地铁车站与区间隧道过渡段的抗震设计分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,我国已经进入了地铁工程建设的黄金时代,然而到目前为止还没有独立的地下结构抗震设计规范,相比日本和美国等发达国家,我国在地下结构抗震领域的系统研究尚不够成熟。加上近年来我国已进入地震频发期,在这种大背景下,如何保证在地震作用下地铁结构的安全成了我们迫切需要研究的课题。研究软地基城市地铁车站与区间隧道过渡段的抗震设计规范具有重要的意义,本文对地铁地下特定部位结构的动力响应进行时程分析,本文的主要内容包括:
     (1)介绍国内外关于地铁抗震的分析方法以及各种方法的使用范围;
     (2)通过对-地下结构体系的动力相互作用数值解法的剖析,提出解决地下结构抗震分析的理论依据;
     (3)利用有限元软件MIDAS建立地铁车站与区间隧道过渡段的三维数值模型,人工边界采用粘性边界;
     (4)以1995年日本HYOUGOKEN_South的加速度时程记录为地震输入波,我们分别考虑三种情况,分别是地铁车站与区间隧道的剪切刚度之比在k1=0.8α,k2=α, k3=1.25α(α为截面尺寸影响系数)的时候,在地震荷载下的动力时程响应;
     (5)分析三种不同情况下过渡段上不同位置的位移、速度、加速度及应力、应变的时程图,得出地铁车站与区间隧道过渡段的动力响应规律;
     (6)刚度的增大能有效增强结构抵抗地层变形的能力,但却会造成应力集中,结构内力和应变增大,对局部受力不利。因此需要改变仅通过增强结构刚度或者强度来提高地下结构的抗震性能的传统观点。在进行地铁车站结构的抗震设计的时候,可以考虑适当增加结构的韧性,这样地下结构在地震中就会具有一定变形能力,以此承受地震引起周围层介质变形产生的应力,而不是盲目地使结构直接抵抗地层的变形;
     (7)在考虑过渡段结构的抗震问题时,应首先满足结构本身的设计强度和刚度,然后再考虑尽量减小过渡段的刚度变化,即k值尽量的小,以避免造成过渡段的应力集中和应力过大。
     本文对进一步研究软地基上城市地下结构对地震作用的响应具有一定的参考价值。
With the rapid development of our economic, it can be said that the gold period of the subway-construction is coming in our country, but there is no independent underground structures anti-seismic design rules so far. Compared to Japan and America and other developed countries, our studies in the field earthquake-resistance of underground structures are still immature. How to keep the subway safe in the earthquake has become an urgent need for research topics in the context of our country has become quake-prone. It has great significance to research the structure between the subway station and the running tunnel design rules of the vibration under soft soil. This article analyzes the time history analysis of the specific parts. The main contents include:
     (1) Introduce the methods about researching the subway vibration;
     (2) Studying the numeral method of the interaction between the earth and the underground-structure, to give the theory to solve the vibratory problem;
     (3) Build the three-dimensional numerical model under earthquake by using the finite element software-MIDAS. The model adopt viscous-elastic border;
     (4) The strong earthquake record, which is recorded in HYOUGOKEN_South in Japan in 1995, when the earthquake occurred, is selected as the bedrock input ground motion. We consider three cases, when k is different (k is ratio of shear rigidity). Compare the response characteristics of the subway station;
     (5) Analyze the data of different locations for specific parts of displacement, speed, acceleration, stress and strain as flowcharts in three different circumstances, and then come to the dynamic response law of the part that between the subway station and the running tunnel;
     (6) The stiffness of increase can strengthen the ability to resist the structure of shape effectively, but it can cause the concentration of stress and strain. Therefore, we should change the traditional views that improve the structures anti-seismic by increasing structural stiffness. When faced with the vibration design of the subway, we can consider increasing the toughness of the structure so that the structure in the earthquake will have a certain ability to take shape by the earthquake caused the surrounding soil medium of stress and deformation, but not to against deformation of the ground directly;
     (7) When encounter the vibration problems of the transition section, in order to avoiding the stress concentration, we should firstly meet the need of structure itself designed to strength and stiffness, and then to reduce the change of stiffness of the transition section.
     This article is reference value in further research of the underground structures foundered on soft soil.
引文
[1]林皋.地下结构的抗震分析综述(上、下).世界地震工程.1998(2,3):1-10.
    [2]Youssef MA Hashash, Jeffray J Hook, Birger Sclmidt, John I-Chiang Yao. Seismic design and analysis of underground structures. Tunneling and Underground Space Technology, 2001,16(4):247-293.
    [3]St John, TF Zahrall. A seismic design of underground structures. Tunnelling and Underground Space Technology.1987,2(2):165-197.
    [4]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及现状.解放军理工大学学报,2000,1(5):63-69.
    [5]周健,苏燕,童鹏.软地层地铁及地下构筑物抗震动力分析研究现状.地下空间.2003,23(2):173—178.
    [6]中华人民共和国国家规范.地铁设计规范(GB50157-2003).北京:中国计划出版社,2003.
    [7]中华人民共和国国家规范.地下铁道设计规范(GB50157-92).北京:中国计划出版社,1993.
    [8]中华人民共和国国家规范.铁路:工程抗震设计规范(GBJ112-87).北京:中国计划出版社,1989.
    [9]中华人民共和国国家规范.建筑抗震设计规范(GB50011-2001).北京:中国计划出版社,2002.
    [10]中华人民共和国国家规范.建筑抗震设计规范(GBJ11-89).北京:中国建筑工业出版社,1990.
    [11]高峰,关宝树.深圳地铁地震反应分析.西南交通大学学报.2001,36(4):355-359.
    [12]马险峰.地下结构的震害研究:[博士学位论文].上海:同济大学.2000.
    [13]刘晶波,李彬,谷音.地铁盾构隧道地震反应分析.清华大学学报.
    [14]杨林德,杨超,季倩倩等.地铁车站的振动台试验与地震响应的计算方法.同济大学学报.2003,31(10):1136-1140.
    [15]刘晶波,李彬,谷音,杜义欣.地铁盾构隧道地震反应特性研究.现代隧道技术(增刊).2004:251-257.
    [16]张玉娥,白宝鸿,张耀辉,王赞之.地铁区间隧道震害特点、震害分析方法及减震措施的探讨.振动与冲击.2004,22(1):70-74.
    [17]孙绍平,韩阳.生命线地震工程研究述评.木工程学报.2003,36(5):97-104.
    [18]董鹏,周健.与结构相互作用下的地下建筑物动力可靠性分析.建筑结构学报.2004,25(2):124-129.
    [19]周健,胡晓燕.考虑行进波的地下建筑物动力反应分析.岩石力学与工程学报.2001,20(1):70-73.
    [20]郑永来,刘曙光,杨林德,等.软中地铁区间隧道抗震设计研究.地下空间.2003,23(2):111-118.
    [21]周健,董鹏等.软地下结构的地震压力分析研究.岩力学.2004,25(4):554-559.
    [22]付鹏程,王刚,张建民.地铁地下结构在轴向传播剪切波作用下反应的简化计算方法.
    地震工程与工程振动.2004,24(3):45-50.
    [23]林志,朱合华,杨超,杨林德.盾构区间隧道衬砌结构的抗震计算.同济大学学报.2004,32(5):607-611.
    [24]宫全美,周顺华,方炽华.南京地铁地基地震液化规范判别的差异分析.岩力学.2000,21(1):141-144.
    [25]毕继红,张鸿,邓芫.基于耦合分析法的地铁隧道抗震研究.岩力学.2003,24(5):800-803.
    [26]Senzai Samata, Ohuchi Hajime, Matsuda Takashi. A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake. Cement and Concrete Composites. 1997,19(3):223-239.
    [27]An Xuehui, Shawky Ashraf A, Maekawa Koichi. The Collapse Mechanism of a Subway Station during the Great Hanshin Earthquake. Cement and Concrete Composites.1997, 19(3):241-257.
    [28]曹炳政,罗奇峰,马硕,刘晶波.神户大开地铁车站的地震反应分析.地震工程与工程震动.2002,22(4):102-107.
    [29]高峰,严松宏,李德武.隧道时程动力反应分析改进算法.岩石力学与工程学报.2003,22(7):1088-1092.
    [30]于翔,赵跃堂,郭志昆.人防工程的抗地震问题.地下空间.2001,21(1),28-32.
    [31]阪神、淡路震灾调查委员会报告书.日本:木学会关西支部,1996.
    [32]郑永来,杨林德.地下结构震害与抗震对策.工程抗震.1999(4):23-28.
    [33]王瑞民,罗奇峰.阪神地震中地下结构和隧道的破坏现象浅析.灾害学.1998.13(2):63-66.
    [34]天津市抗震办公室等.唐山大地震天津市市政工程震害.天津:天津科学技术出版社,1984.
    [35]邵根大.城市地下结构的抗地震设计问题.铁道部科学研究院铁道建筑研究所,1985.
    [36]Japan Society of Civil Engineers. Earthquake Resistant Design Codes in Japan.2000.
    [37]林皋.地下结构的抗震设计.木工程学报.1996,28(1):15-24.
    [38]核电厂地下结构抗震设计规范GB 50267-97,1998.
    [39]施仲衡.地下铁道设计与施工.西安:陕西科学技术出版社,1997.
    [40]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.木工程学报,1998,31(3):55~64.
    [41]Hardin, B.O., and Dmevich, V, P. Shear modulus and damping in soils:design equations and curves. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98 (7): 667-692.
    [42]Hardin, B.O., and Dmevich, V, P. Shear modulus and damping in soils:design equations and curves. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98 (7): 603-624.
    [43]刘汉龙.动力学与岩地震工程.中国木工程学会第九届力学及岩工程学术会议,北京,2003,56-68.
    [44]Puzrin, A. M. and Shiran, A. Effects of the constitutive relationship on seismic response of soils, Part Ⅰ. Constitutive modeling of cyclic behavior of soils. Soil Dynamics and Earthquake Engineering 2000,19(5-8):305-318.
    [45]Dominic, A. and Eduardo, K. An equivalent linear algorithm with frequency-and pressure dependent moduli and damping for the seismic analysis of deep sites. Soil Dynamics and Earthquake Engineering,2002,22(9-12):959-965.
    [46]Schofield, A.N. and Wroth, C.P. Critical State Soil Mechanics.1968, McGraw Hill, London.
    [47]Mroz Z. On the description of anisotropic working hardening, Journal of Mechanics and Physics of Soils,1967,15:823-856.
    [48]Dafalias Y.E. and Popov E.P. A model of nonlinearly hardening materials for complex loading.Acta Mechanic,1975,21:905-916.
    [49]Zerfa, F. Z., and Loret, B. Coupled dynamic elastic-plastic analysis of earth structures. Soil Dynamics and Earthquake Engineering,2003,23(6):435-454.
    [50]Mroz Z., Norris V.A. and Zienkiewicz O.C. Application of an anisotropic hardening model in the analysis of Blast-plastic deformation of soils. Geotechnique,1979,29(1):15-23.
    [51]Dafalias, YE, and Hemnannl, L.R. A bounding surface soil plasticity model. Inter. Symposium on Soils under Cyclic and Transient Loading, Swansea, January,1980, 335-345.
    [52]Poorooshab H.B., and Stolle, D.F.E. Modeling of sand behavior under earthquake excitation. Int. J. for Num. and Analytical Methods in Geomechanics,1987,11(1):25-36.
    [53]Dafalias, Y.R., and Herrmann, L.R. Bounding surface formulation of soil plasticity. Soil Mechanic Transient and Cyclic Loads. Wiley, New York,1982,253-282.
    [54]Borja, R.L., and Amies, A.P. Multiaxial cyclic plasticity model for clays. Journal of Geotechnical. Engineering,1994,120(6):1051 - 1070.
    [55]杨超.饱和软地铁结构地震响应计算方法的研究.同济大学博士学位论文,2003.
    [56]J.P.瓦尔夫著,吴世明译.-结构动力相互作用.北京:地震出版社,1989.
    [57]Guin, J., et al. Coupled soil-piles-structures interaction analysis under seismic excitation. Journal of Structural Engineering,1998,124(4):434-444.
    [58]Akira, T. A study on seismic analysis methods in the cross section of underground structures using static finite element method. Structural Engineering& Earthquake Engineering,2005,122(1):41-53.
    [59]Wegner, J. L. Dynamic wave-soil-structure interaction analysis in the time domain. Computers and structures,2005,83:2206-2214.
    [60]Zhang, X., et al. Three-dimensional dynamic soil-structure interaction analysis in the time domain. Earthquake Engineering and Structural Dynamics,1999,28(7):1501-1524.
    [61]陈国兴,庄海洋,史国龙.地铁车站结构地震反应分析的子结构法.防灾减灾工程学报,2004,24(4):396-401.
    [62]李建波,等.结构-地基动力相互作用时域数值计算模型研究.地震工程与工程振动,2005,25(2):169-176.
    [63]边学成,陈云敏.列车荷载作用下轨道和地基的动响应分析.力学学报,2005,37(4):477-484.
    [64]王国波.软地铁车站结构三维地震响应计算理论与方法的研究.同济大学博士学位论文,2007.
    [65]Cundall, P.A. et al. Solution of infinite dynamic problems by finite modeling in the time
    domain. Proc.2nd Inter. Conf. Appl. Num. Modeling, Madrid,1978,582-591.
    [66]Kunar, R.R., et al. A model with non-reflecting boundaries for use in explicit soil-structure interaction analyses. Earthquake engineering and structural dynamics.1980,18:361-374.
    [67]Akiyoshi, T. et al. General absorbing boundary conditions for dynamic analysis of fluid-saturated porous media. Soil Dynamics and Earthquake Engineering,1998,17(6): 397-406.
    [68]廖振鹏,等.暂态波透射边界.中国科学(A辑)1984,27(6):212-219.
    [69]Sarma, G, S., et al. Nonreflecting boundary condition in finite-element formulation for an elastic wave equation. Geophysics,1998,63(3):1006-1016.
    [70]Kellezi, L. Local transmitting boundaries for transient elastic analysis. Soil Dynamics Earthquake Engineering,2000,19(7):533-547.
    [71]刘汉龙,等.边界条件对层粘弹性地震反应的影响.岩力学,2001,22(4):408-412.
    [72]楼梦麟,潘旦光,范立础.层地震反应分析中侧向人工边界的影响.同济大学学报,2003,31(7):757-781.
    [73]高峰,关宝树.隧道地震反应分析中几种边界条件的比较.甘肃科学学报,2004,16(1):109-112.
    [74]栗茂田,武亚军.与结构间接触面的非线性弹性-理想塑性模型及其应用.岩力学,2004,25(4):507-513.
    [75]殷宗泽,朱涨,许国平.与结构材料接触面的变形及其数学模拟.岩工程学报,1994,16(3):14-22.
    [76]Clough, G H. and Duncan, J. M. Finite element analysis of retaining wall behavior. Journal of Soil Mechanics& Foundation Division ASCE,1971,97(SM 12):1657-1674.
    [77]Brandt, S. C. Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mine Science and Geo-mechanics Abstract,1983,20(6):249-268.
    [78]Ng, K. L. A. and Small, J. C. Behavior of joints and interfaces subjected to water pressure. Computers and Geo-technics,1997,20(1):71-93.
    [79]Desia, C. S., et al. Cyclic testing and constitutive modeling of saturated sand-concrete interfaces using the disturbed state concept. International Journal of Geo-mechanics, 2005,5(4):286-295.
    [80]陈慧远.摩擦接触单元及其分析方法.水利学报,1985(4):44-50.
    [81]卢延浩、鲍伏波.接触面薄层单元耦合本构模型.水利学报,2000,(2):71-75.
    [82]胡黎明,濮家骝.与结构物接触面损伤本构模型.岩力学,2002,23(1):6-11.
    [83]张嘎,张建民.粗粒与结构接触面统一本构模型及试验验证.岩工程学报,2005,27(10):1175-1179.
    [84]Goodman, R. F. and Taylor, R. L. A model for the mechanics of jointed rock. Journal of Soil Mechanics& Foundation Division ASCE,1968,94(SM3):637-660.
    [85]Desia, C. S. and Zaman, M. M. Thin layer element for interfaces and joints. International Journal for Numerical and analytical Methods in Geo-mechanics.1984,8(1):19-43.
    [86]Desia, C. S., et al. Cyclic interface and joint shear device including pore pressure effects. Journal of Geotechnical and Geo-environmental Engineering,1997,123(6):568-579.
    [87]Lee, J. S. and Pande, G, N. A new joint element for the analysis of media having discrete
    discontinuities. Mechanics of Cohesive-Frictional Materials,1999, (4):487-504.
    [88]Zeghal, M. and Tuncer, B. E. Soil structure interaction analysis:modeling the interface. Canadian Geotechnical Journal,2002,39(3):620-628.
    [89]Shakib, H. and Fuladgar, A. Dynamic soil-structure interaction effects on the seismic response of asymmetric buildings. Soil Dynamics and Earthquake Engineering,2004, 24(5):379-388.
    [90]李守德,俞洪良.Goodman接触面单元的修正与探讨,岩石力学与工程学报,2004,23(15):2628-2631.
    [91]娄奕红,刘喜元,彭俊生.地下结构与周围介质相互作用的计算分析.中南公路工程,2005,30(3):99-102.
    [92]谢定义.动力学.西安:西安交通大学出版社.
    [93]Lysmer J, Kulemeyer RL. Finite dynamic model for infinite media. Journal of Engineering Mechanics, ASCE,1969,95:759-877.
    [94]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.木工程学报,1998,31(3):55-64.
    [95]Wang JN. Seismic design of tunnels:A Simple State-of-the-Art Design Approach. Parsons, Brincherhoff, Quade and Douglas Inc. New York,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700