地铁隧道水平冻结工程地层冻胀融沉的预测方法及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁隧道人工冻结法施工期地层的冻胀融沉现象会对工程周边环境产生不良影响,轻则延长工程工期和提高工程造价,重则危及施工安全和造成重大的经济损失。在地铁隧道冻结工程设计阶段,应根据具体工程性质,采用合理方法对可能引起的地层冻胀融沉效应进行预测,以便于实际施工过程中采取适宜的冻结实施方案和相应的冻胀融沉预防措施,将冻结法应用的成本和风险降到最低。有鉴于此,本文采用理论分析、数值模拟和模型试验相结合的研究手段,对地铁隧道水平冻结工程地层冻胀融沉的预测方法进行了系统研究,并应用于实际工程,对地层的冻胀融沉规律进行深入分析。其主要研究内容及成果如下:
     (1)提出在地铁隧道水平冻结期,冻结壁交圈前的温度场由单管冻结理论近似求解,冻结壁交圈后的温度场则由平板冻结理论近似求解。基于单管冻结理论、平板冻结理论和体冻胀率计算公式,考虑冻结壁的形成过程,采用随机介质理论,建立了地铁隧道水平冻结施工期地表冻胀的历时预测模型。
     (2)提出冻结壁自然解冻条件下的温度场由平板解冻理论近似求解,冻结壁强制解冻条件下的温度场则由单管解冻理论近似求解。基于平板解冻理论、单管解冻理论和一维情况下已融层的稳定融沉量计算公式,分别考虑冻结壁的自然和强制解冻过程,采用随机介质理论,建立了地铁隧道水平冻结施工期地表融沉的历时预测模型。
     (3)综合考虑地层温度、地表对流等各类初始和边界条件及体的冻融相变潜热过程,建立了隧道冻结工程冻融瞬态温度场的数学模型,并定义冻的冻胀率和融沉率为瞬时体应变,考虑冻的正交各向异性变形特征,基于ABAQUS有限元软件的二次开发技术,编制体冻融变形的用户子程序,进而提出了地铁隧道水平冻结施工期地层冻胀融沉的弹塑性热力耦合数值模拟预测方法。
     (4)将所提出的冻胀融沉随机介质理论预测方法和热力耦合数值模拟预测方法,应用于圆形隧道全断面水平冻结工程和浅埋大断面隧道水平冻结工程中,获得了地层冻结温度场、冻胀位移场、解冻温度场以及融沉位移场等分布规律,并与现场实测结果相比较,验证了预测方法的实用性和可靠性。
     (5)首次建立了一套可模拟地铁隧道双线水平冻结施工过程的室内原材料模型试验系统,对双线隧道依次冻结方式下的地层温度场和冻胀融沉变化规律进行了试验研究。通过数值模拟分析验证了模型试验结果的可靠性,且表明相对于同时冻结方式,双线隧道采用依次冻结方式在一定程度上能减小地层冻胀位移。
     在今后地铁隧道建设中,人工冻结法的应用将会越来越广泛。本文研究成果将为此类工程建设提供有效参考依据,并具有重要的现实工程意义。
In the period of subway tunnel construction with artificial freezing method, frost heave and thawing settlement of ground can produce serious influence on the surrounding environment, ranging from extending construction period and increasing project cost to endangering construction safety and cause significant economic losses. In the design phase of subway tunnel freezing engineering, reasonable method must be adopted to forecast possible frost heave and thawing settlement effect of ground according to the specific project, on this basis, suitable freezing implementing scheme, frost heave and thawing settlement prevention measures can determined, which can reduce the project cost and construction risk. For this reason, by means of theoretical analysis, numerical simulation and model test, prediction methods of frost heave and thawing settlement are researched in the period of subway tunnel construction with horizontal freezing method in the thesis. Aiming to practical engineering, the proposed prediction methods are used for in-depth analysis on the distribution law of frost heave and thawing settlement. Research contents and achievements are as follows:
     (1) Temperature field before freezing wall enclosing can be analyzed by single-pipe freezing theory, and temperature field after freezing wall enclosing can be analyzed by flat-panel freezing theory. Based on single-pipe freezing theory, flat-panel freezing theory and frost heaving rate calculation formula, considering the formation process of frozen wall, using stochastic medium theory, a duration prediction model of surface frost heave in the period of subway tunnel construction with horizontal freezing method is presented.
     (2) Temperature field under natural thawing conditions can be analyzed by flat-panel thawing theory, and Temperature field under mandatory thawing conditions can be analyzed by single-pipe thawing theory. Based on flat-panel thawing theory, single-pipe thawing theory and thawing settlement content calculation formula in the one-dimensional case, considering the thawing process of frozen wall, using stochastic medium theory, a duration prediction model of surface thawing settlement in the period of subway tunnel construction with horizontal freezing method is presented.
     (3) Considering various initial and boundary conditions such as ground temperature, surface convection and freezing and thawing phase change latent heat, etc, Mathematical model of freezing and thawing transient temperature field is presented. Defining frost heave rate and thawing settlement rate of frozen soil as instantaneous volume strain, considering orthotropic deformation characteristics of frozen soil, based on secondary development of ABAQUS finite element software, user subroutine used to calculate freezing and thawing deformation of frozen soil is compiled, and then coupled heat-stress numerical simulation prediction method of frost heave and thawing settlement is proposed in the period of subway tunnel construction with horizontal freezing method.
     (4) The stochastic medium theory and coupled heat-stress numerical simulation prediction methods of frost heave and thawing settlement are applied to circular tunnel full section horizontal freezing engineering and shallow large section tunnel horizontal freezing engineering, then freezing temperature field, frost heave displacement field, thawing temperature field and thawing settlement displacement field are presented, which are compared with field measured results to verify reliability of the prediction methods.
     (5) A large raw material model test system is firstly established, which can simulate two-lane tunnel horizontal freezing construction process. Ground temperature field, frost heave and thawing settlement variation are researched by model test in the case of two-lane tunnel sequentially freezing. Through numerical simulation analysis, the model test results are be verified. Frost heave displacement can be reduced when two-lane tunnel sequentially freezing compared with simultaneously freezing.
     The application of artificial freezing method will be more widely used in subway tunnel construction in the future. Achievements of the thesis not only can provide effective reference for such tunnel engineering construction, but also have great realistic engineering significance.
引文
[1]崔广心,杨维好,吕恒林.深厚表层中的冻结壁和井壁[M].徐州:中国矿业大学出版社,1998.
    [2]陈湘生.地层冻结工法理论研究与实践[M].北京:煤炭工业出版社,2007.
    [3]崔云龙.简明建井工程手册(下册)[M].北京:煤炭工业出版社,2003.
    [4]Veranneman G, Rebhan D. Ground consolidation with liquid nitrogen (LN2)[J]. Engineering Geology,1979,13(4):473-484.
    [5]Gallavresi F. Ground freezing-the application of the mixed method (brine-liquid nitrogen) [J]. Engineering Geology,1981,18(4):361-375.
    [6]翁家杰.液氮冻结层的理论与实践[J].煤炭科学技术,1994,22(9):11-15.
    [7]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [8]马芹永.人工冻结法的理论与施工技术[M].北京:人民交通出版社,2007.
    [9]高志勤,和田正八郎.壤冻结工法(?)(Ⅰ)[J].冷冻,1961,36(408):1-15.
    [11]H.A.崔托维奇.冻力学[M].北京:科学出版社,1985.
    [12]C.C.维亚洛夫,(?).K.查列茨基,C.(?).果罗捷茨基.人工冻结强度与蠕变计算[M].兰州:中国科学院兰州冰川冻研究所图书情报室,1983.
    [13]Ladanyi B. An engineering theory of creep of frozen soils[J]. Canadian Geotechnical Journal,1972,9(1):63-80.
    [14]Andersland O B, Akili W. Stress effect on creep rates of a frozen soil[J]. Geotechnique, 1967,17(1):27-29.
    [15]Andersland O B, Ladanyi B. Frozen ground engineering[M]. New Jersey:Wiley,2004.
    [16]程国栋.中国冰川学和冻学研究40年进展和展望[J].冰川冻,1998,20(3):213-216.
    [17]李宁,程国栋,徐学祖等.冻力学的研究进展及思考[J].力学进展,2001,31(1):95-102.
    [18]程国栋,杨成松.青藏铁路建设中的冻力学问题[J].力学与实践,2006,(3):1-7.
    [19]齐吉琳,马巍.冻的力学性质及研究现状[J].岩力学,2010,31(1):133-143.
    [20]程桦.城市地下工程人工地层冻结技术现状及展望[J].淮南工业学院学报,2000,20(2):17-22.
    [21]陈湘生.我国煤矿凿井技术现状及展望[J].煤炭科学技术,1997,20(1):11-13.
    [22]Johansson T. Artificial ground freezing in clayey soil-laboratory and field studies of deformations during thawing at the Bothnia line [Doctoral Thesis] [D]. Sweden, Stockholm:Royal Institute of Technology,2009.
    [23]翁家杰,陈明雄.冻结技术在城市地下工程中的应用[J].煤炭科学技术,1997,25(7):51-53.
    [24]周兴旺.我国特殊凿井技术的发展和展望[J].煤炭科学技术,2007,35(10):10-17.
    [25]木下诚一.冻物理学[M].长春:吉林科学技术出版社,1985.
    [26]Rojo J L, Novillo A, Alocen J R. Soil freezing for the Valencia underground railway work[C]. Ground Freezing. Rotterdam:Balkema,1991.
    [27]Joseph A, Sopko T, John A Shster, et al. Frozen earth cofferdam design[C]. Ground Freezing. Rotterdam:Balkema,1991.
    [28]Peter J, Helmut H. Use of artificial ground freezing in three sections of the dusseld of subway[C]. Ground Freezing. Proc 7ISGF,1994.
    [29]Katayama H, Joushima M, TanakaM, et al. Application of freezing method for widening an existing tunnel[C]. Ground Freezing. Rotterdam:Balkema,1997.
    [30]何淑梅.沿海地区地铁隧道冻结工程中体冻胀融沉特性研究[硕士学位论文][D].兰州:兰州理工大学,2011.
    [31]Aigner E G. Artificial ground freezing in cohesive soils at the underground station schottenring-experimental study on ice-lens formation [Master's Thesis][D]. Austria, Vienna:Vienna University of Technology,2005.
    [32]周晓敏,王梦恕.人工地层冻结技术在我国城市地下工程中的兴起[J].都市快轨交通,2004,17(s):77-80.
    [33]周晓敏,苏立凡,贺长俊等.北京地铁隧道水平冻结法施工[J].岩工程学报,1999,21(3):319-322.
    [34]罗俊成,史海鸥,徐兵壮等.长距离水平冻结法在广州地铁中的应用与实践[J].现代隧道技 术,2002,39(4):22-26.
    [35]姚直书,蔡海兵,程桦等.采用长距离水平冻结暗挖法的浅埋大断面地铁隧道施工技术[J].中国铁道科学,2011,32(1):75-80.
    [36]肖朝晌.人工地层冻结冻帷幕形成与解冻规律研究[博士学位论文][D].上海:同济大学,2007.
    [37]岳丰田,仇培云,杨国祥等.复杂条件下隧道联络通道冻结施工设计与实践[J].岩工程学报,2006,28(5):660-663.
    [38]胡向东,陈蕊.双层越江隧道联络通道冻结法施工技术[J].低温建筑技术,2006,(5):64-66.
    [39]上海市申通轨道交通研究咨询有限公司.上海市工程建设规范-旁通道冻结法施 工技术规程(DG/TJ08-902-2006)[S].上海:上海市新闻出版局,2006.
    [40]王晖,竺维彬.软地层地铁盾构隧道联络通道冻结法施工控制技术研究[J].现代隧道技术,2004,41(3):17-21.
    [41]史继尧.冻结法施工在地铁联络通道中的应用[J].隧道建设,2011,31(s2):152-156.
    [42]张志,张勇,陆路.冻结法在强扰动地层地铁联络通道施工中的应用[J].隧道建设,2011,31(1):114-120.
    [43]杨平,佘才高,董朝文等.人工冻结法在南京地铁张府园车站的应用[J].岩力学,2003,24(s):388-391.
    [44]武冰冰,蔡海兵,程桦.地铁隧道盾构洞门的垂直冻结加固技术[J].铁道标准设计,2011,(9):80-84.
    [45]黄见峰,徐兵壮.地铁隧道盾构出洞口液氮竖直冻结加固技术[J].中国市政工程,2009,(5):62-63.
    [46]岳丰田,杨国祥,张勇等.液氮冻结技术在上海地铁盾构进洞施工中的应用[C].地下工程施工与风险防范技术-2007第三届上海国际隧道工程研讨会文集.上海:同济大学出版社,2007:433-437.
    [47]祝和意,马晓华.水平冻结法在苏州地铁盾构进出洞中的应用[J].隧道建筑,2011,(8):58-60.
    [48]曾涛.应用液氮冻结技术修复软地基中的地铁隧道[J].煤炭科学技术,2010,38(6):41-43,60.
    [49]赵时运,周兴荣,曹化春等.液氮冻结法原位修复隧道施工技术[R].合肥:中煤矿山建设集团,2010.
    [50]方江华,张志红,张景钰.人工冻结法在上海轨道交通四号线修复工程中的应用[J].木工程学报,2009,42(8):124-128.
    [51]余喧平,朱卫杰.上海市轨道交通4号线修复工程综述[C].地下工程施工与风险防范技术-2007第三届上海国际隧道工程研讨会文集.上海:同济大学出版社,2007:21-30.
    [52]姜耀东,赵毅鑫,周罡等.广州地铁超长水平冻结多参量监测分析[J].岩力学,2010,31(1):158-164,173.
    [53]岳丰田,张水宾,李文勇等.地铁联络通道冻结加固融沉注浆研究[J].岩力学,2008,29(8):2283-2286.
    [54]搜狐网.国务院批复22城市地铁建设规划,总投资8820亿元[EB/OL].[2009].http://news.sohu.com/20091209/n268796675.shtml.
    [55]李萍,徐学祖,陈峰峰.冻结缘和冻胀模型的研究现与进展[J].冰川冻,2000, 22(1):90-95.
    [56]Taber S. The mechanics of frost heaving[J]. Journal of Geology,1930,38:303-317.
    [57]Beskow G. Soil freezing and frost heaving with special application to roads and railroads[C]. The Swedish Geological Society year book no.3. Chicago:Northwestern University,1935.
    [58]陈肖柏,刘建坤,刘鸿绪等.的冻结作用与地基[M].北京:科学出版社,2006.
    [59]Everett D H. The thermodynamics of soil moisture[J]. Transactions of the Faraday Society,1961,57:1541-1551.
    [60]Miller R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway research record,1972,393:1-11.
    [61]Miller R D. The porous phase barrier and crystallization[J]. Separation Science,1973, 8(5):521-535.
    [62]Satoshi Akagawa. Experimental study of frozen fringe characteristics[J]. Cold Region Science and Technology,1988,15:209-233.
    [63]李萍,徐学祖,蒲毅彬等.利用图像数字化技术分析冻结缘特征[J].冰川冻,1999.21(2):175-180.
    [64]齐吉琳,马巍.冻的力学性质及研究现状[J].岩力学,2010,31(1):132-143.
    [65]Miller R D. Frost heaving in non-colloidal soils[C]. Proceedings of 3rd International Conference on Permafrost, Ottawa, Canada,1978:708-713.
    [66]O'Nell K, Miller R D. Numerical solutions for rigid-ice model of secondary frost heave[C]. Proceeding of 2rd international symposium on ground freezing, Trondheim, Norway,1980:656-669.
    [67]O'Nell K, Miller R D. Exploration of a rigid ice model of frost heave[J]. Water Resources Research,1985,21(3):281-296.
    [68]Konrad J M, Morgenstern N R. The segregation potential of a freezing soil[J].Canadian Geotechnical Journal,1981,18:482-491.
    [69]Konrad J M, Morgenstern N R. Effects of applied pressure on freezing soils [J]. Canadian Geotechnical Journal,1982,19:494-505.
    [70]Konrad J M. Frost heave in soils:concepts and engineering [J]. Canadian Geotechnical Journal,1993,31:223-245.
    [71]Konrad J M. Estimation of the segregation potential of finegrained soils using the frost heave response of two reference soils[J]. Canadian Geotechnical Journal,2005,42: 38-50.
    [72]Konrad J M, Shen M.2-D frost action modeling using the segregation potential of soils[J]. Cold Regions Science and Technology,1996,24:263-278.
    [73]Konrad J M. Prediction of freezing-induced movements for an underground construction project in Japan[J]. Canadian Geotechnical Journal,2002,39: 1231-1242.
    [74]Kim K, Zhou W, Huang S L. Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology,2008,53: 382-396.
    [75]Konrad J M, Morgenstern N R. Frost heave prediction of chilled pipelines buried in unfrrozen soils[J]. Canadian Geotechnical Journal,1984,21:100-115.
    [76]Nixon J F. Discrete ice lens theory for frost heave in soils[J]. Canadian Geotechnical Journal,1991,28:843-859.
    [77]Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resources Research,1973,9(5):1314-1323.
    [78]Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal,1978,15:548-555.
    [79]Guymon G L, Hromadka T V, Berg R L. A one-dimensional frost heave model based upon simulation of simultaneous heat and water flux[J]. Cold Regions Science and Technology,1980,3:253-262.
    [80]Hromadka T V, Guymon G L, Berg R L. Some approaches to modeling phase change in freezing soils[J]. Cold Regions Science and Technology,1981,4:137-145.
    [81]吉植强.季节冻地区圆形基坑冻结壁模型试验研究[博士学位论文][D].哈尔滨:哈尔滨工业大学,2010.
    [82]Fremond M, Mikkola M. Thermomechanical modeling of freezing soil[C]. Proceeding of 6rd international symposium on ground freezing, Beijing, China,1991.
    [83]Michalowski R L, Zhu M. Frost Heave Modelling Using Porosity Rate Function[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2006, 30(8):703-722.
    [84]Michalowski R L, Zhu M. Modelling of Freezing in Frost-susceptible Soils[J]. Computer Assisted Mechanics and Engineering Sciences,2006,13(4):613-625.
    [85]王铁行.多年冻地区路基变形分析[J].中国公路学报,2005,18(2):1-5.
    [86]毛雪松,李宁,王秉纲等.考虑相变作用的冻路基应力与变形分析模型[J].交通运输工程学报,2007,7(1):58-62.
    [87]于基宁,谭峰屹,付伟.饱和正冻冻结过程的冻胀变形分析[J].岩力学,2006,27(s):203-206.
    [88]Shen Mu, Ladanyi B. Modelling of coupled heat, moisture and stress field in freezing soil[J]. Cold Regions Science and Technology,1987,14:237-246.
    [89]Konrad J M, Duquennoi C. A model for water transport and ice lensing in freezing soils[J]. Water Resources Research,1993,29(9):3109-3124.
    [90]何平,程国栋,俞祁浩等.饱和正冻中的水、热、力场耦合模型[J],冰川冻,2000,22:135-138.
    [91]李洪升,刘增利,梁承姬.冻水热力耦合作用的数学模型及数值模拟[J].力学学报,2001,33(5):621-629.
    [92]李宁,陈波,陈飞熊.冻路基温度场、水分场、变形场三场耦合分析[J].木工程学报,2003,36(10):66-71.
    [93]徐学祖,王家澄,张立新.冻物理学[M].北京:科学出版社,2001.
    [94]徐坤,杨更社.模糊综合评判在体冻胀灾害预测中的应用[J].岩石力学与工程学报,2004,23(s 1):4339-4342.
    [95]孙树魁,张树光.基于分形和神经网络相结合的体冻胀量预测[J].辽宁工程技术大学学报,2007,26(6):874-876.
    [96]付厚利.深厚表中冻结壁解冻阶段井壁竖直附加力变化规律的研究[博士学位论文][D].徐州:中国矿业大学,1997.
    [97]Waston G, Slusarchuk W, Rowley R. Determination of some frozen and thawed properties of permafrost soils[J]. Canadian Geotechnical Journal,1973,10:592-606.
    [98]Crory F. Settlement associated with the thawing of permafrost[C]. Proceedings of 2rd International Conference on Permafrost, Yakutsk, USSR,1973:599-607.
    [99]张喜发,陈继,张冬青.融沉系数在季冻区高速公路路基冻害研究中的应用[J].冰川冻,2003,24(5):634-638.
    [100]何平,程国栋,杨成松等.冻融沉系数的评价方法[J].冰川冻,2003,25(6):608-613.
    [101]梁波,张贵生,刘德仁.冻融循环条件下的融沉性质试验研究[J].岩工程学报,2006,28(10):1213-1217.
    [102]中国科学院兰州冰川冻研究所,煤炭工业部特殊凿井公司.冻结壁凿井冻壁的工程性质[M].兰州:兰州大学出版社,1988.
    [103]王效宾,杨平.基于BP人工神经网络的冻融沉系数预测方法研究[J].森林工程,2008,24(5):18-21.
    [104]姚晓亮,齐吉琳.融沉系数的人工神经网络预测方法[J].冰川冻,2011,33(4):891-896.
    [105]Corapcioglu M Y. A mathematical model for the permafrost thaw consolidation[C]. Proceedings of 4rd International Conference on Permafrost, Beijing, China,1983: 179-185.
    [106]马巍.冻融化固结问题的理论模型[C].第四届全国冻学术会议论文集.北京:科学出版社,1990,90-99.
    [107]Foriero A, Ladanyi B. FEM Assessment of large-strain thaw consolidation[J]. Cold Regions Science and Technology,1995,23(2):121-136.
    [108]Sally Shoop. Cap plasticity model for thawing soil[J]. Calibration of Constitutive Models.2005, (3):139-150.
    [109]马骉,鲍燕妮,姬杨蓓蓓.多年冻地区路基不均匀融沉变形计算分析[J].公路交通科技,2007,24(1):6-9,25.
    [110]Xu Jianfeng, Abdalla B, Eltaher A, etc. Permafrost Thawing-Pipeline Interaction Advanced Finite Element Model[C]. Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore, and Arctic Engineering, Honolulu, Hawaii,2009:1-6.
    [111]侯曙光,沙爱民.体冻融过程温度场与位移场耦合分析[J].长安大学学报(自然科学版),2009,29(5):25-29.
    [112]阳军生,刘宝琛.城市隧道施工引起的地表移动与变形[M].北京:中国铁道出版社,2002.
    [113]李方政.冻帷幕的冻胀和蠕变效应与结构相互作用理论及应用研究[博士学位论文][D].南京:东南大学,2005.
    [114]李方政.体冻胀与地基梁相互作用的叠加法研究[J].岩力学,2009,30(1):79-85.
    [115]宁方波.地下冻结工程中体冻胀融沉对地表变形的影响分析[硕士学位论文][D].北京:煤炭科学研究总院,2005.
    [116]陶德敬,王明年,刘大刚.冻结法隧道施工引起的地表移动及变形预测[J].现代隧道技术,2006,43(6):45-50.
    [117]周太全,华渊,吕宝华.某地铁区间隧道冻结施工冻胀效应随机预测分析[J].冰川冻,2009,31(1):119-123.
    [118]刘波,李东阳,廖建军.体压力对地铁旁通道解冻后地表沉降的影响[J].煤炭学报,2011,36(4):551-555.
    [119]程桦,臧华.人工地层水平冻结冻胀效应准耦合数值分析[J].岩工程学报,2003,25(1):87-90.
    [120]李大勇,陈福全,张庆贺.地铁联络通道冻结施工的三维数值模拟[J].岩力学,2004,25(S2):472-474.
    [121]张志强,何川.用冻结法修建地铁联络通道施工力学研究[J].岩石力学与工程学报,2005,24(18):3211-3217.
    [122]岳丰田,仇培云,杨国祥等.越江隧道联络通道冻结法数值计算[J].煤炭学报,2005,30(6):710-714.
    [123]李方政,楼根达,余志松等.基于蠕变效应的穿越隧道冻结帷幕开挖与支护三维数值模拟[J].岩力学,2005,26(S):121-132.
    [124]武亚军,杨敏,李大勇.大连路隧道联络通道冻帷幕数值分析[J].岩力学,2006,27(3):487-490.
    [125]Yang Ping, Ke Jieming, Wang J G, et al. Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation[J]. Computers and Geotechnics,2006,33:330-340.
    [126]张向东,孙国志,穆琳.隧道冻结法施工引起地表沉降的数值分析[J].力学与实践,2008,30(2):78-82.
    [127]耿萍,晏启祥,何川等.隧道水平冻结施工过程的数值模拟[J].工程力学,2010,27(5):122-127.
    [128]王效宾.人工冻融沉特性及其对周围环境影响研究[博士学位论文][D].南京:南京林业大学,2009.
    [129]刘波,李东阳,陈立等.复杂地层旁通道冻结施工过程的模拟与实测分析[J].中国安全生产科学技术,2010,6(5):11-17.
    [130]王建平,王文顺,史天生.人工冻结体冻胀融沉的模型试验[J].中国矿业大学学报,1999,28(4):303-306.
    [131]周希圣,郑宜枫.高含水黏层隧道冻结位移场模型试验研究[J].同济大学学报(自然科学版),2000,28(4):472-476.
    [132]周晓敏,王梦恕,陶龙光等.北京地铁隧道水平冻结和暗挖施工模型试验与实测研究[J].岩工程学报,2003,25(6):676-679.
    [133]岳丰田,张勇,杨国祥等.隧道联络通道冻结位移场模型试验研究[J].中国矿业大学学报,2005,34(2):209-212.
    [134]程桦,姚直书,张经双等.人工水平冻结法施工隧道冻胀与融沉效应模型试验研究[J].木工程学报,2007,40(10):80-85.
    [135]蔡海兵,程桦,彭立敏等.浅埋隧道全断面超长水平冻结位移场的试验研究[J].工业建筑,2009,39(12):80-83.
    [136]李大勇,吕爱钟,张庆贺等.南京地铁旁通道冻结实测分析研究[J].岩石力学与工程学报,2004,23(2):334-338.
    [137]姜耀东,赵毅鑫,周罡等.广州地铁超长水平冻结多参量监测分析[J].岩力学, 2010,31(1):158-164,173.
    [138]王志良,申林方,李明宇.冻结法施工的地铁旁通道实测数据分析[J].地下空间与工程学报,2010,6(1):138-143.
    [139]李宁,王胜利,邵钢.冻结法施工地铁旁通道引起的隧道及地表沉降规律研究[J].现代隧道技术,2010,47(1):41-44.
    [140]覃伟,杨平,金明等.地铁超长联络通道人工冻结法应用与实测研究[J].地下空间与工程学报,2010,6(5):1065-1071.
    [141]Litwiniszyn J. Fundamental principles of the mechanics of stochastic medium[C]. Proceedings of the 3rd Conference on Theoretical Applied Mechanics, Bangalore, India,1957:18-26.
    [142]Liu Baochen, Lin Dezhang. The application of stochastic medium theory to the problem of surface movement due to open pit mining[C]. the 3rd International Conference on Stability in Surface Mining, New York,1982.
    [143]Liu Baochen. Ground surface movement due to underground excavation in China[C]. Comprehensive Rock Engineering, New York:Pergaman Press,1993:781-817.
    [144]刘宝琛,阳军生,张家生.露天开挖及疏水引起的地面沉降及变形[J].煤炭学报,1999,24(2):39-42.
    [145]刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报,1995,14(4):289-296.
    [146]阳军生,刘宝琛.挤压式盾构隧道施工引起的地表移动及变形[J].岩力学,1998,19(3):10-13.
    [147]施成华.城市隧道施工地层变形时空统一预测理论及应用研究[博士学位论文][D].长沙:中南大学,2007.
    [148]施成华,彭立敏,雷明锋.盾构法施工隧道地层变形时空统一预测方法研究[J].岩力学,2009,30(8):2379-2384.
    [149]施成华,雷明锋,彭立敏.考虑隧道施工参数变化时地层变形的时空统一计算方法研究[J].铁道学报,2010,32(3):100-104.
    [150]Peck R B. Deep excavation and tunnelling in soft ground[C]. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City,1969:225-290.
    [151]韩煊,李宁.隧道施工引起地层位移预测模型的对比分析[J].岩石力学与工程学报,2007,26(3):594-600.
    [152]胡向东,白楠,余锋.单排管冻结温度场TPyΠAK和ЪAXOЛДИH公式的适用性[J].同济大学学报,2008,36(7):906-910.
    [153]胡向东,赵俊杰.人工冻结温度场巴霍尔金模型准确性研究[J].地下空间与工程学报,2010,6(1):96-101.
    [154]Lunardini V J, Varotta R. Approximate solution to Neumann problem for soil systems[J]. Journal of Energy Resources Technology,1981,103(1):76-82.
    [155]蒋斌松,王金鸽,周国庆.单管冻结温度场解析计算[J].中国矿业大学学报,2009,38(4):463-466.
    [156]李方政,夏明萍.基于指数积分函数的人工冻温度场解析研究[J].东南大学学报(自然科学版),2004,34(4):469-473.
    [157]唐益群,洪军,杨坪等.人工冻结作用下淤泥质黏冻胀特性试验研究[J].岩工程学报,2009,31(5):772-776.
    [158]刘鸿绪.对冻结过程中若干冻胀力学问题的商榷[J].冰川冻,1990,12(3):269-280.
    [159]张婷.人工冻冻胀、融沉特性试验研究[硕士学位论文][D].南京:南京林业大学,2004.
    [160]黄高峰,李宗利,牟声远等Hoek-Brown准则参数在边坡工程中的敏感性分析[J].岩力学,2009,30(7):2163-2167.
    [161]杨平,陈明华,张维敏.冻结壁形成及解冻规律实测研究[J].冰川冻,1998,20(2):11-13.
    [162]陈明雄,傅德明.上海软地层浅覆土盾构隧道冻结加固模拟试验研究[J].地下工程与隧道,1995,(3):2-7.
    [163]周真云.冻结法施工快速解冻研究及施工实践[J].西部探矿工程,2003,15(10):84.
    [164]肖朝昀,胡向东.人工地层冻结冻自然解冻与强制解冻实测分析[J].长江大学学报(自然科学版),2009,6(3):92-95.
    [165]肖朝昀.人工地层冻结冻帷幕形成与解冻规律研究[博士学位论文][D].上海:同济大学,2007.
    [166]王效宾,杨平,张婷.盾构出洞水平冻结解冻温度场三维有限元分析[J].解放军理工大学学报(自然科学版),2009,10(6):586-590.
    [167]韩玉福,李方政.地铁联络通道冻融化规律实测研究[J].上海建设科技,2009,(4):53-55.
    [168]袁云辉,杨平,王海波.人工水平冻结冻帷幕强制解冻温度场数值分析[J].南京林业大学学报(自然科学版),2011,35(4):117-120.
    [169]黑龙江省寒地建筑科学研究院.冻地区建筑地基基础设计规范(JGJ118-98)[S].北京:中国建筑工业出版社,1999.
    [170]и.д.纳斯诺夫,M.H.苏普利克.立井冻结壁形成规律[M].北京:煤炭工业出版社,1981.
    [171]Lai Yuanming. Nonlinear analysis for the coupled problem of t emperature, seepage and stress fields in cold-region tunnels [J]. Tunneling and Underground Space Technology,1998,13(4):435-436.
    [172]Lai Yuanming, Liu Songyu, Wu Ziwang, et al, Approximate analytical solution for temperature fields in cold regions circular tunnels [J]. Cold Regions Science and Technology,2002,13(4):43-49.
    [173]张学富,赖远明,喻文兵等.寒区隧道三维温度场数值分析[J].铁道学报,2003,25(3):84-90.
    [174]王铁行.多年冻地区路基计算原理及临界高度研究[博士学位论文][D].西安:长安大学,2001.
    [175]廖红建,王铁行等.岩工程数值分析[M].北京:机械工业出版社,2006.
    [176]徐学祖,邓友生.冻中水分迁移的实验研究[M].北京:科学出版社,1991.
    [177]Anderson D M, Tice A R. Predicting unfrozen water contents in frozen soils from surface area measurements [J]. National Academy of Science,1972:12-18.
    [178]Anderson D M, Tice A R, Mckin H L. The frozen water and the apparent specific heat capacity of frozen soils [J]. National Academy of Science,1973:289-95.
    [179]Tice A R, Anderson D M, Banin A. The prediction of unfrozen water contents in frozen soils from liquid limit determination [R]. U.S. Army Cold Regions Research and Engineering Laboratory Report CRREL,1976:76-81.
    [180]李东阳.冻未冻水含量测试新方法的试验和理论研究[博士学位论文][D].北京:中国矿业大学(北京),2011.
    [181]Michalowski R L. A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology,1993,22(1):47-63.
    [182]Huang S L, Bray M T, Akagawa S, et al. Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska[J]. Journal of Cold Regions Engineering,2004,18(1):2-34.
    [183]张茹,王正中,牟声远等.基于横观各向同性冻的U形渠道[J].应用基础与工程科学学报,2010,18(5):773-783.
    [184]王正中,沙际德,蒋允静等.正交各向异性冻与建筑物相互作用的非线性有限元分析[J].木工程学报,1999,32(3):55-60.
    [185]费康,张建伟ABAQUS在岩工程中的应用[M].北京:中国水利水电出版社,2009.
    [186]朱向荣,王金昌ABAQUS软件中部分模型简介及其工程应用[J].岩力学,2004,25(s2):144-148
    [187]杨曼娟ABAQUS用户材料子程序开发及应用[硕士学位论文][D].武汉:华中科技大学,2005.
    [188]Hibbitte Karlsson, Sorenson. ABAQUS/Standard user's manual[S]. U. S. A.:[s. n.], 2002.
    [189]刘文燕,黄鼎业,华毅杰.混凝表面对流换热系数测试研究[J].建筑材料学报,2004,7(2):232-235.
    [190]李旭,叶扬军.广州地铁三号线天河客运站折返线冷冻法施工的关键技术研究[J].现代隧道技术,2008,45(3):69-73.
    [191]王文升.地铁隧道长距离水平冻结全断面开挖冻帷幕优化设计[J].地下工程与隧道,2009,(1):7-10.
    [192]崔亚男.广州某地铁隧道人工冻结法施工冻结壁厚度及冻结周期计算[硕士学位论文][D].北京:北京交通大学,2008.
    [193]李双洋,张明义,高志华等.广州某地铁人工冻结法施工热力分析[J].冰川冻,2006,28(6):823-832.
    [194]李双洋,张明义,黄志军等.地铁双线隧道施工人工冻结水热力数值分析[J].交通运输工程学报,2009,9(1):67-72,82.
    [195]Li Shuangyang, Lai Yuanming, Zhang Mingyi, et al. Minimum ground pre-freezing time before excavation of Guangzhou subway tunnel [J]. Cold Regions Science and Technology,2006,46(9):181-191.
    [196]煤炭科学研究总院,中国矿业大学,安徽理工大学等.人工冻物理力学性能试验规程(MT/T 593-1996)[S].北京:煤炭工业出版社,1996.
    [197]中煤特殊凿井(集团)有限公司,安徽建筑工业学院,安徽理工大学.广州地铁三号线天河客运站折返线隧道冻结工程施工总结报告[R].2006.
    [198]蔡海兵.深厚冲积层冻结壁的优化设计及工程应用[硕士学位论文][D].淮南:安徽理工大学,2004.
    [199]崔灏,汪仁和.人工冻结粘性的冻胀特性研究[J].安徽理工大学学报(自然科学版),2004,24(s):44-47.
    [200]吴礼舟,许强,黄润秋.非饱和黏的冻胀融沉过程分析[J].岩力学,2011,32(4):1025-1028.
    [201]傅鹤林,韩汝才.隧道衬砌荷载计算理论及岩溶处治技术[M].长沙:中南大学出版社,2005.
    [202]上海隧道工程股份有限公司,上海申通地铁集团有限公司,上海隧道工程轨道 交通设计研究院.四号线修复工程科研项目系列资料-冻结法施工在轨道交通四号线修复工程中的应用[R].2008.
    [203]姚直书,程桦,夏红兵.特深基坑排桩冻墙围护结构的冻胀力模型试验研究[J].岩石力学与工程学报,2007,26(2):415-420.
    [204]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社,1990.
    [205]林刚,何川.连拱公路隧道施工方法模型试验研究[J].现代隧道技术,2003,40(6):1-6.
    [206]刘涛,沈明荣,袁勇.偏压连拱隧道围岩稳定性模型试验与数值分析[J].同济大学学报(自然科学版),2008,36(4):460-465.
    [207]安徽建筑工业学院,安徽理工大学,同济大学.上海地铁四号线修复工程常规、冻物理力学性能试验报告[R].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700