畸形波生成、演化及内部结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畸形波是一种波高极大,持续时间很短,能量高度集中的灾难性波浪,能对船舶和海上工程结构等造成严重的危害。目前,其发生机理和生成概率等基本问题还没有统一的结论。主要是因为畸形波破坏力极大,发生前没有征兆,实测资料十分有限等方面原因,导致畸形波的研究工作开展的还不够深入。本文针对畸形波生成、演化过程,内部结构及内、外部结构之联系等问题开展研究,取得了以下研究成果:
     实现了畸形波的物理模拟和数值模拟。数值模型是通过有限差分法求解雷诺时均N-S方程,以k-ε双方程模型封闭,使用VOF方法捕捉自由表面建立的。通过将孤立波、不规则波、畸形波的数值模拟结果与物理试验结果比较,验证了数值模型模拟畸形波波面及水质点速度的有效性。为研究畸形波生成、演化及内部结构等提供了基础工具。
     基于复演天然实测及数值模拟畸形波(或深谷),对比分析了天然畸形波和数值模拟畸形波的生成和演变规律。研究发现,畸形波的生成、演化过程可归纳为:从连续大波(大波群)→深谷→准畸形波→畸形波→准畸形波→深谷→连续大波。该过程中,最大波浪并不是一直以自由水面形态向前传播,会发生大峰波与深谷相互转化、深谷与畸形波相互转化,相邻的波浪间,能量和波面传播速度不同步使最大波发生“突变”。由此可见,畸形波并非独立的异常波浪现象,常与深谷和连续大波等异常波浪现象相伴发生。
     基于284组物理模拟畸形波和64组数值模拟畸形波传播速度的计算结果,使用回归分析方法给出了畸形波传播速度的半经验、半理论计算公式。并对比分析了畸形波与3阶Stokes波传播速度中的非线性成分,发现非线性对畸形波传播速度的影响远远大于3阶Stokes波,并且随着广义波陡的增加,两者之间的差距越明显。
     使用小波分析方法定量分析了畸形波生成、演化过程中出现的特征大波(大峰波、深谷、准畸形波和畸形波)的时频能量谱特征(能量集中度,能量集中区域在时域和频域的分布范围),并与常规不规则波列(不包含异常大波的不规则波列)中的最大波浪进行对比。研究发现,畸形波生成、演化过程中出现的特征大波的能量集中度远大于常规不规则波列中的最大波浪。定义满足aE三6的大波浪为“广义畸形波”。aE是描述波浪能量集中程度的参数,与畸形波外部特征参数α1显著线性相关。
     广义畸形波水质点速度、加速度的最大值均发生在自由表面附近。波峰(波谷)两侧速度场、加速度场的分布均不对称,与规则波有明显的区别。尽管广义畸形波的波高很大,但其远未达到波浪的运动学、动力学破碎指标。波峰高度、周期完全相同的条件下,比较畸形波与5阶Stokes波波峰位置水质点水平速度得知,静水面以上,畸形波水质点水平速度较大,静水面以下,情况相反;畸形波水质点水平速度沿水深变化比5阶Stokes波快。有限的计算结果显示,畸形波内部结构参量与畸形波外部特征参数ηc/Lp,α1和α4的关系较为密切,对此还需进一步的研究。
     斜坡和曲线地形的存在对于畸形波外部特征参数的影响未表现出显著的规律。但当坡度(或曲线高度)连续变化时,特征参数a4存在一个谷值。斜坡和曲线地形的存在对于畸形波内部结构的影响主要表现在:当地形特征变化显著时,可使得时频能量集中区在时域的分布范围减小,同时显著增加时频能量的高频成分,但对能量集中度αE、时频能量集中区在频域的分布范围的影响不显著。
Freak wave is a type of large and short-lived water wave. Such wave has high energy density, which can bring serious damages to vessels, maritime structures and other facilities in the ocean. So far, its physical mechanics and probability of occurrence are still unclear. The further study on freak waves cannot be carried out smoothly due to the insufficient in-situ data, devastating force and unexpected occurrence. This work aims to conduct a systematic investigation on the generation, evolution, internal structure and the relationship between internal and external features. The thesis work can be described as the following6major parts.
     Both numerical and experimental simulations of freak waves are realized. The numerical model is built by solving for the variables from a finite-difference approximation of the Reynolds time-averaged N-S equations, the k-ε model is for the turbulence closure, and the volume of fluid (VOF) method is used for free surface tracking. The simulated results of the fission phenomenon of a solitary wave over a change of water depth through a bottom slope, a conventional random wave train, the wave profile and velocity of a freak wave show good agreement with the experimental results, which indicates the model's capability to resolve the wave profiles and velocities of freak waves. The numerical and experimental simulations are effective tools for the study of the generation, evolution and internal structure of freak waves.
     The present numerical model is implemented to reproduce3in-situ random wave trains containing a freak wave (or a deep trough), and to simulate5non-designed freak waves. Analysis of the simulated results attests that the generation and evolution of freak waves can be summarized as:large wave sequence→deep trough→quasi-freak wave→freak wave→quasi-freak wave→deep trough→large wave sequence. During that process, the maximum wave is not always in the form of free surface propagation, there are transformations between the wave with high crest and deep trough, between the deep trough and freak wave. The difference between propagation speeds of energy and free surface results in sudden change of the maximum wave. It can be seen that freak waves do not come alone, always accompanied by other abnormal events such as successive large waves and deep troughs.
     On the basis of the calculation results of the speeds of284experimental freak waves and64supplementary numerical freak waves, a semi-theoretical and semi-empirical formula is proposed to predict the freak wave speed by using regression analysis method. Through analyzing the difference between the nonlinearity effects on the speeds of freak waves and3rd-order Stokes waves, it is found that the nonlinearity effect on the freak wave speed is much greater than on the3rd-order Stokes wave speed, and that the increase of the modified wave steepness enhances the difference between the nonlinearity effects on the speeds of freak waves and3rd-order Stokes waves.
     Quantitative analysis of the time-frequency energy spectrum characteristics (transient energy density and the ranges of focused energy distribution in both time and frequency domains) of the abnormal waves occurring during the generation and evolution of freak waves (wave with high crest, deep trough, quasi-freak wave and freak wave) is performed by wavelet analysis method. Comparison of the time-frequency energy structure characteristics of abnormal waves and the maximum wave in a conventional random wave train (a random wave train contains no abnormal wave) attests that the energy densities of abnormal waves are much higher than the maximum wave in a conventional random wave train. It is suggested that the abnormal wave with energy parameter αE≥6is considered as the "general freak waves". The energy parameter αE is presented to describe the transient energy densities of waves, which is correlated linearly with the external characteristic parameter α1.
     The maximal velocity and acceleration of general freak waves appear close to the free surface. The velocity and acceleration fields of the general freak waves exhibit strong front/back asymmetry, which is different from regular wave. Although the general freak wave has a height to significant wave height ratio more than2, the kinematic and dynamic wave-breaking criteria are not met. Comparison of the horizontal velocity profiles below wave crest of general freak wave and5th-order Stokes wave (identical crest height and period) attests that the horizontal velocity of general freak wave is larger than5th-order Stokes wave close to the free surface and smaller below the still water level, and that the vertical variation of the horizontal velocity of general freak wave is more obvious than5th-order Stokes wave. Present numerical results show that the internal structure parameters of general freak waves have relation with the external characteristic parameters ηc/Lp, α1and α4. Further studies are needed to thoroughly analyze the relationship between the internal and external characteristic parameters.
     As the characteristic altitudes of the uneven topographies (slope topography and curved topography) increase, the external characteristic parameters show no obvious trend except a valley value for α4. For internal structure, the increase of the characteristic altitudes of the uneven topographies results in the decrease of the range of the focused energy distribution in time domain, the increase of the high-frequency energy, no obvious trend for αE and the range of the focused energy distribution in frequency domain.
引文
[1]KHARIF C., PELINOVSKY E. Physical mechanisms of the rogue wave phenomenon [J]. European Journal of Mechanics B/Fluids,2003,22:603-634.
    [2]LAWTON G. Monsters of the deep (The perfect wave) [J]. New Scientist,2001,170 (2297): 28-32.
    [3]DIDENKULOVA I. I., SLUNYAEV A. V., PELINOVSKY E. N., et al. Freak waves in 2005 [J]. Natural Hazards and Earth System Sciences,2006,6:1007-1015.
    [4]DRAPER L. Freak wave [J]. Marine Observer,1965,35:193-195.
    [5]庞红犁,于定勇.极端瞬态波浪的特征分析[J].海洋工程,2001,20(4):15-20.
    [6]蔡政翰,林盈成,曾相茂.群波与疯狗浪[J].海洋工程学刊,2001,1(1):71-82.
    [7]陈冠宇.疯狗浪的可能机制[J].海洋工程学刊,2001,2002,2(1):93-106.
    [8]杨冠声,董艳秋,陈学闯.畸形波(freak wave) [J]海洋工程,2002,20(4):105-108.
    [9]黄国兴.畸形波的模拟方法及基本特性研究[D].大连:大连理工大学,2002.
    [10]庞红犁.极端波浪作用下海上结构物高频共振响应的数值模拟研究[D].天津:天津大学,2003.
    [11]杨冠声.张力腿平台非线性波浪荷载和运动响应研究[D].天津:天津大学,2003.
    [12]陈学闯,董艳秋,杨冠声.非线性Freak波分析及模拟理论探讨[J].海洋工程,2003,21(1):105-108.
    [13]庞红犁张庆河秦崇仁 异常波及其对海上结构铃振现象的影响[J]水道港口,2003,24(3):109-114.
    [14]董艳秋,陈学闯,杨冠声.关于一种危害船舶安全的波浪-Freak波的探讨[J].船舶力学,2003,7(2):33-38.
    [15]杨冠声,董艳秋,陈学闯.畸形波对圆柱作用力计算的波形改造法[J].港工技术,2003,1:6-8.
    [16]芮光六,董艳秋,张智.畸形波的实验室模拟[J].中国海洋平台,2004,19(3):31-33.
    [17]黄金刚.二维聚焦极限波浪的模拟研究[D].大连:大连理工大学,2004.
    [18]裴玉国,张宁川,张运秋.畸形波数值模拟和定点生成[J].海洋工程,2006,24(4):20-26.
    [19]裴玉国,张宁川,张运秋.数值模拟生成畸形波的一种新方法[J].海洋通报,2007,16(1):178-183.
    [20]裴玉国,张宁川,张运秋.波浪频谱数值模拟畸形波的方法探究[J].海洋学报,2007,29(3):172-178.
    [21]高璞,汪留松,赵西增.畸形波特性研究[J].中国港湾建设,2007,6:28-31.
    [22]李金宣.多向聚焦极限波浪的模拟研究[D].大连:大连理工大学,2007.
    [23]裴玉国.畸形波的生成及基本特性研究[D].大连:大连理工大学,2007.
    [24]张运秋,张宁川,裴玉国.畸形波数值模拟的一个有效模型[J].大连理工大学学报,2008,48(3):406-409.
    [25]肖鑫.畸形波作用下张力腿平台运动响应分析[D].大连:大连理工大学,2008.
    [26]张运秋.深水畸形波的数值模拟研究[D].大连:大连理工大学,2008.
    [27]刘晓霞.三维波浪场中畸形波的数值模拟[D].大连:大连理工大学,2008.
    [28]赵西增,孙昭晨,梁书秀.模拟畸形波的聚焦波浪模型[J].力学学报,2008,40(4):447-454.
    [29]赵西增,孙昭晨,梁书秀.高阶谱方法建立三维畸形波聚焦模拟模型[J].海洋工程,2009,27(1):33-39.
    [30]赵西增.畸形波的实验研究和数值模拟[D].大连:大连理工大学,2009.
    [31]张运秋,胡金鹏.畸形波生成的一种非线性机理分析[J].华南理工大学学报(自然科学版),2009,37(6):117-123.
    [32]胡金鹏,张运秋,朱良生.基于Benjamin-Feir不稳定性的畸形波模拟[J].华南理工大学学报(自然科学版),2009,37(6):113-116.
    [33]张运秋,胡金鹏,张宁川.非线性聚焦生成畸形波规律之研究[J].水道港口,2010,31(3):153-156.
    [34]刘首华.畸形波的海浪数值模拟研究[D].青岛:中国海洋大学,2010.
    [35]刘赞强.畸形波模拟及其与核电取水构筑物作用探究[D].大连:大连理工大学,2011.
    [36]STANSELL P. Distributions of freak wave heights measured in the North Sea [J].-Applied Ocean Research,2004,26:35-48.
    [37]STANSELL P. Distributions of extreme wave, crest and trough heights measured in the North Sea [J]. Ocean Engineering,2005,32:1015-1036.
    [38]SOARES C. G., CHERNEVA Z., ANTAO E. M. Abnormal waves during Hurricane Camille [J]. Journal of Geophysical Research,2004,109, C08008, doi:10.1029/2003JC002244.
    [39]AKHMEDIEV N., ANKIEWICZ A., TAKI M. Waves that appear from nowhere and disappear without a trace [J]. Physics Letters A,2009,373:675-678.
    [40]LAVRENOV I. V., PORUBOV A. V. Three reasons for freak wave generation in the non-uniform current [J]. European Journal of Mechanics B/Fluids,2006,25:574-585.
    [41]KLINTING P., SAND S. Analysis of prototype freak waves [C]. Coastal Hydrodynamic, ASCE, 1987:618-632.
    [42]SCHOBER C. M. Melnikov analysis and inverse spectral analysis of rogue waves in deep water [J]. European Journal of Mechanics B/Fluids,2006,25:602-620.
    [43]ONORATO M., OSBORNE A. R., SERIO M., et al. Freak waves in random oceanic sea states [J]. Physical Review Letters,2001,86(25):
    [44]LOPATOUKHIN, L. J., BOUKHANOVSKY A. V. Freak wave generation and their probability [J]. International Shipbuilding Progress,2004,51:157-171.
    [45]ANDONOWATI, KARJANTO N., GROESEN E. V. Extreme wave phenomena in down-stream running modulated waves [J]. Applied Mathematical Modelling,2007,31:1425-1443.
    [46]FAN Y., TIAN L. X. the Quasi-rogue wave solution on the Camassa-Holm equation [J]. International Journal of Nonlinear Science,2011,11(3):1749-3889.
    [47]MORI N. Occurrence probability of a freak wave in a nonlinear wave field [J]. Ocean Engineering,2004,31:165-175.
    [48]MULLER P., GARRETT C., OSBORNE. A. Rogue waves [J]. Oceanography Society,2005,18 (3): 66-75.
    [49]WARWIEK R. W. Hurricane Luis, the Queen Elizabeth 2 and a rogue wave [J]. Marine Observer, 1996,66:134.
    [50]LECHUGA A. Were freak waves involved in the sinking of the Tanker "Prestige"? [J]. Natural Hazards and Earth System Sciences,2006,6:973-978.
    [51]PUGH K. Coast Guard Capsize [EB/OL]. http://madmariner.com/seamanship weather/story/COAST_GUARD_CAPSIZE_MORRO_BAY_122007_SW.
    [52]IOL. Three shark-diving tourists die [EB/OL]. http://www.iol.co.za/news/ south-africa/three-shark-diving-tourists-die-1.396411.
    [53]COOPER C. Rogue waves in sea and land disasters [EB/OL]. http://www. brighthub.com/engineering/marine/articles/27980.aspx.
    [54]FOXNEWS. Giant rogue wave slams into ship off French coast, killing 2 [EB/OL]. http: //www.foxnews.com/story/0,2933,587885,00.html.
    [55]LIU P. C., MORI N. Wavelet spectrum of freak waves in the ocean [C]. Proceedings,27th International conference on Coastal Engineering, ASCE,2000:1092-1098.
    [56]MORI N., LIU P. C., YASUDA T. Analysis of freak wave measurements in the Sea of Japan [J]. Ocean Engineering,2002,29:1399-1414.
    [57]HAVER S. A Possible Freak Wave Event Measured at the Draupner Jacket January 1 1995 [C], Rogue waves Workshop, Brest, France,2004.
    [58]SKOURUP J., HANSEN N. E.0., ANDREASEN K. K. Non-Gaussian extreme waves in the central North sea [J]. Journal of Offshore Mechanics and Arctic Engineering,1997,119(3): 146-150.
    [59]WOLFRAM J., LINFOOT B., VENUGOPAL V. Some results from the analysis of metocean data collected during storms in the Northern North Sea [J]. Underwater Technology,2001, 24(4):153-164.
    [60]CHIEN H., KAO C. C. On the characteristics of observed coastal freak waves [J]. Coastal Engineering Journal,2002,44(4):301-319.
    [61]LIU P. C., PINHO U. F. Freak waves-more frequent than rare [J]. Annales Geophysicae, 2004,22:1839-1842.
    [62]LEHNER S., STELLENFLETH J. S., NIEDERMEIER A., et. al. Extreme waves observed by synthetic aperture radar [C]. Ocean Wave Measurement and Analysis Proceedings of the Fourth International Symposium, ASCE,2001,1:125-134.
    [63]PELINOVSKY E., SLUNYAEV A., LOPATOUKHIN L., et al. Freak wave event in the Black Sea: observation and modeling [J].Dokl Earth Sci,2004,395A:438-443.
    [64]MELVILLE W. K., ROMERO L., KLEISS J. M. Extreme wave events in the Gulf of Tehuantepec [C]. Proceedings of Hawaiian Winter Workshop,2005, Hawaii.
    [65]WHITE B. S., FORNBERG B. On the chance of freak waves at sea [J]. Journal of Fluid Mechanics,1998,355:113-138.
    [66]THIEKE R. J., DEAN R. G., GARCIA A. W. The Daytona Beach "Large Wave" event of July 3, 1992 [C]. Proceedings 2nd International Symposium on Ocean Wave Measurement and Analysis, ASCE,1994:45-60.
    [67]LIU P. C., MACHUTCHON K. R., WU C. H. Exploring rogue waves from observations in South Indian Ocean [C]. Rogue wave,2004, Brest, France.
    [68]DONELAN M. A., MAGNUSSON A. K. The role of meteorological focusing in generating rogue wave conditions. Proceedings of the 14th'Aha Huliko'a Winter Workshop 2005 on Rogue Waves, January 25-28,2005,-Honolulu, USA.
    [69]TOUBOUL J., GIOVANANGELI J. P., KHARIF C., et al. Freak waves under the action of wind: experiments and simulations [J]. European Journal of Mechanics B/Fluids,2006,25: 662-676.
    [70]GIOVANANGELI J.P., KHARIF C., TOUBOUL J. On the role of the Jeffreys'sheltering mechanism in sustaining extreme water waves [J]. Comptes Rendus Mecanique,2006,334: 568-573.
    [71]MA Q. W., YAN S. Preliminary Simulation of Wind Effects on 3D Freak Wave [C]. Rogue Waves Workshop,2008, Brest, France.
    [72]BIAUSSER B., GRILLI S.T., FRAUNIE P. Numerical analysis of the internal kinematics and dynamics of three-dimensional breaking waves on slopes [C]. Proceeding 13th Offshore and Polar Engineering Conference, USA,2003:340-346.
    [73]GUYENNE P., GRILLI S. T. Computations of 3D Overturning Waves in Shallow Water [C]. Proceeding 13th Offshore and Polar Engineering Conference, USA,2003:347-352.
    [74]GRILLI S. T., GUYENNE P., DIAS F. A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom [J]. International Journal for Numerical Methods in Fluids,2001,35:829-867.
    [75]CHOI D. Y., WU C. H. A new efficient 3D non-hydrostatic free-surface flow model for simulating water wave motions [J]. Ocean Engineering,2006,33:587-609.
    [76]MADSEN O. S., MEI C. C. The transformation of a solitary wave over uneven bottom [J]. Journal of Fluid Mechanics,1969,39:781-791.
    [77]SERGEEVA A., PELINOVSKY E., TALIPOVA T. Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework [J]. Natural Hazards and Earth System,2011,11 (2):323-330.
    [78]梅强中.水波动力学[M].北京:科学出版社,1984.
    [79]DYACHENKO A. I., ZAKHAROV V. E. Modulation instability of Stokes wave→freak wave [J]. JETP Letters,2005,81(6):255-259.
    [80]ZAKHAROV V. E, DYACHENKO A. I., PROKOFIEV A.0, Freak waves as nonlinear stage of Stokes wave modulation instability [J]. European Journal of Mechanics B-Fluids,2006,25(5): 677-692.
    [81]OSBORNE A. R., ONORATO M., SERIO M. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains [J]. Physics Letters,2000,275:386-393.
    [82]TOFFOLI A., BITNER-GREGERSEN E., ONORATO M., et al. Wave crest and trough distributions in a broad-banded directional wave field [J]. Ocean Engineering,2008,35:1784-1792.
    [83]ZAKHAROV V. E., SHABAT A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem I [J]. Functional Analysis and Its Applications,1974,8:226-235.
    [84]SATSUMA J. N-soliton solution of the two-dimensional Korteweg-de Vries equation [J]. Journal of the Physical Society of Japan,1976,40:286-290.
    [85]PETERSON P., SOOMERE T., ENGELBRECHT J., et al. Interaction soliton as a possible model for extreme waves in shallow water [J]. Nonlinear Processes in Geophysics,2003,10(6): 503-510.
    [85]FAN Y., TIAN L. X. The Quasi-rogue Wve Solution on the Camassa-Holm Equation [J]. International Journal of Nonlinear Science,2011,3:259-266.
    [86]CHERNEVA Z., SOARES C. G. Non-linearity and non-stationarity of the New Year abnormal wave [J]. Applied Ocean Research,2008,30:215-220.
    [87]JANSSEN M. Nonlinear Four-Wave Interactions and Freak Waves [J]. Journal of Physical Oceanography,2003,33:863-884.
    [88]MORI N., JANSSEN P. A. E. M.,2006. On Kurtosis and Occurrence Probability of Freak Waves[J]. Journal of Physical Oceanography,36(7):1471.
    [89]CHAPLIN J. R. On frequency-focusing unidirectional waves [J]. Journal of Offshore and Polar Engineering,1996,6(2):131-137.
    [90]KRIEBEL D. L. Efficient simulation of extreme waves in a Random Sea [C]. Rogue waves 2000, Brest, France,2000:1-2.
    [91]CONTENTO G., CODIGLIA R., D' ESTE F. Nonlinear effects in 2D transient nonbreaking waves in a closed flume [J]. Applied Ocean Research,2001,23:3-13.
    [92]CLAUSS G. F. Dramas of the sea:episodic waves and their impact on offshore structures [J]. Applied Ocean Research,2002,24:147-161.
    [93]CLAUSS G. F. Task-related wave groups for seakeeping tests or simulation of design storm waves [J]. Applied Ocean Research,1999,21:219-234.
    [94]SMITH S. F., SWAN C. Extreme two-dimensional water waves:an assessment of potential design solutions [J]. Ocean Engineering,2002,29:387-416.
    [95]CLAUSS G. F., STEINHAGEN U. Optimization of Transient Design Waves in Random Sea [C]. Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, USA,2000.
    [96]FOCHESATO C., DIAS F., GRILLI S. Wave energy focusing in a three-dimensional numerical wave tank [C]. Proceedings of the 15th International Offshore and Polar Engineering Conference,2005.
    [97]BRANDINI C., GRILLI S. Modeling of freak wave generation in a 3D-NWT [C]. Proceedings of the 11th International Offshore and Polar Engineering Conference,2001, Stavanger, Norway.
    [98]FOCHESATO C., GRILLI S., DIAS F. Numerical modeling of extreme rogue waves generated by directional energy focusing [J]. Wave Motion,200744:395-416.
    [99]CLAMOND D., GRUE J. On an Efficient Numerical Model for Freak Wave Simulations [C]. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway,2001.
    [100]KIM C. H., RANDALL R. E., BOO S. Y., et al. Kinematics of 2-D transient water waves using Laser Doppler Anemometry [J], Journal of Waterway, Port, Coastal and Ocean Engineering,1992,118(2):147-165.
    [101]BALDOCK T. E., SWAN C., TAYLOR P. H. A laboratory study of nonlinear surface waves on water [J]. Philosphical Transactions of the Royal Society:Mathematical, Physical and Engineering Sciences,1996,354(1707):649-676.
    [102]MANSARD E. P. D., FUNKE E. R. A new approach to transient wave generation [C]. Proceeding 18th International Conference on Coastal Engineering,1982, Cape, South Africa.
    [103]SHE K., GREATED C. A., EASSON W. J. Experimental study of three-dimensional breaking wave kinematics [J]. Applied Ocean Research,1997,19:329-343.
    [104]GRUE J., CLAMOND D., HUSEBY M., et al. Kinematics of extreme waves in deep water [J]. Applied Ocean Research,2003,25:355-366.
    [105]COX D., ORTEGA J. Laboratory observation of green water overtopping a fixed Deck [J]. Ocean Engineering,2002,29:1827-1840.
    [106]GRUE J., JENSEN A. Experimental velocities and accelerations in very steep wave events in deep water [J]. European Journal of Mechanics B/Fluids.2006,25:554-564.
    [107]JOHANNESSEN T. B, SWAN C. A laboratory study of the focusing of transient and directionally spread surface water waves [C]. Royal Society of London Proceedings, 2008,457:971-1006.
    [108]CORTE C., GRILLI S. T. Numerical Modeling of Extreme Wave Slamming on Cylindrical Offshore Support Structures [C]. Proceedings of the 16th International Offshore and Polar Engineering Conference,2006, California, USA.
    [109]ANDONOWATI, KARJANTO N., van GROESEN E. Extreme wave phenomena in down-stream running modulated waves [J]. Applied Mathematical Modelling,2007,31:1425-1443.
    [110]DUCROZET G., BONNEFOY F., TOUZE D. L., FERRANT P.3-D HOS simulation of extreme waves in open sea [J]. Natural Hazards and Earth System Sciences,2007,7(1):109-122.
    [111]WU C. H., YAO A. F. Laboratory measurements of limiting freak waves on currents [J]. Journal of Geophysical Research,2004,109:C12002, doi:10.1029/2004 JC002612.
    [112]OSBORNE A. R. The random and deterministic dynamics of'rogue waves'in unidirectional, deep-water wave trains [J], Marine Structures,2001,14:275-293.
    [113]WALKER D. A. G., TAYLOR P. H., TAYLOR R. E. The shape of large surface waves on the open sea and the Draupner New Year wave [J]. Applied Ocean Research,2004,26:73-83.
    [114]SKYNER D. A comparison of numerical predictions and experimental measurements of the internal kinematics of a deep-water plunging wave [J]. Journal of Fluid Mechanics, 1996,315:51-64.
    [115]CHANG K. A., LIU P.L.F. Velocity, acceleration and vorticity under a breaking wave [J]. Physics of Fluids,1998,10:327-329.
    [116]NEW A. L., MCIVER P., PEREGRINE D. H. Computations of overturning waves [J]. Journal of Fluid Mechanics,1985,150:233-251.
    [117]DOMMERMUTH D. G., YUE D.K.P., LIN W. M., et al. Deep-water plunging breakers:a comparison between potential theory and experiments [J]. Journal of Fluid Mechanics, 1988,189:432-442.
    [118]LIANG X.F.,YANG J. M.,LI J., et al. A numerical study on local characteristics of predetermined irregular wave trains [J]. Ocean Engineering,2011,38:651-657.
    [119]GUYENNE P., GRILLI S. T. Numerical study of three-dimensional overturning waves in shallow water [J]. Journal of Fluid Mechanics,2006,547:361-388.
    [120]BUCHNER B., CHRISTOU M., EWANS K., et al. Spectral characteristics of an extreme crest measured in a laboratory basin [C]. Rogue Waves Workshop,2008, Brest, France.
    [121]TORRENCE C., COMPO G. P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society,1998,79(1):61-78.
    [122]俞聿修,随机波浪及其工程应用[M].大连:大连理工大学出版社,2003.
    [123]REN B., WANG Y. X. Numerical simulation of random wave slamming on structures in the splash zone [J]. Ocean Engineering,2004,31:547-560.
    [124]RODI W. Turbulence models and their application in hydraulics [C], third ed.. IAHR Monograph, Balkema, Rotterdam, The Netherlands,1993.
    [125]HIRT C. W., Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics,1981,39 (1):201-225.
    [126]SHEN Y. M, NG C. O., ZHENG Y. H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ε turbulence modeling [J]. Ocean Engineering,2004,31:87-95.
    [127]竺艳容.海洋工程波浪力学[M].天津:天津大学出版社,1991.
    [128]周纪芗.实用回归分析方法[M].上海:上海科学技术出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700