用户名: 密码: 验证码:
超滤膜净化滦河水运行工艺与净化效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类文明的进步、人口的增加以及工农业的快速发展,饮用水的水质问题变得越来越突出。一方面,饮用水水源的水质日益恶化,同时用户也对饮用水水质提出了更高要求,另一方面,水资源在时间和空间上分布不均。两方面都促进水处理技术的不断发展和水质标准的提高。随着新的《生活饮用水卫生标准》(GB5749-2006)的颁布,我国对饮用水水质要求变高,而传统的水处理工艺在一定程度上不能达到新标准要求。为了满足这一新的水质标准要求,需要探讨传统处理工艺的改造以及新技术的应用。
     超滤作为一种新的水处理技术,由于膜污染问题和对我国现有各种水体的适应性没有完全被了解,所以在我国还没有大规模的应用于自来水厂。为了考察超滤技术结合水厂现有工艺处理滦河水时产水的水质保障、经济性以及可靠性,本试验采用超滤膜结合水厂混凝、沉淀和砂滤工艺处理滦河水。实验为期一年,经历了高温高藻期、正常水质期和低温低浊期,系统研究了混凝—沉淀—超滤膜和混凝—沉淀—砂滤—超滤膜两种组合工艺在不同水质时期的运行工况,超滤膜进出水的常规和非常规指标的检测,膜进出水、反洗水的分子量分布、消毒副产物及其前体物的分布及浓度,超滤膜运行成本,运行稳定性等。通过研究得出,在水厂现有构筑物能够得到充分利用的同时,有效地保证出水水质,并且抗水质冲击能力较强,相关参数如下:
     第一组工艺在不同水质时期优化后的运行参数:在高温高藻期,通量60L/h.m2,过滤时间30 mmin,反洗加氯2 mg/L;在正常水质期,通量为50 L/h·m2,过滤时间30 mmin,预氯化浓度为1.2 mg/L,对于缓解SF衰减来说,在反应池中投加助凝剂HCA的效果好于未投加助凝剂,而投加助凝剂水玻璃的效果劣于未投加助凝剂;在低温低浊期,通量为50 L/h·m2,过滤时间30 mmin,预氯化浓度2 mg/L。第二组工艺:低温低浊水质期和正常水质期的运行参数:通量60 L/h·m2,过滤时间30 mmin,预氯化浓度1 mg/L;高温高藻期,通量75 L/h·m2,过滤时间20 mmin,预氯化加CEB的运行方式,预氯化浓度0.5 mg/L,CEB时间0.5 h,CEB周期24 h,CEB药品NaClO。
     第一组工艺的膜出水水质指标中CODMn和UV254的平均值高于第二组工艺中出水相应指标,而浊度则相反,浊度值均低于1 NTU。在两种工艺中,处理沉淀池出水时,除膜出水的菌落总数和大肠菌群数有超标情况出现外,其余各种指标均优于《生活饮用水卫生标准》(GB5749-2006)要求。超滤膜进出水中溶解性有机物(DOM)主要由小分子量DOM构成,且这部分有机物对UV254、三卤甲烷生成潜能(THMFP)和卤乙酸生成潜能(HAAFP)贡献最大。
     第一组工艺中,超滤膜的过滤时间越长,在初始阶段跨膜压差(TMP)增长得越快,达到稳定运行的时间越短,反洗跨膜压差(BTMP)达到稳定衰减的时间越长,且BTMP越小。随着过滤时间的延长,’反洗水的浊度、CODMn、UV254和THMFP值逐渐增大,但过滤时间对THMFP、UV254的影响较小。反洗水中DOM主要由分子量大于30 kDa和小于1 kDa两部分DOM组成,而UV254主要由分子量小于1 kDa的DOM构成。反洗水中碎片的分形维数与过滤时间具有较好的相关性。第二组工艺中反洗水的CODMn受温度影响较大,随温度升高变大,而浊度和UV254几乎不受温度的影响。
     超滤膜处理砂滤池出时,超滤膜的产水率、单位产水电耗都优于处理沉淀池出水时相对应的数值,而单位产水药耗则相反。
With the progress of human civilization, population growth and rapid development of industry and agriculture, the issue of drinking water quality becomes more prominent. On one hand, drinking water quality of source water is deteriorating and users share higher requirements for drinking water; on the other hand, water resources distribute uneven in time and space. Both sides stimulate the development of the water treatment technology and the improvement of water quality standards. In China, with the promulgation of the new standards for drinking water quality (GB5749-2006), the demand for water quality becomes higher, and therefore, to some extent, the traditional water treatment process cannot meet the demand of the drinking water quality standards. In order to meet the standards, it is necessary to probe into the improvement of traditional process and the application of new technology.
     Ultrafiltration as an emerging water treatment technology has not yet been widely applied to waterworks because of membrane fouling and insufficient knowledge of the adaptability of ultrafiltration membrane to various waters in China. In order to detect whether or not the combination of ultrafiltration technology with the existing process in waterworks can guarantee membrane treated water quality and the economy, reliability of the process in treating Luan River, the experiment introduced ultrafiltration membrane to the existing coagulation, sendimentation and sand filter process in waterworks. Experiments lasted one year and experienced three water quality periods, namely, high temperature and algae period, normal water quality period & low temperature and turbidity period. The operating conditions of coagulation—sendimentation—ultrafiltration membrane and coagulation—sendimentation—sand filter—ultrafiltration membrane processes in different water quality periods were systematically studied. The research was on regular indices and non-regular indices in membrane feed water and treated water, the molecular weight distribution of membrane feed water, treated water and membrane backwash water, distribution and concentration of disinfection by-products and their precursors, membrane running cost, operation stability and so on. The conclusions were made based on the research:the existing buildings of waterworks could be fully utilized, and simultaneously the membrane treated water quality was effectively guaranteed and the ability to resist the change of water quality load was stronger, the related parameters were as follows:
     The optimized operating parameters of the first process during different water periods were as follows. In the high temperature and algae period, the flux was 60 L/h-m2·mH2O, filtration time 30 min, and backwash chlorination 2 mg/L. At the normal water quality period, the flux was 50 L/h-m2·mH2O, filtration time 30 min and prechlorination concentration 1.2 mg/L. As for alleviating membrane fouling, the effect of adding coagulant aid HCA to reaction tank was better than without adding and the effect of addition of sodium silicate was worse than without adding. At low temperature and turbidity period, the flux was 50 L/h·m2·mH2O, filtration time 30 min, prechlorination concentration 2 mg/L and the chemical NaClO. For the second process, the operating parameters were as follows:at low temperature and turbidity period and normal water quality period, the operating parameters were exhibited, Flux was 60 L/h·m2·mH2O, filtration time 30 min and prechlorination concentration 1 mg/L. During high temperature and algae period, the flux was 75 L/h·m2·mH2O, filtration time 20 min, the operation modes were prechlorination and CEB, the CEB time 0.5 h and the CEB cycle 24 h; the CEB chemical was NaClO and prechlorination concentration was 0.5mg/L.
     As for the water quality indices of membrane treated water in the first process, CODMn and UV254 were higher than that in the second process, but turbidity was contrary. Turbidity values were all smaller than 1 NTU. Except that some of the total bacterial colony number and total coliforms exceeded standards for the first process, other indicators were all better than the demand of the standards. The dissolved organic matter (DOM) in treated water of ultrafiltration membrane was mainly small molecular weight DOM, similarly, this part DOM contributed the greatest contribution to UV254, trihalomethane formation potential (THMFP) and haloacetic acids formation potential (HAAFP).
     The longer the filtration time was, the faster TMP increased at the beginning, the shorter the filtration time it took to reach stabilization, the longer it took for backwash transmembrane pressure (BTMP) to reach a steady decay, and BTMP was smaller. With the extension of the filtration time, the values of turbidity, CODMn, UV254 and THMFP in backwash water increased, but the change of time had little effect on THMFP and UV254. Most of the DOM in MBW distributed in more than 30 kDa and less than 1 kDa, but for UV254, it was mainly distributed in the range of less than 1 kDa. The fractal dimension of flakes in MBW had a good linear relationship with filtration time. Temperature greatly affected the CODMn in backwash water of the second combined process. The increase of temperature led to increased CODMn value, but it had a little influence on turbidity and UV254 in MBW.
     The membrane water productivity, power consumption for specific water production of the process when treating the sand filter were better than that of the process treating sedimentation tank produced water, but it was contrary with power consumption for specific water production.
引文
[1]方子云,包放.世界水资源的研究进展和展望.水资源研究,2009,29(1):21-23
    [2]侯春梅,张志强,迟秀丽.《联合国世界水资源开发报告》呼吁加强水资源综合治理.地球科学进展,2009,21(11):1211-1214
    [3]范茂军.粉末活性炭和超滤膜组合工艺深度处理上海水源水研究:[博士学位论文].上海:同济大学,2006
    [4]国家环境保护总局.2000年中国环境状况公报.北京:2000:17-27
    [5]扬威.水源污染与饮用水处理技术.哈尔滨:哈尔滨地图出版社,2006.142-144
    [6]李艳丽,江霜英,皮新华.PAC和PAFC用于低温饮用水处理的对比试验.工业水处理,2008,28(1):37-39
    [7]Chen W. Halogenated DBP condentrations in a distribution system. Journal/American Water Works Association,1998,90 (4):151-158
    [8]戴之荷.受污染水处理技术在我国的应用.给水排水,2002,28(1):8-12
    [9]刘成,黄廷林,赵建伟.混凝、粉末活性炭吸附对不同分子量有机物的去除.净水技术,2006,25(]):31-33
    [10]陈志真,李伟光,乔铁军.臭氧—生物活性炭工艺去除饮用水中AOC的研究.中国给水排水,2008,24(3):72-78
    [11]陈光虹,饮用水深度处理技术与工程实践:[硕士论文].重庆:重庆大学:2004
    [12]杜鑫,张维佳,徐乐中.微污染水源水预处理技术—生物接触氧化法.中国科技信息,2008,(17):20-21
    [13]Dabwan A, Imai D, Kaneco S, et al. Water purification with sintered porous materials fabricated at 400℃ from sea bottom sediments. Journal of Environmental Sciences,2008, 20 (2):172-176
    [14]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社,1999
    [15]邵林广,范艳丽.微污染水源水净化技术.工业安全与环保.2001,30(11):1-3
    [16]刘岩.应用超声空化效应净化饮用水的可能性分析.上海环境科学,1990,9(3):39-40
    [17]张朝晖.饮用水深度处理工艺的优化研究:[博士论文].南京:东南大学,2005
    [18]刘岩.水体中有机污染物的超声空化降解研究近况.环境科学进展,1995,3(4):77-79
    [19]董秉直,曹达文,陈艳.饮用水膜深度处理技术.北京:化学工业出版社,2006
    [20]肖建平.中空纤维超滤膜的有机污染及清洗方法研究:[硕士论文],重庆:重庆大学,2004
    [21]王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2002
    [22]中华人民共和国卫生部.生活饮用水水质卫生规范,2001
    [23]中华人民共和国城镇建设行业标准,中华人民共和国建设部城市供水水质标准. (CJ/T206—2005).城市供水水质标准.中国建筑工业出版社.北京:2005.
    [24]陆柱.饮用水的国际标准及近期发展.净水技术,1995,51(1):24-26.
    [25]USEPA, Drinking Water Standards and Health Advisories, EPA 822-R-04-005, Washington, DC, Winter 2004
    [26]World Health Organization. Guidelines for Drinking-water Quality, third edition. Vol.1, Geneva,2004
    [27]EU's Drinking Water Standards. Council Directive 98/83/EC on the quality of water intended for human consumption. Adopted by the Council on 3 November 1998
    [28]左金龙.饮用水处理技术现状评价及技术集成研究:[博士论文].哈尔滨:哈尔滨工业大学,2007
    [29]周柏青.全膜水处理技术,北京:中国电力出版社,2005
    [30]时钧,袁权,高从凯.膜技术手册.北京:化学工业出版社,2001,156-157
    [31]刘亚光.超滤技术在饮用水处理中的应用和研究进展.浙江工商职业技术学院学报,2007,6(3):57-59
    [32]刘春霞,付婉霞.超滤技术在饮用水处理中的效果和应用前景.给水排水,2008,34增刊:121-124
    [33]陈治安,刘通,尹华生.超滤在饮用水处理中的应用和研究进展.工业用水与废水,2006,37 (3):7-10
    [34]Sartor M, Schlichter B, Gatjal H, et al. Demonstration of a new hybrid process for the decentralized drinking and service water production from surface water in Thailand. Desalination,2008,222 (1-3):528-540
    [35]Laine J M, Vial D, Moulart P. Status after 10 years of operation-overview of UF technology today. Deaslination,2000,131(1-3):17-25
    [36]Arnal J M, Garcia-Fayos B, Verdu G, et al. Ultrafiltration as an alternative membrane technology to obtain safe drinking water from surface water:10 years of experience on the scope of the AQUAPOT project. Desalination,2009,248 (1-3):34-41
    [37]Guo X, Zhang Z, Fang L. Study on ultrafiltration for surface water by a polyvinylchloride hollow fiber membrane. Desalination,2009,238 (1-3):183-191
    [38]Xia S, Liu Y, Li X, et al. Drinking water production by Ultrafiltration of Songhuajiang River with PAC adsorption. Journal of Environmental Sciences.2007,19(5):536-539
    [39]Lee S, Kim S, Cho J, et al. Natural organic matter fouling due to foulant-membrane physicochemical interactions. Desalination,2007,202 (1-3):377-384
    [40]Jermann D, Pronk W, Kagi R, et al. The influence of interactions between NOM and particles on UF fouling mechanisms. Water Research,2008,42 (14):3870-3878
    [41]Kuberkar V T, Davis R H. Modeling of fouling reduction by secondary membranes. Journal of Membrane Science,2000,168 (1-2):243-258
    [42]Nakatsuka S, Nakate I, et al. Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination,1996,106 (1-3):55-61
    [43]Belfort G, Davis R H, Zydney A L. The behavior of suspension and macromolecular solution in crossflow microfiltration. Journal of Membrane Science,1994,96(1-2):1-58
    [44]Wang F, Tarabara V V. Pore blocking mechanisms during early stages of membrane fouling by colloids. Journal of Colloid and Interface Science,2008,328 (2):464-469
    [45]Mousa H A. Investigation of UF membranes fouling by humic acid. Desalination,2007, 217 (1-3):38-51
    [46]Bowen W R, Calvo J L, Hernandez A. Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science,1995,101 (1-2):153
    [47]Rita C A, Pinho M N, Elimelech M. Mechanisms of colloidal natural organic matter fouling in ultrafiltration. Journal of Membrane Science,2006,281 (1-2):716-725
    [48]Mohammadi T, Kohpeyma A, Sadrzadeh M. Mathematical modeling of flux decline in ultrafiltration. Desalination,2005,184 (1~3):367-375
    [49]Schafer A, Schwicrer U, Fischer N, et al. Microfiltration of colloids and natural organic matte. Journal of Membrane Science,2000,175(2):151-172
    [50]Kimura K, Hane Y, Watanabe Y, et al. Irreversible membrane fouling during ultrafiltration of surface water. Water Research,2004,38 (14~15):3431-3441
    [51]Tajca M, Bodzek M, Konieczny K. Application of mathematical models to the calculation of ultrafiltration flux in water treatment. Desalination,2009,239 (1~3):100-110
    [52]Li C W, Chen Y S. Fouling of UF membrane by humic substance:Effects of molecular weight and power-activated carbon (PAC) pre-treatment. Desalination,2004,170 (1): 59-67
    [53]Kulovaara M, Metsamuuronen S M, Nystrom M, Effects of aquatic humic substances on a hydrophobic ultrafiltration membrane. Chemosphere,1999,38 (15):3485-3496.
    [54]Dong B Z, Chen Y, Gao N Y, et al. Effect of pH on UF membrane fouling. Desalination, 2006,195 (1~3):201-208
    [55]Kwon B, Park N, Cho J. Effect of algae on fouling and efficiency of UF membranes, Desalination,2005,179 (1~3):203-214
    [56]Liang H, Gong W, Chen J, et al. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination,2008,220 (1~3):267-272
    [57]Guigui C, Rouch J C, Durand-Bourlier L, et al. Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production. Desalination,2002,147(1~ 3):98-100
    [58]Lee Y, Mark M, Clark. Modeling of flux decline during crossflow ultrafiltration of colloidal suspension. Journal of Membrane Science,1998,149(2):181~182
    [59]董秉直,陈艳,高乃云,等.混凝对膜污染的防止.环境科学,2005,26(1):18-39
    [60]Wang J, Wang X. Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism. Journal of Environmental Science,2006,18 (5): 880-884
    [61]Oh H, Yu M, Takizawa S, et al. Evaluation of PAC behavior and fouling formation in an integrated PAC-UF membrane for surface water treatment. Desalination,2006,192 (1~ 3):54-62
    [62]Al-bastaki N, Abbas A. Use of fluid instabilities to enhance membrane performance:a review. Desalination,2001,136 (1~3):252-262
    [63]Xia S, Li X, Yao J. Application of membrane techniques to produce drinking water in China. Desalination,2008,222 (1~3):497-501
    [64]Lee H, Amy G, Cho J, et al. Cleaning strategies for flux recovery Of an ultrafiltration membrane fouled by natural organic matter. Water Research.2001,35 (14):3301-3308
    [65]Mosqueda-Jimenez D B, Huck P M. Characterization of membrane foulants in drinking water treatment. Desalination,2006,198 (1~3):173-182.
    [66]黄君礼.水中三卤甲烷的测定方法.环境科学丛刊,1987,8(1):44-55
    [67]Scott D B, James F H. Reaction processes effecting the analysis of chloroform by direct aqueous injection gas chromatography. Water Research,1983,17 (6):685-697
    [68]Hou D Y, TANGJ F. Determination of halocarbons in drinking water by direct aqueous injection gas chromatography. Anal Chem,1991,63 (18):2078-2080
    [69]张景明,刘建琳,周雯等,水样中痕量有机物分析的前处理方法,中国环境监测,2001,17(3):31-33.
    [70]魏科霞.水中卤代烃的对比及分析方法的研究:[硕士论文],吉林:延边大学,2004
    [71]梁汉昌.痕量物质分析气相色谱法.北京:中国石化出版社,2000,129
    [72]Anna B. Strategies for chromatographic analysis of pesticide residues in water. Journal of Chromatography.1996,754 (1-2):125-135
    [73]Golfinopoulos S K, Lekkas T D, Nikolaou A D. Comparison of methods for determination of volatile organic compounds in drinking water. Chemosphere,2001,45 (3):275-284
    [74]刘文君,贺北平,曹莉莉.饮用水中消毒副产物卤乙酸(HAAs)测定方法研究.给水排水,2004,30(8):38-41
    [75]伍海辉.预氯化消毒副产物生成特性和去除机理研究:[博士学位论文].上海:同济大学,2006
    [76]Lopez-Avila V, Goor T, Ga B, et al. Separation of haloacetic acids in water by capillary zone electrophoresis with direct UV detection and contactless conductivity detection. Journal of Chromatography A,2003,993 (1~2):143-152
    [77]颜金良,王立.离子色谱法快速测定饮用水中3种卤乙酸含量研究.中国卫生检验杂志,2008,18(4):643-644
    [78]Brett P, Leon B. Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies. Journal of Chromatography A,2004,1046 (1~2):1-9
    [79]Paul S. Simone J, Patricia L. et al. On-line monitoring of nine haloacetic acid species at the μg/L level using post-column reaction-ion chromatography with nicotinamide fluorescence. Analytical Chimica Acta,2009,654 (2):133-140
    [80]Sadiq R, Rodriguez M J. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence:a review. Science of the Total Environment,2004, 321 (1-3):21-46
    [81]Zhao Z, GuJ, Li H, et al. Disinfection characteristics of the dissolved organic fractions at several stages of a conventional drinking water treatment plant in Southern China. Journal of Hazardous Materials,2009,172 (2-3):1093-1099
    [82]Mosteo R, Miguel N, Martin-Muniesa S, et al. Evaluation of trihalomethane formation potential in function of oxidation processes used during the drinking water production process. Journal of Hazardous Materials,2009,172 (2~3):661-666
    [83]Teksoy A, Alkan U, Savas H, et al. Influence of the treatment process combinations on the formation of THM species in water. Separation and Purification Technology,2008,61(3): 447-454
    [84]Jeyong Y, Youshik C, Soonhang C, et al. Low trihalomethane formation in Korean drinking water. The Science of Total Environment,2003,302 (1~3):157-166
    [85]Malliarous E, Collins C, Graham N. Haloacetic acids in drinking water in the United Kingdom. Water Research,2005,39 (12):2722-2730
    [86]Kim H, Yu M. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Research, 2005,39 (19):4779-4789
    [87]Yan M, Wang D, Ni J, et al. Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation:Targets and techniques. Separation Purification Technology,2009,68 (3):320-327
    [88]Uyak V, Ozdemir K, Toroz I. Seasonal variations of disinfection by-product precursors profile and their removal through surface water treatment plants. Science of the Total Environment,2008,390 (2~3):417-424
    [89]Iriare-Velasco U, Alvarez-Uriarte J I, Gonzaz-Velasco J R. Removal and structural changes in natural organic matter in a Spanish water treatment plant using nascent chlorine. Separation and Purification Technology.2007,57 (1):152-160
    [90]Fabris R, Chow C W K, Drikas M, et al. Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research,2008,42(15):4188-4196
    [91]Chaib E, Moschandreas D. Modeling daily variation of trihalomethane compounds in drinking water system, Houston, Texas.Journal of Hazardous Materials,2008,151 (2-3):662-668
    [92]Pomes M L, Green W T, Thurman et al. DBP formation of aquatic humic substances. Journal/American Water Works Association,1999,91 (2~3):103-115
    [93]鲁文清,刘爱林.饮用水消毒副产物研究进展.癌变畸变突变,19(3):181-183
    [94]陈超,张晓健,何文杰等.消毒副产物前体物的指标体系.中国给水排水,2006,22(4):9-12
    [95]万蓉芳.水中卤乙酸生成和去除特性的研究:[硕士论文].上海:同济大学,2006
    [96]Edzwald J K, Tobiason J E. Enhanced coagulation:US requirements and a broader view. Water Sci Technol,1999,40 (9):63-70
    [97]孙晓明,王启山,朱文姝.沉淀、气浮对THMs和THMFP的去除效果研究.中国给水排水,2009,25(17):54-56
    [98]Li X,Zhao H. Development of a model for predicting trihalomethanes propagation in water distribution systems. Chemosphere,2006,62 (6):1028-1032
    [99]韩宏大,周玉文,黄廷林.天津市水源水质特性分析与评价.西安建筑科技大学学报(自然科学版),2006,38(2):285-289
    [100]Jacangelo J G, Trussell R R, Watson M. Role of Membrane Technology in Drinking Water Treatment in the United States. Desalination.1997 (2~3),113:119-127
    [101]Hagen K. Removal of particles, bacteria and parasites with ultrafiltration for drinking water treatment. Desalination.1998,119 (1~3):85-91
    [102]Zhang L, Gu P, Zhong Z. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment. Journal of Hazardous Materials.2009,168 (2-3):753-759
    [103]Zhao Z, Gu J, Fan X, et al. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. Journal of Hazardous Materials,2006, B134 (1~3):60-66
    [104]Egeberg P K, Christy A A, Eikenes M. The molecular size of natural organic matter(NOM) determined by diffusivimetry and seven other methods. Water Research,2002,36(4): 925-932
    [105]Matilainen A, Lindqvist Ni, Korhonen S, et al. Removal of NOM in the different stages of the water treatment process. Environment International,2002,28 (6):457-465
    [106]Hem L J, Efraimsen H. Assimilable organic carbon in molecular weight fractions of natural organic matter. Water Research,2001,35 (4):1106-1110
    [107]张凤,顾平,刘锋刚等.混凝/微滤去除滦河水中不同分子质量有机物的效果.中国给水排水,2008,24(7):70-77
    [108]陈卫,李敏,林涛.饮用水处理中有机物分子量分布规律.解放军理工大学学报(自然科学版),2009,10(2):160-164
    [109]中国工程建设标准化协会,CECS110:2000.北京:中国工程建设标准化协会,2000
    [110]李玉仙,给水处理工艺的系统集成与优化:[博士学位论文].陕西:西安建筑科技大学,2007
    [111]薛罡,王燕群;石枫华.超滤处理微污染地表水的膜污染化学清洗研究.环境科学与技术.2008,3](2):11-13
    [112]莫罹,黄霞,吴金玲.混凝微滤膜净水工艺的膜污染特征及其清洗.中国环境科学2002,22(3):258-262
    [113]Zondervan E, Betlem B H L, Blankert B, et al. Modeling and optimization of a sequence of chemical cleaning cycles in dead-end ultrafiltration. Journal of Membrane Science, 2008,308 (1~2):207-217
    [114]中华人民共和国卫生部,中国国家标准管理委员会.GB5749-2006.生活饮用水卫生标准.北京:中国标准出版社,2007
    [115]Zularisam A W, Ismail A F, Salim M R, et al. Application of coagulation-ultrafiltration hybrid process for drinking water treatment:Optimization of operating conditions using experimental design. Separation and Purification Technology,2009,65(2):193-210
    [116]Panyapinyopol B, Marhaba T, Kanokkantapong V. Characterization of precursors to trihalomethanes formation in Bangkok source water. Journal of Hazardous Materials.2005, 120 (1~3):229-236
    [117]Aoustin E, Schafer A I, Fane A G, et al. Ultrafiltration of natural organic matter. Separation and Purification Technology,2001,22-23:63-78
    [118]Iriarte-Velasco U, Alvarez-Uriarte J I, Gonzalez-Velasco J R. Enhanced coagulation under changing alkalinity-hardness conditions and its implication on trihalomethane precursors removal and relationship with UV absorbance. Separation and Purification Technology, 2007,55 (5):368-380
    [119]Simpson K L, Hayes K P. Drinking water disinfection by-products:an Australian perspective, Water Research.1998,32 (5) 1522-1528
    [120]许航,陈卫,李为兵.常规—超滤膜组合工艺净化湖泊水研究.中国给水排水,2008,24(15):58-62
    [121]何元春,许超伟.颗粒物计数仪在生物活性炭工艺中的应用.中国给水排水,2004,20(4):71-73
    [122]刘淑彦,王秀蘅.饮用水深度净化技术的现状与发展方向.哈尔滨工业大学学报,2003,35(6):711-714
    [123]Fiksdal L, Leiknes T. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. Journal of Membrane Science,2006,279 (1~2):364-371
    [124]于玉娟,尹军,张小雨等.饮用水中“两虫”的危害及其去除灭活.吉林建筑工程学院学报,2008,25(2):15-44
    [125]葛飞,舒海民.饮用水中溴化物的混凝去除及影响因素研究.中国给水排水,2007,23(11):52-55
    [126]张彦浩,中佛华,夏四清等.硝酸盐污染饮用水的去除技术研究进展.环境保护科学,2009,35(4):50-53[127] Logan B E, Kilps J R. Fractal dimensions of aggregates formed in different fluid mechanical environments. Water Research,1995,29(2):443-453
    [128]王圃.基于分形维数絮凝检测指标的研究:[硕士论文].重庆:重庆大学,2006
    [129]王玉恒,王启山,吴玉宝等.藻类絮凝形态学特性及其与气浮的关系研究.环境科学,2008,29(3):688-695
    [130]Lehtola M J, Miettinen I T, Vartiainen T, et al. Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water. Water Research,2003,37 (5):1064-1070
    [131]Ye B, Wang W, Yang L, et al. Factors influencing disinfection by-products formation in drinking water of six cities in China. Journal of Hazardous Materials,2009,171 (1~3): 147-152
    [132]钟梓洁.混凝——PAC吸附—微滤工艺去除膜反洗水中有机物的研究[硕士论文].天津:天津大学,2008
    [133]杨东.混凝——PAC吸附—微滤工艺处理膜反洗水及膜污染的研究[硕士论文].天津:天津大学,2008
    [134]王晓东,钟梓洁,张玲玲.混凝—微滤工艺去除膜反洗水中有机物的试验研究.中国给水排水,2008,24(15):104-108
    [135]Kitis M, Karanfil T, Wigton A, et al. Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin absorption and ultrafiltration fraction. Water Research,2002,36 (15):3834-3848
    [136]翁晓姚,周仰原.关于超滤膜的几个问题.工业水处理,1997,17(1):15-17
    [137]陈良刚,陈情,陈杰等.PVC合金超滤膜在台湾某给水厂中的应用.给水排水,2009,35(2):11-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700