液化大变形条件下桩—相互作用的动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的地震震害调查研究表明,饱和砂在地震作用下发生液化以及由液化引起的大变形是造成公路、桥梁、桩基等生命线工程严重破坏的主要原因之一。地震液化大变形的机理及影响因素比较复杂,是岩工程和地震工程界的一个热点和难点。本文结合国家自然科学基金“桩--结构动力相互作用振动台试验”(No.40772171),以振动台模型试验为基础,采用有限差分程序FLAC3D,计算分析液化大变形下桩-相互作用的动力响应。
     本文设计与制作了振动台试验模型,包括试验模型、材料性能参数、试验加载制度等,为下文利用FLAC3D程序进行模拟和验证提供了必要的计算参数。作者在试验模型的基础上对计算模型作出了一定的改进,以具有斜坡的临空面场地模型来更好地模拟地震液化下的大变形。研究表明临空面附近体位移明显较大,且随着距离临空面距离的增加,体位移反应减弱。
     本文利用FLAC3D程序计算了修改后的具有临空面场地的模型,着重研究了地震液化大变形下地基孔隙水压力的分布、地基层对地震动的影响,得到软尤其是液化对地震波的传递有一定的减振隔震作用;通过桩基础的位移、弯矩和应变反应分析,表明软硬层交界处及层液化部位是桩身出现裂缝甚至断裂的主要位置,与试验后观察到的结果及历次桩基震害调查情况一致。所得结论对高烈度地震区桩基础的抗震设计具有一定的参考意义,在存在液化侧向扩展的地基中桩基础不仅要考虑上部结构的震动影响,还应考虑地基侧向位移对桩基础的影响。
The large ground displacement induced by liquefaction of earthquake may result in serious damages to the life engineering such as highway,bridge and pile foundation. Liquefaction mechanism of large deformation and impact of these factors were complicated, and it had become a hot and big probloem in the geotech- nical engineering and earthquake engineering. The current research was supported by the National Science Foundation project of the shaking table test of pile-soil- structure interaction (No.40772171),calculated and analyzed the dynamic response of pile-soil interaction under the Large Ground Displacement induced by Eearth- quake Liquefaction by FLAC3D based on the model of the shaking table test.
     The design and production of the shaking table test is described in this paper,including the experimental model,the model material performance parameter,the experimental increase system. And it provided the necessary parameters to simulate and verify the shaking table model experiment by FLAC3D. This article made some improvements in the calculation model on the basis of the shaking test model,in order to have a free surface site models to better respond to large deformation under seismic liquefaction. We found that where near the free face significantly had a greater displacement,and with increasing distance from the free face,there is less displacement.
     In this paper,the revised model with a free face space was calculated with FLAC3D. That focused on the distribution of pore water pressure under the large ground displacement induced by earthquake liquefaction,and found that liquefied soil had a certain vibration isolation effect with the transmission of seismic waves. Through the analysis of displacement,moment and strain response of the pile foundation,this paper found the pile where are the junction of soft and hard soil, and liquefied soil,would have cracks and damage,with the test results and previous observations of the earthquake damage investigation in the pile. In the presence of liquid-side expansion foundation,pile foundation must consider not only the upper part of the structure of vibration,and also the impact of lateral displacement of the subsoil,this paper has a certain reference value to the seismic design of pile foundation in the high-intensity earthquake zone.
引文
[1]李英民.工程地震动的模型化研究[D].重庆.重庆建筑大学,1999。
    [2]地震预知综合研究振兴会(日本社团法人)资料,1964年新泻地震时新泻市地基永久位移调查[R],1986。
    [3] M Hmada,S Yasuda,R Isoyama,K Emoto.Study on Liquefaction Induced Per- manent Gorund Displacements[R].Association for the Development of Earth- quake Prediction,1986:1-87.
    [4] Alan F. Rauch, James R. Martin. EPOLLS model for predicting average dis- placements on lateral spreads [J]. J.Geotech Engrg,ASCE,126(4):360-371.
    [5] Ikuo Towhata et al. Prediction of permanent displacement of liqudfied ground by menas of minimum energy principle[J],Soils and Foundations.1992,32(3 ): 97-116.Vol.32,NO.3,97-116.
    [6]刘惠珊、徐风萍、李鹏程、候忠良,液化引起的地面大位移对工程的影响及研究现状[J],特种结构,第14卷,1997年第2期:pp.47-50.
    [7] Kenji. Ishihara. Liquefaction and flow failure during earthquakes[J], Geo- technique 43.1993(3):351-415.
    [8] Y Shamoto, J M Zhang,K Tokimatsu. Horizontal Residual Post-liquefaction Deformation of Level Ground [J].ASCE Geotechnical Special Publication, 1998,No.75:373-384.
    [9]张建民,震动液化引起的地基永久变形的成因和类型分析(日本语)[R]清水建设株式会社技术研究所研究报告,东京,1994,No,1,1-12.
    [10]周云东,地震液化引起的地面大变形试验研究[D],南京:河海大学,2003.06
    [11] Yasuda,S.,Nagase,H.,Kiku,H.and Uchida,Y.“The Mechanism and a Simplified Procedure for the Analysis of Permanent Ground Displacement Due to Lique- faction”, Soils and Foundations[J],1992,32(1),ppl49-160.
    [12] Toboada,V.M.,Abdoun, T.And Dobry R.“Prediction of Liquefaction- Induced Lateral Spreading by Dilatant Sliding Block Model Calibrated by Centrifuge Tests”,Proc.l1th World Conf,on Earthquake Engineering, Acapulco,1996, Mex- ico, Paper No.1037.
    [13] Towhata.l., Park, J. K., and Orense, R. P.“Use of specrtum intensity for imme-diate detection of subsoil liquefaction”, Soils and Foundations, 1996,36(2),pp. 29-44.
    [14] Tarek Hassen Abdoun, Modeling of seismically induced lateral spreading of multi-layered soil and its effect on pile foundations,[D],Rensselaer Poly- technic Institute, Troy,NewYork,1997.05.
    [15] Abdoun, T.“Modeling of Seismically Induced Lateral Spreading of Multi- Layer Soil Deposit and Its Effect on Pile Foundations”, Ph.D. Dissertation, Dept. of Civil Engineering, Rensselaer Polytechnic Institute,Troy, NewYork, l997.
    [16] Vaid,Y. P. and Thomas,J.,“Liquefaction and postliquefaction behavior of sand”,Journal of Geotechnical Engineering[J], ASCE,1995,121(2), pp163- 173.
    [17] Meneses, J., Ishihara, K.and Towhata, l.“Flow Failure of Saturated Sand Under Simultaneous Monotonic and Cyclic Stresses”,Journal of Geotech- nical and Geoenvironmental Engineering[J],2000,126(2),pp.132-138.
    [18] Yoshimine,M.and Ishihara,K.“Flow Potential of Sand During Lique- faction”, Soils and Foundalion[J],1998,38(3),pp.189-198.
    [19] Castro,G.“Liquefaction of Sands”,Ph.D,Dissertation, Harvard University, Camebridge., Mass,U.S.1969.
    [20] Poulos,S.J.“The Steady State of Deformation”, Jounral of Geotechnical Engi-neering[J], ASCE,1981,107(5),pp.553-562.
    [21] Seed, H. B.“Design Problems in Soil Liquefaction, Journal of Geotech- nical Engineering”[J],ASCE,1987,113(8), pp.827-845.
    [22] Seed, R. B.and Harder, L.F.“SPT-based Analysis of Cyclic Poer Pressure Generaiton and Undrained Residual Srtength”, Proc. H. B. Seed Momorial Symp. Bi-Tech Publishing Ltd., 1990,Vo1.2,pp.351-376.
    [23] Hamada,M.,Towhata,I.,Yasuda,S.and Isoyama, R.“Study on permanent ground displacement induced by seismic liquefaction”, Computers and Geo- technics [J],1987,No.4,pp.197-220.
    [24] Youd,T.L.and Perkins, D.M.“Mapping of Liquefaction Severity Index”,Journal of Geotechnical Engineering[J],ASCE,1987,113(11),pp1374-1392.
    [25] Bartlett,S.F.and Youd,T L.“Empirical prediction of liquefaction-induced lateral spread”,Journal of Geotechnical Engineering[J],ASCE, 1995,121(4), pp.316-329.
    [26] Alan F.Rauch, James R. Martin. EPOLLS model for predicting average dis- placements on lateral spreads[J]. J.Geotech Engrg.,ASCE,126(4):360- 371.
    [27] Guangwen Zhang, Estimation of liquefaction-induced ground deformations by CPT&SPT-based approaches[D],University of Alberta,2001.
    [28] Chiru-Danzer,M.,Juang,C.H.,Christopher,R.A.and Suber,J.“Estima- tion of Liquefaction-Induced Horizontal Displacements Using Artificial Neural Networks”,Canadian Geotechnical Journal[J],2001,Vol.38,pp.200-20.
    [29]刘勇键,人工神经网络原理在建筑物震陷预测中的应用[J],地震研究. 2001,24(3), pp.262-266.
    [30] Newmark, N.M.“Effects of Earthquake on Dams and Embankments-Rankine Lecture”, Geotechnique[J],1965,15(2),ppl39-160.
    [31] M.H.Baziar, Dobry, Evaluation of lateral ground deformation using sliding block model, Earthquake engineering Tenth Conference[J], 1992.
    [32] Towhata, I, Sasaki,Y,Tokida, K A.,Matsumoto,H.,Tamari,Y.and Yamada, K.“Prediction of Permanent Displacement of Liquefied Ground by Means of Minimum Energy Principle”, Soils and Foundations[J],1992, 32(3),pp. 97-116.
    [33] Yasuda, S.,Nagase,H., Kiku,H. and Uchida,Y“The Mechanism and a Simplified Procedure for the Analysis of Permanent Ground Displacement Due to Liquefaction”, Soils and Foundations[J],1992,32(I),ppl49-160.
    [34]张建民,地震液化后地基大变形的实用预测方法,第八届力学及岩工程学术会议论文集[C],万国学术出版社,1999, pp.573-576.
    [35]刘汉龙、周云东、高玉峰,砂地震液化后大变形特性试验研究[J],岩工程学报,2002.03,pp142-146.
    [36]周云东、刘汉龙、丁晓峰、杨寿送,砂地震液化后大变形机理研究,中国木工程学会第九届力学及岩工程学术会议论文集[C],2003.10,pp. 1135-1138.
    [37]张建民,水平地震液化后大变形对桩基础的影响[J],建筑结构学报,2001.10,pp75-78.
    [38]张建民,地震液化后地基侧向变形对桩基的影响,第八届力学及岩工程学术会议论文集[C],万国学术出版社,1999, pp.577-580.
    [39] Tarek Abdoun,Ricardo Dobry, Thomas D,et al. Pile response to lateral sperads: centrifuge modeling. Journal of Geotechnical and Geoenvironmental Engi- neering, 2003,129(10):869-878.
    [40] Ricardo Ramos, Centrifuge study of bending response of pile foundation to a lateral spread including restraining effect of superstructure,[D],Rensselaer Polytechnic Institute, Troy, New York,1999.06.
    [41]张建民、王刚,地基震动液化后大变形对桩基础影响的动力相互作用分析,第八届力学及岩工程学术会议论文集[C],万国学术出版社,1999, pp.1078-1081.
    [42]张东日、阅连金、李风仪、吕志彬,拉格朗日元法及其应用软件FLAC[J],矿山压力与顶板管理,1997,(3-4):224-226,1997.
    [43]梁海波、张明、李仲奎、谷兆祺,快速拉格朗日差分法及其应用[J],红河水,第十六卷第二期:pp21-24,1997.
    [44]孙宗军,盾构施工与桩基础相互作用的三维力学分析与研究[D],南京:东南大学,2004.05。
    [45] FLAC3D,Fast Lagrangian Analysis of Continua in 3 Demensions, Version2.1, User's Manual of FLAC3D[M],ITASCA Consulting Group. Inc.USA, 2003
    [46]刘波,韩彦辉(美国),FLAC原理、实例与应用指南[M],北京:人们交通出版社,2005。
    [47]陈育民,徐鼎平,FLAC/FLAC3D基础与工程实例[M],北京:中国水利水电出版社,2009:199-200。
    [48]王东坡.支盘桩-地基-结构相互作用体系的振动台试验研究[D].合肥:合肥工业大学木与水利工程学院,2005。
    [49] Futaki, M. and et al., Experiments about Seismic Performance of Reinforced Earth Retaining Wall, Proc.11WCEE, 1996, Paper No.1083.
    [50] Mizuno,H.and Liba,M.,Shaking Table Testing of Seismic Building-Pile-Soil Interaction,Proc.8WCEE, 1984,649-656.
    [51] Tamori,S.and Kitagawa,Y.,Shaking Table Tests of Elasto-Plastic Soil-Pile- Building Interaction System,Proc.9WCEE,Vol.8,1988,843-848.
    [52] SEED H B, LEE K L. Liquefaction of saturated sands during cyclic loading [J]. Journal of Soil Mechanics and Foundation Engineering Division, ASCE,1966, 92(SM6):105-134.
    [53] SHAMOTO Y, ZHANG J-M, GOTO S. Mechanism of large post-liquefaction deformation in saturated sands[J]. Soils and Foundations,1997,37(2): 71-80.
    [54]张建民,王刚.评价饱和砂液化过程中小应变到大应变的本构模型[J].岩工程学报,2004,26(4):546-552.
    [55] Baziar, M.H.,and Dobry,R.,Residual strength and large-deformation potential of loose silty sands. Journal of Geotechnical Engineering. 1995,121 (12),896- 906.
    [56] Sasaki Y, et al .Mechanism Of permanent displacement Of ground caused by seismic liquefaction[J],Soils and Foundations,1992.
    [57] Yasudas. et al, The mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction[J].Soils and Foundations. 1992,32(1):149-160.
    [58] Yasuhiro Shamoto,Jian-Min-Zhang & Kohji Tokimatsu. New charts forpredicting large residual post-liquefaction on ground deformation.Soil Dynamic and Earthquake Engineering.1998,17:427-438.
    [59] Kagawa T.,Minowa C .,Mizuno H.,and Abe A. (1994)“Shaking-Table Tests on Piles in Liquefying Sand”[J],Proc.5thU.S.Natl. Conf.Earthquake Eng,Chicago,1994,Vol.4 ,107-116.
    [60]石兆吉,郁寿松,地震对房屋展害影响的宏观分析[J],工程抗震,1993(1): 25-27。
    [61]刘惠珊,桩基抗震设计探讨--日本阪神大地震的启示[J].工程抗震,2000(3): 27-32。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700