泌物为营养进行繁殖,第21天时,菌株数量达到起始的9.70~48.03倍,土壤有效磷增加了62.08%~147.55%。在盆栽玉米的土壤中,ZI1和Zh定殖的速度最快,菌剂ZI1和Zh处理后,玉米干重和湿重显著增加,在大田试验中,菌株Zh连续2年都具有较高的增产作用,而菌株ZI1只在2010年的试验中具有较好的增产作用。因此本文获得适应大田玉米生产的溶磷真菌为构巢曲霉Zh。溶磷菌剂对土壤微生物的结构产生显著的影响,总体趋势为细菌、真菌、放线菌的数量比对照有所增加,土壤中微生物多样性变化与土壤中细菌数量变化成正相关,土壤中细菌数量越多,土壤微生物多样性越高。
     选取具有较好增产效果的构巢曲霉Zh和草酸青霉ZI1,对其产酸的种类,不同温度条件下土壤溶液pH值的变化、菌株定殖能力以及土壤中不同级别难溶磷的转化规律进行研究,探讨了溶磷真菌在土壤中溶磷机理和溶磷特性。利用离子色谱对菌株产酸种类进行分析,结果表明:构巢曲霉Zh和草酸青霉ZI1在PDB溶液中能够大量产生乳酸和草酸,培养26 h时,溶液中乳酸和草酸的含量分别达到了372.5μg/mL和593.9μg/mL。菌株Zh和ZI1在15、20和30℃土培条件下,都有很强的定殖能力,并能使土壤溶液的pH值显著降低,土壤溶液pH值变化与菌株在土壤中定殖的规律一致。不同的温度下,菌株Zh和ZI1对土壤中不同级别的难溶磷的转化规律总体趋势一致,土壤中Ca_2-P、Ca_8-P、Al-P、Fe-P和Ca_(10)-P形态的无机磷含量都发生了变化,菌株Zh转化土壤中Ca_8-P量较高,而菌株ZI1对Al-P、Fe-P转化效率较高。菌株Zh和ZI1溶磷机理为菌株在土壤繁殖过程中分泌有机酸与铁、铝、钙等离子螯合,从而使难溶磷转化为有效磷。
     构建黑曲霉Zh3和草酸青霉ZI1的cDNA文库,在磷酸三钙为唯一磷源的无机盐培养基上以透明圈为指示,筛选溶磷克隆子,结果从菌株Zh3和ZI1的cDNA文库中分别筛选到携带溶磷相关基因的克隆子60个和72个,这些克隆子在第二代转接后功能稳定,确认这些克隆子所携带的基因具有溶磷的功能。黑曲霉Zh3文库中筛选的克隆子所携带基因序列全长为1407bp,与Aspergillus niger CBS 513.88和Aspergillus niger contig An07c0220的同源性达到98%,与其他菌的同源性低于80%,但目前还没报到该基因在溶磷功能方面的研究,将该基因命名为pag T。草酸青霉ZI1文库中筛选的克隆子所携带基因序列全长为1160bp,与Penicillium chrysogenum Wisconsin 54-1255和Aspergillus niger CBS 513.88的同源性只有68%,与其他菌的同源性更低,表明该基因为一个新的基因,将该基因命名为ppg T。
     分析溶磷相关基因ppq T和paq T的开放阅读框,构建重组表达载体,获得转化子,并分析转化子产生有机酸种类和溶液pH值的变化。草酸青霉ZI1中溶磷相关基因ppg T开放阅读框长702 bp,蛋白长233个氨基酸,该蛋白与Penicillium chrysogenum Wisconsin 54-1255的Pc21g23580同源性最高,为59%,目前还没有该类蛋白的功能研究报道,确定本文获得的蛋白PPG-T为新的蛋白。黑曲霉Zh3中溶磷相关基因pag T开放阅读框长819 bp,蛋白长333个氨基酸,该蛋白与Aspergillus niger CBS 513.88的bax Inhibitor family protein同源性达到100%,但该蛋白还没有溶磷功能的报道,属于该蛋白的新功能。将ppq T和paq T的开放阅读框连接到pET28和pGEX表达载体中,构建了4株转化子,产生的乙酸和甲酸将难溶磷无机盐培养液的pH值降低到3.6左右,在LB培养中,4株转化子不能将溶液的pH值降低,表明基因的表达需要难溶磷的诱导。ppq T基因在E. coli. DH5α中的溶磷机理是将葡萄糖氧化生成乙酸,溶解无机磷;而paq T基因在E. coli. DH5α中的溶磷机理是将葡萄糖氧化生成乙酸和甲酸,溶解无机磷。
Phosphate solubilizing microorganisms which can be suitable for colonization were isolated from soils. And One isolated wae screened, which can be suitable for corn production. Its colonization and phosphate-dissolving characteristics in soil were conducted. Cloning and identification of P-dissolving gene were studied in this article. The main conclusions were as follows:
     Twenty-three bacteria strains with high performance of phosphate dissolving were screened. Sixteen fungi were isolated, including 9 strains of Penicillium oxalicum, 2 strain of Aspergillus niger, 2 strains of Penicillium variabile, 1 strain of Penicillium aculeatum, 1 strain of Aspergillus nidulans ,1 strain of Trichoderma viride.
     The P-dissolving capbility of strains on different insoluble phosphorus(Ca_3(PO_4)_2, Zn_3(PO_4)_2, FePO_4, AlPO_4) were conducted. The P-dissolving ability of fungi were better than bacteria. 16 strains reduced the pH value from 7.0 to lower 2.0 in 18 h.They could dissolve all phosphate in solid culture.
     Colonization and P-dissolving characteristics in soil results showed fungi presented high colonization ability in soil. However, colonization ability of fungi in different soils was significant differences. The P-dissolving ability of isolated were significantly correlated with their colonization. 6 strains of Z33、Zh、ZC、Zh3、ZI1 and Z30 presented high colonization ability in soil. The number of 6 strains increased 9.83-48 times than initial number in 28 days and the content of available phosphorous was increased 44%~160% than initial content.
     The plate experiment and soil experiment of the matching between strains and crop in laboratory indicated that the 6 strains of Z15+、Zh、ZQ3、ZI1、ZJ1 and Z30 could propagate in plates and soil useing the root secretion of corn as sole carbon source and dissolve insoluble phosphorus. Six strains of Z33、Zh、ZC、Zh3、ZI1 and Z30 presented high colonization ability in soil, the number of 6 strains increased 9.60-48.03 times and the content of available phosphorous was increased 62.08%-147.55% in 21 days than initial content. The pot experiment inoculating with 5 strains was conducted in greenhouse by planting corn. The result demonstrated that the content of available phosphorous was increased remarkably with strains ZI1 and Zh treatment. The dry matter yield of corn significantly increased than CK, Then strains ZI1 and Zh were used in field experiment as microbial inoculums. The yield of corn treated with strain Zh increased remarkably in two years. However, the yield of corn treated with strain ZI1 presented yield increased in one year. The application of P-solubilizing microorganisms had a significant impact on microbial community structure . The numbers of bacteria, fungi, actinomycetes were increased than CK. There were positive correlation between the biodiversity and the number of bacteria.
     Aspergillus nidulans Zh and Penicillium oxalicum ZI1 secrete lactic acid and acetic acid, the content of acid at 49th day was 372.5μg/mLand 593.9μg/mL , respectively. The strains ZI1 and Zh could colonizate in soil at 15、20、30℃and remarkably decreased the pH of soil. There were negative correlation between pH value decreased of soil and the number of fungi. The strain ZI1 and Zh promoted the transformation of insoluble phosphate which was the same law in different temperature. The content of Ca_2-P、Ca_8-P、Al-P、Fe-P and Ca_(10)-P were changed with ZI1 and Zh treatment. The transformation efficiency of Ca8-P of the strain ZI1was higher, but transformation efficiency of Al-P and Fe-P of the strain Zh was higher in soil. The mechanism of P-dissolving of the strain ZI1 and Zh was that they secrete organic acids in the progress of propagation chelating Ca~(2+), Fe~(3+), Al~(3+) for dissolving phosphate.
     Sixty clone were screened from cDNA library of Aspergillus niger Zh3 according to the transparent zone of P-dissolving in plate. And 72 clone were screened from cDNA library of Penicillium oxalicum ZI1. The function of these clone were stable at the second generation. The gene from A.niger Zh3 was named pag T, sequence analysis showed that it was 1407bp in length, and shared 98% identity at the nucleotide level to Aspergillus niger contig An07c0220, and shared less than 80% identity to other isolated. The gene from Penicillium oxalicum ZI1 was named ppg T, Sequence analysis showed that it was 1160bp in length, and shared only 68% identity at the nucleotide level to Penicillium chrysogenum Wisconsin 54-1255, it showed ppg T was a novel gene.
     Sequence analysis showed that the reading box of gene ppg T has 702bp, and its deduced 233 amino acid, this protein shares 59% homology with the Pc21g23580 in Penicillium chrysogenum Wisconsin 54-1255—the highest homology. And there was no report about the P-dissolving function of this protein, so the function of this protein PPG– T is a novel one. Sequence analysis showed that the reading box of gene pag T in Zh3 has 819bp, and its deduced 333 amino acids, this protein shared 100% homology with the bax Inhibitor family protein in Aspergillus niger CBS 513.88, but there is no report about the P-dissolving function of this protein. So it’s a novel function of the protein.Connecting ppqT and paqT to expression vectors pET28 and pGEX ,we constructed four engineering strains, which mainly produce acetic acid and formic acid.They could reduce the pH of the inorganic undissolved phosphorus medium to 3.6 or so .The 4 engineering strains was inducted by undissolved phosphorus, because they couldn’t reduce the pH value of medium without undissolved phosphorus. The P-dissolving mechanism of ppq T in E. coli. DH5αis the oxidation of glucose into acetic acid to dissolve phosphorus ; The phosphorus-dissolving mechanism of ppq T in E. coli. DH5αis the oxidation of glucose into acetic acid and formic acid to dissolve phosphorus.
引文
[1]毕江涛,孙权等.解磷微生物研究进展.农业科学研究,2009,30(4):58-64.
    [2]苍晶,王学东,崔琳,等.大豆豆荚与叶片的光合特性比较.中国农学通报,2005,21(2):85-87.
    [3]陈华癸,李阜棣,陈文新,等.土壤微生物学.上海:上海科学技术出版社,1979:225-228.
    [4]陈凯,李纪顺等.巨大芽孢杆菌P1的解磷效果与发酵条件研究.中国土壤与肥料,010(4):73-76.
    [5]陈声明,林海萍,张立钦.微生物生态学导论[M].北京:高等教育出版社,2007:117-119.
    [6]陈廷伟.微生无对不溶性无机磷化合物的分解能力及其接种效果.微生物学报,1995,2(5):2l0-215.
    [7]东秀珠.常用细菌系统鉴定手册.北京:科学出版社,2001.
    [8]杜振宇,周健民等.氮钾肥对磷在红壤肥际微域中迁移转化的影响.土壤学报,2010,47(3):497-502.
    [9]范丙全等.32P示踪法研究溶磷真菌对磷肥转化固定和有效性的影响.应用生态学报,2004,15(11):2142-2146.
    [10]范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究.中国农业科学,2002,35(5):525-530.
    [11]范丙全.北方石灰性土壤中青霉菌P8(Penicilliumoxalicum)活化难溶磷的作用和机理研究.中国农业科学院,2001:127.
    [12]范丙全等.不同施肥措施对土壤溶磷微生物的影响.河北农业科学,1999,3:9-12.
    [13]冯宏,李永涛,张志红.类芦根际溶磷真菌的筛选、鉴定及其溶磷能力分析.微生物学通报,2010,37(5):677-681.
    [14]龚明波,范丙全.适应玉米生产的溶磷真菌的筛选及其应用研究.微生物学报,2010,50(12):46-53.
    [15]龚明波,范丙全.一株新的溶磷棘孢青霉菌Z32的分离、鉴定及其土壤溶磷特性.微生物学报,2010,50(5):580-585.
    [16]顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法.土壤,1990,22(2):101-110.
    [17]韩梅,温志丹,肖亦农,钮旭光.解磷细菌的筛选及对植物病原真菌的拮抗作用.沈阳农业大学学报,2009-10,40(5):594-597.
    [18]韩梅,于芳,肖亦农等.1株具解磷特性大豆根瘤菌的分离筛选与回接鉴定.微生物学杂志,2010,30(2):51-56.
    [19]和苗苗,田光明,梁新强.施用有机物料土壤中氮、磷及重金属的短期淋失规律.水土保持学报,2010,24(2):1-5.
    [20]胡宏祥,朱小红等.关于沟渠生态拦截氮磷的研究.水土保持学报,2010,24(2):141-145.
    [21]胡晓峰,郭晋云等.一株溶磷抑病细菌的筛选及其溶磷特性.中国农业科学2010,43(11):2253-2260.
    [22]黄静,盛下放,何琳燕.具溶磷能力的植物内生促生细菌的分离筛选及其生物多样性.微生物学报,50(6):710-716.
    [23]江龙,王茂胜,黄建国,袁玲.丛枝菌根真菌对烟苗吸收基质养分的影响.贵州农业科学2010,38(6):50-53.
    [24]蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究.中国农业科学,1989,22(3):58-66.
    [25]李阜棣,胡正嘉.微生物学[M].第五版.北京:中国农业出版社,2000:228.
    [26]李剑峰,师尚礼,张淑卿,霍平慧.解磷微生物肥料研究进展.仲恺农业工程学院学报,2010,23(1):63-67.
    [27]李剑峰,师尚礼,张淑卿.不同Ca3(PO4)2含量及菌种保存温度下SL01菌株的解磷及生长能力.中国生态农业学报,2010,18(1):94-97.
    [28]李育彪,龚文琪等.溶磷菌在高磷铁矿石除磷技术中的研究进展.安徽农业科学,2010,38(13):6825-6827.
    [29]梁绍芬,姜瑞波.解磷微生物肥料的作用和应用.土壤肥料,1994,2:46-48.
    [30]刘代俊,谢克难等.磷资源加工研究进展:8.钾长石与磷钾矿生产缓释肥研究进展.磷肥与复肥,2010,25(2):14-15.
    [31]刘丽丽,陈立新,王广朝.9320-SD系列菌的溶磷研究.南开大学学报,1998,31(3):75-79.
    [32]刘丽丽.津农菌肥对水果糖度和着色度的影响.天津农业科学,1995,3:17-l8.
    [33]刘丽丽.PK菌肥的菌种筛选及其应用研究.南开大学学报,1994,27(3):82-86.
    [34]刘荣昌,李凤汀.小麦接种联合固氮菌增产原因分析.期刊1993,2(8):73-77.
    [35]陆俊锟,陈俊,康丽华.四株红树林促生菌的遗传分析鉴定及其促生能力.微生物学报,50(10):1358-1365.
    [36]陆文静.石灰性土壤难溶态磷的微生物转化和利用.植物营养与肥料学报,1999,5(4):377-383.
    [37]任军,朱平等.不同施肥制度对黑土磷、硫含量及空间变异特性的影响.水土保持学报2010,24(3):105-108.
    [38]宋勇春,冯固,李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响.应用与环境生物学报,2000,6(2):171-175.
    [39]宋勇春,李晓林,冯固.泡囊丛枝(VA)菌根对玉米根际磷酸酶活性的影响.应用生态学报,2001,12(4):593-596.
    [40]孙珊,黄星,范宁杰等.一株溶磷细菌的分离、鉴定及其溶磷特性研究.土壤(Soils),2010,42(1):117-122.
    [41]唐朝军,董发勤等.嗜酸氧化硫硫杆菌对中低品位磷矿的溶磷效果研究.矿物学报,2010:111-112.
    [42]王富民,刘桂芝,张彦等.高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究.生物技术,1992,2(6):34-37.
    [43]王延秋,徐浩林,徐光云.AP-2号溶磷菌Aspergillusniger在烟草种植上的应用效果.生物技术,1993,3(1):38-41.
    [44]吴蕾,马凤鸣,刘成,李业成,王婵婵,王安娜,大豆与玉米、小麦、高粱根系分泌物的比较分析.大豆科学.2009,28(6):1021-1026.
    [45]杨苞梅,宋玉萍等.施用鸡粪后土壤中磷的淋溶损失特征研究.水土保持学报,2010,24(4):16-21.
    [46]易艳梅,黄为一.不同生态区土壤溶磷微生物的分布特征及影响因子.生态与农村环境学报,2010,26(5):448-453.
    [47]尹瑞玲.我国旱地土壤溶磷微生物.土壤,1988,20(5):243-246.
    [48]尹瑞龄.自生固氮菌的解磷作用.土壤,1990,22(5):251-253.
    [49]虞伟斌,杨兴明,沈其荣,徐阳春.K3解磷菌的解磷机理及其对缓冲容量的响应.植物营养与肥料学报2010,16(2): 354-361.
    [50]张赫然,王学东,崔琳,等.大豆叶片与豆荚光合作用结构的比较.东北农业大学学报, 2007, 38(4): 436-440.
    [51]章建新,薛丽华,李金霞.麦叶丰化控对大豆鼓粒期非叶光合器官与粒重关系的影响.大豆科学, 2008, 27(1): 74-78.
    [52]赵小蓉,林启美.微生物解磷的研究进展.土壤肥料,2001(3):7-11.
    [53]赵艳丽,于龙凤,李茫雪,等.大豆叶片和豆荚与衰老相关的某些生理特性比较.东北农业大学学报, 2008, 39(1): 6-9.
    [54]罩丽金,王真辉,陈秋波等.根际解磷微生物研究进展.华南热带农业大学学报, 2006,12(2):44-49.
    [55]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化.土壤学报, 2005,42(2):286-290.
    [56] I. Reyes1, A. Valery & Z. Valduz. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant and Soil (2006) 287:69-75.
    [57] Abou SRA, Ghozlan H, Ghanem K. Behaviour of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites.World Journal of Microbiology & Biotechnology, 2005,21: 6/7:1095-1101;
    [58] Altomare C, Norvell WA, Bjorkman T and and Harman GE. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzia num Rifai 1295-22. Applied and Environmental Microbiology,1999, 65(7): 2926-2933.
    [59] Anderson G. Assessing organic phosphorus in soils [A]. In:Khssawnch EE etal (eds.). The role of phosphorus in agriculture [C]. Am.Soci.of Agro.,1980, 411-431.
    [60] Asea P E A, Kucey R M N, Stewart J W B. Inorganic phosaphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 1988, 20(4):459-464.
    [61] Babu KS, Yeo TC, Martin WL, Duron MR, Rogers RD and Goldstein AH. Cloning of a mineral phosphate-solubilizing gene from pseudomonas cepacia. Applied and Environmental Microbiology, 1995,61((3): 972-978.
    [62] Bajpai PD , Sundrara Rao WVB. Phosphate solubilizing bacteria part 3. Soil inoculation with phosphorous solubilizing bacteria . Soil Sci. Plant Nutr,1971,17(2): 46-53.
    [63] Bajpai PD, Sundrara Rao WVB. Phosphate solubilizing bacteria. I.Solubilization of phosphate in liquid culture by selected bacteria as affected by different pH values. Soil Sci. Plant Nutr,1971, 17(2): 41-43.
    [64] Bajpai PD, Sundrara Rao WVB. Phosphate solubilizing bacteria. Part 2. Extracellular production of organic acids by selected bacteria solubilizing insoluble phosphate. Soil Sci. Plant Nutr.,1971, 17(2): 44-45.
    [65] Banik S, Dey BK. Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate-solubilizing micro-organisms. Plant and Soil, 1982,69(3):353-364.
    [66] Banik S, Dey BK. Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralblatt fur Mikrobiologie,1983, 138(1):17-23.
    [67] Bardiya MC, Gaur AC. Rock phosphate dissolution by bacteria. Indian Journal of Microbiology,1972, 12:269-271.
    [68] Berrow ML, Davidson MS, Burridge JC. Trace elements extractable by 2-ketogluconic acid from soils and their relationship to plant contents. Plant and soil,1982, 66: 161-171.
    [69] Bort J, Brown R H,Araus L. Reification of respiratory CO2in the ears of C3 cereals[ J]. Journal of Experimental Botany, 1996, 47:1567-1575.
    [70] Casanova E, Salas AM, Toro M. The use of nuclear and related techniques for evaluating the agronomic effectiveness of phosphate fertilizers, in particular rock phosphate, in Venezuela: II. Monitoring mycorrhizas and phosphate solubilizing microorganisms. International Atomic Energy Agency Technical Documents IAEA TECDOCs. 2002,(1272): 101-106.
    [71] Chabot R, Antoun H, Cescas MP. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant and Soil, 1996,184(2): 311-321.
    [72] Chabot R, Beauchamp CJ, Kloepper JW, Antoun H. Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biology & Biochemistry, 1998, 30(12): 1615-1618.
    [73] Chang S.C. and N. Liaw, Separation of aluminium phosphate from iron phosphate in soils. Science,1962,136 (3514):386.
    [74] Chang S.C. Jackson M. L.Fractionation of soil phosphorus.Soil Science,1957,84, 133-144.
    [75] Cleton-Jansen AM, Goosen N, Fayet O and van P . Cloning, mapping, and sequencing of the gene encoding Escherichia coli quinoprotein glucose dehydrogenase. J. Appl. Bacteriol, 1990,172(11): 6308-6315.
    [76] Cooper R. Bacterial fertilizers in the Soviet Union. Soils Fert, 1959, 22: 327.
    [77] Craven PA, Hayasaka SS. Inorganic phosphate solubilization by rhizosphere bacteria in a Zostera marina community. Can J Microbiol,1982, 28:605-610.
    [78] Cunningham JE, Cathy Kuiack. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl. Environ. Microbiol.,1992,58(5): 1451-1458.
    [79] Dean, L.A. Attempted fractionation of the soil phosphorus. J. Agr. Sci,1938, 28: 234-244.
    [80] Dean, L.A. Distribution of the forms of soil phosphorus. Soil Sci. Soc. Amer. Proc. 1937,2:223-228.
    [81] Deng S, Elkins JG, DaLH,etal. Cloning and characterization of a second acid phosphatase from Sinorhizobium melilotistrain 104A14. Arch. Microbio.l, 2001, 176: 255-263.
    [82] Deshwal VK, Dubey RC, Maheshwari DK. Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against macrophomina phaseolina causing charcoal rot of peanut. Current Science, 2003,84(3):443-448.
    [83] Dey R, Pal KK, Bhatt DM, Chauhan SM. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.Microbiol,2004,159(4): 371-394.
    [84] Domey-S. Occurrence of phosphate mobilizing bacteria in the rhizosphere of agricultural plants growing in soils with middle or high phosphorus contents. Zentralblatt-fur-Mikrobiologie, 1992, 147: 3-4, 270-276.
    [85] Feng Ke,LU Hai-Miing,SHENG Hai-Jun,WANG Xiao-L and MAO Jian.Effect of Organic Ligands on Biological Avail ability of Inorganic Phosphorus in Soils.Pedosphere, 2004,14(1):85-92.
    [86] Fisher, R.A. and R.P. Thomas. The determination of the forms of inorganic phosphorus in soils. J. of the Am. Soc. of Agronomy, 1935,27:863-873.
    [87] Fraga R, RodríguezH, González T. Transfer of the gene encoding the Napa acid phosphatase from Morganella morganii to a Burkholderia cepaciastrain. Acta. Biotechno.l, 2001, 21:359-369.
    [88] Freitas JR ,Banerjee MR, Germida JJ. Phosphate-solubilizing rhizobacteria enhance the growth and yield but notphosphorus uptake of canola (Brassica napus L.) . Biology and Fertility of Soils,1997, 24(4):358-364.
    [89] Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization .Appl.Environ.Microbiol., 1991,57: 2351-2359.
    [90] Gleddie S C, et al. A summrary of wheat response to provideTM in western Canada. In Proc Alberta Soil Science Workshop. Lethbridge Alberta, 1991:306-313.
    [91] Goldstein AH, Braverman K and Osorio N. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiology Ecology, 1999,30(4):295-300.
    [92] Goldstein AH, Liu ST. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology,1987,5:72-74.
    [93] GULDEN R H, VESSEY J K. Penicillium bilaii inoculation increases root-hair production in field pea. Canadian journal of plant science, 2000, 80(4): 801-804.
    [94] Gyaneshwar P, Parekh LJ, Kumar GN. Cloning of mineral phosphate solubilizing genes from Synechocystis PCC 6803. Current Science,1998, 74(12): 1097-1099.
    [95] Halder AK, Chakrabartty PK. Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol, 1993,38: 325-330.
    [96] Hameeda B, Reddy Y, Harish KR. Effect of Carbon Substrates on Rock Phosphate Solubilization by Bacteria from Composts and Macrofauna. Current microbiology, 2006 ,53(4):298-302.
    [97] Herman J Pel. Johannes H de Winde. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotechnology.2007,25:221 -231.
    [98] Idriss E E, Makarewicz O, Farouk A,etal. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology, 2002, 148:2097-2109.
    [99] Illmer P, Schinner F. Solubilization of inorganic calcium phosphates - solubilization mechanisms. Soil Biology and Biochemistry (United Kingdom),1995, 27(3): 257-263;
    [100] James E, Kuiacy C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium biaii. Appl Environ Micro, 1992, 58(5): 1451-1458.
    [101] James E. Galagan, Sarah E. Calvo. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438,2005(7071):1105-1115.
    [102] Kamble B M, Mohite A V. Effects of phosphate and biophos culture inoculation on nutrients concentration, quality of groundnut and yield of subsequent wheat crop. Journal of Maharashtra Agricultural Universities, 1996,21(3):324-327.
    [103] Karl.Cellular nucleotide measurements.Microbiological Review,1980,44:758-760.
    [104] Katiyar V, Goel R. Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonasfluorescens. Microbiol,2003,158(2):163-168.
    [105] Katznelson H Bose B. Metabolic activities and phosphate-dissolving capacity of bacterial isolates from wheat roots, rhizosphere and non-rhizosphere soil. Can. J Microbiol ,1959,5: 79-85.
    [106] Khin and G.W. Leeper, Modifications in Chang and Jackson's procedure for fractionation of soil phosphorus.Agrochemica,1960,4:246-254.
    [107] Kiel JA, Veenhuis M, van der Klei IJ. PEX genes in fungal genomes: common, rare or redundant. Traffic. 2006 ,7(10):1291-303.
    [108] Kim KY, Jordan D, Krishinan HG. Expression of genes from Ranella apuatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiology Letters ,1998,159:121-127.
    [109] Kim KY, Hwangbo H, Kim YW. Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G. J Kor Soc Soil Fertil .,2002,35:59-67.
    [110] Kim KY, Jordan D and McDonald GA. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils. ,1998; 26(2): 79-87.
    [111] Kim KY, McDonald GA Jordan D. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils,1997,24(4): 347-352.
    [112] Kouno, K., Lukito, H.P., Ando, T., Brookes, P.C. Microbial Biomass P. Dynamics in Soil. Transaction of 15th World Congress of Soil Science,1994, 5: 85-86.
    [113] Kucey RMN,Leggett ME. Increased yields and phosphorous uptake by westar canola (Brassica napus L.) inoculated with a phosphate-solubilizing isolate of Penicillium bilaj . Canadian Journal of Soil Science,1989, 69: 425-432.
    [114] Kucey, RMN. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science,1983,63: 671-678.
    [115] Kundu B S , Gaur A C. Inoculant carriers for phosphate-solubilizing micro- organisms. Indian-Journal-of-Agricultural-Sciences, 1981,51(4): 252-255.
    [116] Kundu BS ,Gaur A C. Effect of phosphobacteria on the yield and phosphate uptake of potato crop. Curr. Sci, 1980, 49:159-160.
    [117] Liba CM, Ferrara FIS, Manfio GP. Nitrogen-fixing chemo-organotrophic bacteria isolated fromcyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. Journal of applied microbiology,2006,101(5):1076-1086.
    [118] Lipman, JG, Mclean HC and Lint HC. Sulphur oxidation in soils and its effect on the availability of mineral phosphates. Soil Sci.,1916, 2: 499-538.
    [119] Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R and Goldstein AH. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. Journal of Bacteriology,1992,174(18): 5814-5819.
    [120] Loganathan P, Nair S. A salt-tolerant nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). International Journal of Systematic and Evolutionary Microbiology, 2004, 54(4):1185-1190.
    [121] Loganathan P, Nair S. Crop-specific endophytic colonization by a novel, salt-tolerant, N2-fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice. Biotechnology Letters.2003,25(6): 497-501.
    [122] Loganathan P, Nair S. Crop-specific endophytic colonization by a novel, salt-tolerant, N2-fixing and phosphate-solubilizing gluconacetobacter sp. from wild rice. Biotechnology Letters, 2003, 25(6):497-501.
    [123] López-Bucio J,de la Vega OM,Guevara-García A and Herrera-Estrella L. Enhanced phophorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol, 2000, 18:450-45.
    [124] Lorena Belén Gui?azúet al. Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils (2010) 46:185-190.
    [125] Louw HA, WDM .A study of soil bacteria dissolving certain phosphate fertilizers and related compounds. J Appl Bacteriol ,1959,22:227-233.
    [126] Luo AC, Sun X, Zhang YS. Species of inorganic phosphate solubilizing bacteria in red soil and the mechanism of solubilization. Pedosphere ,1993,3(3):285-288.
    [127] Machida M, Asai K, Sano M, Tanaka T. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005,438(7071):1157-61.
    [128] Menkina R A. Bacteria which mineralise organic phosphorus compounds. Mikrobiologiya, 1950,19:308-316.
    [129] Moghimi A, Tata ME,. Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4?. Soil Biology and Biochemistry, 1978,10:289-292.
    [130] Moghimi A, Tata ME. Oades JM. Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biology and Biochemistry,1978,10:283-287.
    [131] Moghimi A, Tate ME, Oades IM. Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biology and Biochemistry,1978,10:277-281.
    [132] Mohammad Ali Malboobi, Parviz Owlia, Mandana Behbahani, Elaheh Sarokhani and Sara Moradi.Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World Journal of Microbiology and Biotechnology, 2009, 25(8):1471-1477.
    [133] Nahas E, Assis LC. Effect of phosphate on the solubilization of fluorapatite by Aspergillus niger. Revista de Microbiologia,1992,23(1): 37-42.
    [134] Nahas E, Assis LC. Rock phosphate solubilization by Aspergillus niger in different types of vinasse. Pesquisa Agropecuaria Brasileira (Brazil),1992,27(2) :325-331.
    [135] Nahas E. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 1996,12(6): 567-572.
    [136] Narloch C, Oliveira VL, Anjos JT. Responses of radish culture to phosphate-solubilizing fungi. Pesquisa Agropecuaria Brasileira (Brazil),2002, 37(6): 841-845.
    [137] Nierman WC, Pain A, Anderson MJ, Wortman JR. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005 Dec 22;438(7071):1151-6.
    [138] Ocampo J A , Barea J M,. Effects of microbial fertilizers on flowering of tomato in the absence of established inocula in the rhizosphere. Anales de Edafologia y Agrobiologia, 1978,37: 3-4, 315-325.
    [139] Pal KK, Tilak KVB, Saxena AK, Dey R, and Singh CS. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiological Research, 2001. 156: 3, 209-223.
    [140] Patgiri, I. and Bezbaruah, B. Strains contributing to phosphorus mobilization in acid soils. Indian Journal of Agricultural Sciences.1990.35(1):127-132.
    [141] Peix A, Rivas R, Santa R I, et al. A novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. International journal of systematic and evolutionary. Microbiology, 2004,54(3):847-850.
    [142] Peix A,Rivas B, Mateos PF. Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biology and Biochemistry, 2001,33(1):103-110.
    [143] Pikovskaya R I. Mobilization of phosphates in soil in connection with the vital activities of some microbial species. Mikrobiologiya, 1948,17:362-370.
    [144] Popavath Ravindra Naik, Gurusamy Raman et al. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiology 2008, 8:230
    [145] Quan, CS, Zhang LH, Wang YJ. Production of phytase in a low phosphate medium by a novel yeast Candida krusei. Journal of Bioscience and Bioengineering, 2001,92(2):154-160.
    [146] Rachewad SN, Raut RS, Malewar GU. Suitability of carrier for production of biofertilizer from phosphate solubilizing bacteria. Journal of Maharashtra Agricultural Universities, 1992,17(2):347-348.
    [147] Raghu K. and Macrael.C, Occurrence of phosphate-dissolving micro-organisms in the rhizosphere of rice plants and in submerged soils. J. appl. Bacterial,1966,29(3):582-586.
    [148] Ralston DB , McBride RP. Interaction of mineral phosphate-dissolving microbes with red pineseedlings. Plant and Soil, 1976,,45(2): 493-507;
    [149] Rashid M, Khalil S, Ayub N. Organic Acids Production and Phosphate Solubilization by Phosphate Solubilizing Microorganisms (PSM) Under in vitro Conditions. Pakistan Journal of Biological Sciences, 2004 ,7(2): 187-196 .
    [150] Reilly T J, Baron G S, Nano F,etal. Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis. J. Bio.l Chem,1996,271:10 973-10983.
    [151] Rinu K. and Anita Pandey. Slow and steady phosphate solubilization by a psychrotolerant strain of Paecilomyceshepiali (MTCC 9621). World Journal of Microbiology and Biotechnology, 2010,26(9):1-8.
    [152] Rivas R, Peix A, Mateos P F, et al. Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant and soil, 2006, 287:1-2.
    [153] Rivas R, Trujillo M E, Sanchez M S, et al. Microbacterium ulmi sp nov, a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmusnigra.International. Journal of Systematic and Evolutionary Microbiology, 2004,54(2):513-517.
    [154] Rodriguez H, Fraga R, Gonzalez T and Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and soil, 2006,287(1-2):15-21.
    [155] Rodriguez H, Rossolini G M, Gonzalez T,etal. Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity. Curr. Microbio.l, 2000, 40:362-366.
    [156] Roos W and Luckner. Relationship between proton extrusion and pluxes of ammonium ions and organic acids in Penicillium cyclopium. J. Gen. Microbiol, 1984,130: 1007-1014.
    [157] Sackett, W.G., A. J. Patto and C.W. Brown, The solvent action of soil bacteria upon the insoluble phosphates of raw bone meal and natural rock phosphate. Zentralbl. Bakteriol, 1908,28: 668-672.
    [158] Sajidan A, Farouk A, GreinerR,etal. Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiellasp. ASR1. App.l Microbio.l Biotechno.l, 2004, 65(1):110-118.
    [159] Salih HM, Yahya ALM. Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant and Soil, 1989,120(2): 181-185.
    [160] Sang-Mo Kang, Gil-Jae Joo, Muhammad Hamayun, Chae-In Na, Dong-Hyun Shin, Hak Youn Kim, Jin-Kyu Hong and In-Jung Lee. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett, 2009,31:277–281.
    [161] Schutter M E, Dick R P. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates.Soil Biol.Biochem., 2001,33: 1481-1491.
    [162] Seshadri, S. Ignacimuthu, M. Vadivelu and C. Lakshminarasimhan Inorganic phosphate solubilization by two insect pathogenic Bacillus sp.2007, 102: 351-355.
    [163] Shenbagarathai R. Isolation and characterization of mutants of Rhizobium SBS-R100 symbioticwith Sesbania procumbens.Soil Biology and Biochemistry,1993, 25(10): 1339-1342.
    [164] Smith J H, Allison F E and soulides D A. Evaluation of phosphobacterin as a soil inoculant. Soil Sci Soc Am Proc, 1961,25:109-111.
    [165] Son H J, Park G T, Cha M S, et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Ioresource Technology, 2006,97(2):204-210.
    [166] Sperber JI. Release of phosphate from soil minerals by hydrogen sulfide. Nature, 1958,181: 934.
    [167] Sperber JI. Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research,1958,9:782-787.
    [168] Sperber JI. Solution of mineral phosphate by soil bacteria. Nature, 1957,180:994-995.
    [169] Sperber JI. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 1958,9:778-781.
    [170] Stalstrom, V.A., Boitrag Zur kennturs der Ein-wisking steriler und in Garung bofindlicher organischer stroffe auf dil loslichkeit der phosphorsen des tricalcium phosphate. Zentralbl. Bakteriol, 1903,11: 724-732.
    [171] Stevenson F J.Cycles of Soil Carbon,Nitrogen,Phosphorus,Sulfur,Micronutrients.New York:John Wiley and Sons,1986:380
    [172] Sudhansu SPalP Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops .Plant Soil, 1998, 198: 167-177
    [173] Suresh CP, Nath S, Poduval M, Sen SK.. Effect of bio-fertilizers on the growth of cashew root stock. Cashew,1998,12(1):10-14.
    [174] Taha SM, Mahmoud SAZ, El DAH. Activity of phosphate-dissolving bacteria in Egyptian soils. Plant and Soil,1969, 31:149-160.
    [175] ThallerM C, BerluttiF, Schippa S,etal. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morgani.i Microbiology, 1994, 140:1341-1350.
    [176] Thomas GV, Shantaram MV. Solubilization of inorganic phosphates by bacteria from coconut plantation soils. Journal-of-Plantation-Crops. 1986, 14(1):42-48.
    [177] Tomar S S, Abbas M, Khandkar U R. Availability of phosphorus to urdbean as influenced by phosphate solubilizing bacteria and phosphorus levels. Indian Journal of Pulses Research, 1994,7(1):28-32.
    [178] Trolldenier G. Techniques for observing phosphorus mobilization in the rhizosphere. Biology and Fertility of Soils, 1992, 14(2):121-125.
    [179] van den Berg MA, Albang R, Albermann K. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol. 2008;26(10):1161-8
    [180] Vessey J K, Heisnger K G. Effect of Penicillium bilaii inoculation and phosphorus fertilisation onroot and shoot parameters of field-grown pea . Canadian Journal of Plant Science, 2001, 81(3):361-366.
    [181] Vora, MS, Shelat HN. Torulospora globosa: A unique strain solubilizing tricalcium phosphate. Indian-Journal-of-Agricultural-Sciences, 1998, 68(9): 630-631.
    [182] Wanner B L,McSharry R. Phosphate controlled gene expression in E.coli K12 usiing Mudldirected LacZ Fusions.J.Mol.Biol.,1982,158:347-363.
    [183] Yang Y H, Yao J, Hua X M. Effect of pesticide pollution against functional microbial diversity in soil.J.Microbiol., 2000,20(2):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700