卟啉—烟酸二元化合物的合成及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中合成了10种不同链长和苯环上带有不同电子效应取代基的卟啉-烟酸二元化合物及其24种过渡金属配合物。通过元素分析、质谱、紫外-可见光谱、红外光谱、核磁共振氢谱等对产物进行了表征,并通过计算机模拟软件考察了化合物的稳定构象及分子轨道能级差。最后,通过循环伏安,荧光发射光谱,激光拉曼光谱和表面光电压谱对卟啉配体和配合物的氧化还原性质、振动形态、光化学性质以及半导体性质进行了系统的研究,并分析了链长以及取代基对化合物性质的影响,这部分工作少见文献报道,同时为卟啉的实际应用提供了较为有用的理论参考。
     另外,还合成了一种丁二酰氧基桥联的卟啉二聚体及其六种过渡金属配合物,通过元素分析、质谱、紫外-可见光谱、红外光谱、核磁共振氢谱和摩尔电导对产物进行了表征和结构确认。通过理论计算得出了化合物的稳定构象为“面对面”的闭合式构象。通过循环伏安,荧光发射光谱和表面光电压谱对这七种化合物的氧化还原性质,光化学光物理性质进行了研究。电化学性质的研究为该系列卟啉化合物的应用研究提供了理论依据。荧光和表面光电压的研究发现二聚体卟啉分子间存在较强的能量转移和电荷转移行为。所以,二聚体卟啉在光储存和光电转换方面具有很好的应用前景。
Porphyrins have distinctive structures and predominant physical, chemical, optical properties, and have an important theoretical significance and potential applications values in biological science, biochemistry and medical chemistry. Now, more and more attention has been paid to the porphyrin, especially to the binary, ternary and multiple porphyrins linked with some bioactive substances. On the basis of careful study of the most recent documents, it has been found that the synthesis and properties of the porphyrin linked with nicacid are worth studying in depth. It’s possible to realize the dual activity of porphyrin and nicacid. In this thesis, a series of novel porphyrin-nicacid binary compounds have been designed and synthesized. Then their properties of redox, fluorescence and semi-conductor have been studied in detail.
     Under the guidance of the above ideas, we have designed and synthesized a series of novel porphyrin-nicacid binary compounds and their metalloporphyrins with different chain length or substituents, studied their properties of redox, fluorescence and semi-conductor, and analyzed the effects of chain length and substituents on their properties. All these studies provide useful information for the reseach of their bioactivities, and have done full preparatory work for drug screening. Our work includes the following aspects:
     1. Ten porphyrin-nicacid binary compounds with different chain length or substituents were synthesized. 24 transition-metal complexes were also synthesized. All of them have been characterized, assigned and analyzed by EA, MS, UV-Vis, IR and 1H NMR. Finally, we simulated the stable conformation of the free-base porphyrin, and calculated the total energy of the compunds and the energy gay of the molecular orbitals.
     2. Their of electrochemical, photochemical and photophysical properties have been analyzed by cyclic voltammetry, raman spectra, fluorescence spectra SPS and FISPS. The effects of chain length and substituents on their properties also have been studied.
     (1) Electrochemical properties: there are four redox couples of the free-base porphyrin responding to four redox reactions of the macroring. The electron-donor group (CH3O) makes the porphyrin ring easy to oxidant, and the electron-attracting group (Cl) makes it easy to reduce. Different chain length has little influence on the redox property of the porphyrin. The complexes are easier to reduce than the free-base porphyrin.
     (2) Fluorescence emission spectra: The electron-donor group(CH3O) makes the intensity of fluorescence emission spectra and the quantum field increase, however, the electron-attracting group (Cl) makes it in reverse. The quantum field of NBPTPPZn is the greatest one, and NBPTPPZn is easier to form closed comfomation than the others.
     (3) Raman spectra: The band at l572-1599cm-1, 1018-1031 cm-1, 999-1007 cm-1 and 869-888cm-1 are the characteristic band of the phenyl on the tetraphenylporphyrin. the band at 1541-1568 cm-1, 1489-1508 cm-1, 1228-1240 cm-1,l065-1088 cm-1 are the skeleton vibration of porphyrin, its order of the wave number is Ni2+>Co2+>Cu2+>Zn2+. The substituent has little influence on the the skeleton vibration of porphyrin, and has much influence on the vibration of phenyl. In addition, the chain length has little influence on the raman spectra of the porphyrin.
     (4) The surface photovoltage property: By SPS and FISPS, the photophysical properties of porphyrins were studied. The results show that porphyrins are p-type semiconductor. The band of SPS represents the transition ofπ→π*. The SPS of all the free-base porphyrins and their complexes are similar with their corresponding UV-Vis spectrum. 3. In addition, with the development of the porphyrin, porphyrin oligomers have attracted more and more attention. They have incomparable superiority in some respects, such as simulation of the photochemical center in photosynthesis, organic solar cell, molecular switch, organic electroluminescence, optical storage materials, etc. To this day, the synthesis and the studies on the photochemical and photophysical properties of the porphyrin dimer is an attracting and challenging field yet. We designed and synthesized a succinyloxyl-bridged meso-tetraphenylporphyrin dimer and its six transition-metal complexes.
     All of them have been characterized, assigned and analyzed by EA, MS, UV-Vis, IR and 1H NMR. The stable conformation of the dimer is“face to face”closed one. The electrochemical, photochemical and photophysical properties are studied by cyclic voltammetry, fluorescence spectra SPS and FISPS. The results show that porphyrins are p-type semiconductor. Fluorescence spectra show the dimmer has stronger fluorescence properties than the monomer.
引文
[1]. 袁履冰, 张田林, 卟啉化合物的共振能,有机化学, 1986, 4: 286-290.
    [2]. (a)J.S. Sessler and S.J. Weghorn, Expended, Contracted & isomeric porphyrins, Pergamon, Perface, 1997. (b) The Porphyrins Handbook, J.M. Smith Ed.: Elsevier Press, 2002, Vols.12.
    [3]. 宋俊峰, 高等学校化学学报, 1985, 6(5): 409.
    [4]. A.K. Burrell, D.L. Officer, et al. Synthetic Routes to Multiporphyrin Arrays, Chem. Rev. 2001, 101, 2751-2796.
    [5]. The Pophyrins, D. Dolphin Ed., Academic Press: New York, 1978; Vols.1-6.
    [6]. S. Shanmugathasan, C. Edwards and R.W. Boyle, Advances in Modern Synthetic Porphyrin Chemistry, Tetrahedron, 2000, 56(8): 1025-1046.
    [7]. P. Rothemund, A New Porphyrin Synthesis. The Synthesis of Porphin, J. Am. Chem. Soc.1936, 58(4): 625-627. (b) P. Rothemund, Porphyrin Studies. III.1 The Structure of the Porphine2 Ring System, J. Am. Chem. Soc. 1939, 61(10): 2912-2915.
    [8]. A.D Adler, F.R. Longo, et al. Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphin, J. Am. Chem. Soc. 1964, 86(15): 3145-3149.
    [9]. A.D. Adler, F.R. Longo, et al. A simplified synthesis for meso-tetraphenylporphine, J. Org. Chem. 1967, 32(2): 476-476.
    [10]. J.S. Lindsey, I.C. Schreiman, et al. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions, J. Org. Chem. 1987, 52(5): 827-836.
    [11]. G.N. Datta, E. Jones, et al. J. Indian Chem. Soc. 1981, 58, 1171.
    [12]. G.N. Datta, D. Malakar, et al. Synthesis and properties of three sulfur-containing porphyrins, one water-soluble, Bull. Chem. Soc. Jpn. 1988, 61(6): 2274-2276.
    [13]. H. Kamogawa, K. Koga, Bull. Chem. Soc. Jpn.1992, 65, 301.
    [14]. H. Tamiaki, S. Suzuki, et al. Intramolecular interaction of porphyrin moieties in 2,5-piperazinedione-bridged porphyrin dimers, Bull. Chem. Soc. Jpn. 1993, 66(9): 2633-2637.
    [15]. H.K. Hombrecher, S. Ohm, Tetrahedron.1993, 49, 2447.
    [16]. S. Matile, N. Berova, et al. Porphyrins: Powerful Chromophores for Structural Studies by Exciton-Coupled Circular Dichroism, J. Am. Chem. Soc. 1995, 117(26): 7021-7022.
    [17]. S. Neya, N.J. Funasaki, A facile synthesis of the lowest homologues ofmeso-tetraalkylporphyrin, J. Heterocycl. Chem. 1997, 34(2): 689-690.
    [18]. D. Reddy, T.K. Chandrashekar, Short-chain basket handle porphyrins : synthesis and characterization, J. Chem. Soc. Dalton Trans.1, 1992, 619-625.
    [19]. M. Momenteau, J. Mispelter, et al. Synthesis and characterization of basket-handle porphyrins and their iron complexes, J. Chem. Soc. Perkin Trans.1, 1983, 189-196.
    [20]. L. Czuchajowski, J. Habdas, et al. Porphyrinyl-uridines as the first water-soluble porphyrinylnucleosides, Tetrahedron Lett.1991, 32(52): 7511-7512.
    [21]. L. Salmon, J.-B. Verlhac, et al. Synthesis of a binuclear copper(II) water-soluble porphyrinic complex Cu2(tMPyP)(BiPy): Tetrahedron Lett. 1990, 31(4): 519-522.
    [22]. L. Czuchajowski, J.E. Bennett, et al. meso-[2.2]paracyclophenyltriphenyl- porphyrin. electronic consequences of linking paracycliphane to porphyrin, J. Am. Chem. Soc. 1989, 111(2): 607-616.
    [23]. A.C. Kaelin, G.D. Zanelli, J. Labelled Compd. Radiopharm.1990, 28, 343.
    [24]. D.K. Lavallee, Z. Xu, R. Pina, Synthesis and properties of new cationic-periphery porphyrins, tetrakis(p-(aminomethyl)phenyl)porphyrin and N-methyltetrakis- (p-(aminomethyl)phenyl)porphyrin, J. Org. Chem. 1993, 58: 6000-6008.
    [25]. J.S. Lindsey, I.C. Schreiman, et al. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions, J. Org. Chem. 1987, 52(3): 827-836.
    [26]. D. Dolphin, J. Heterocycl. Chem. 1970, 7: 275-282.
    [27]. J.S. Lindsey, K.A. MacCrum, et al. Investigation of a Synthesis of meso-Porphyrins Employing High Concentration Conditions and an Electron Transport Chain for Aerobic Oxidation, J. Org. Chem. 1994, 59(3): 579-587.
    [28]. L.R. Milgrom The coloura of light, Oxford University Press: New York, 1997,pp6-13.
    [29]. M. Homma, K. Aoyagi, et al. Electron deficient porphyrins. I: Tetrakis (trifluoromethyl) porphyrin and its metal complexes, Tetrahedron lett.1983, 24: 4343-4346.
    [30]. K. Aoyagi, M. Homma, et al. Facile Syntheses of Perfluoroalkylporphyrins. Electron Deficient Porphyrins II, Chem. Lett.1988, 1891-1894.
    [31]. G.P. Arsenault, E. Bullock, et al. Pyrromethanes and Porphyrins Therefrom, J. Am. Chem. Soc.1960, 82(16): 4384-4389.
    [32]. D.T. Gryko, C. Clausen, J.S. Lindsey, Thio-Derivetized Porphyrins for Attachment to Electroactive Surfaces, J. Org. Chem. 1999, 64(23): 8635-8647.
    [33]. B.J. Litter, Y. Ciringh, et al. Invistigation of Conditions GivingMinimal Scrambling in the Synthesis of trans-Porphyrins from Dipyrromethanes and Aldehydes. J. Org. Chem. 1999, 64(8): 2864-2872.
    [34]. P.D. Rao, B.J. Littler, et al. Efficient synthesis of monoacyl dipyrromethanes and their use in the preparation of sterically Unhindered Trans-porphyrins. J. Org. Chem. 2000, 65(4): 1084-1092.
    [35]. C.H. Lee, J.S. Lindsey, One-flask synthesis of meso-substituted dipyrromethanes and their ajpplication in the synthesis of trans-substituted porphyrins using building blocks. Tetrahedron, 1994, 50: 11427-11440.
    [36]. B.J. Littler, M.A. Miller, Refined synthesis of 5-substituteddipyrromethanes. J. Org. Chem. 1999, 64(4): 1391-1396.
    [37]. M.J. Broadhurst, R. Grigg, et al. Synthesis of porphin analogues containing furan and/or thiophen rings, J. Chem. Soc. C, 1971, 3681-3690.
    [38]. (a) A. Boudif, M. Momenteau, New convergent method for porphyrin synthesis based on a '3+1' condensation, J. Chem. Soc., Perkin Trans. I, 1996, 1235-1342. (b) A. Boudif, M. Momenteau, Synthesis of a porphyrin-2,3-diacrylic acid using a new 3 + 1 type procedure, J. Chem. Soc., Chem. Commun. 1994, 2069-2070.
    [39]. T.D. Lash, Porphyrins with exocyclic rings.part 9.synthesis of porphyrins by the 3+1 approach, J. Porphyrins Phthalocyanines, 1997, 1(1): 29-44.
    [40]. P.S. Clezy, Le Van Thuc, The chemistry of pyrrolic compounds. LVII: The oxidative cyclization of derivatives of 1,19-dideoxybilenes-b, Aust. J. Chem. 1984, 37(10): 2085-2092.
    [41]. A. Petit, A. Loupy, Microware Irradation in Dry Media: A New and Easy Method for Synthesis of Tetrapyrrolic Compounds, Synthetic Comm. 1992, 22 (8): 1137.
    [42]. 胡希明, 梅治乾, 等. 四苯基卟啉的微波诱导合成研究. 华南理工大学学报( 自然科学版), 1999, 27(10): 11-15.
    [43]. 刘云, 徐同宽, 等. 四苯基卟啉的催化合成和微波合成研究. 北京轻工业学院学报, 1998, 16(4): 37-37.
    [44]. 何宏山, 黄锦汪, 等. 尾式金属卟啉配合物研究(V)-苯并噻唑尾式铁(III)卟啉的合成, 表征及其轴向配位和催化性质, 高等学校化学学报, 1996, 17(12): 1817-1823.
    [45]. G. Mehta, T. Sambaiah, et al. Synthesis and Mucleas W Activity of some porphyrin-acridone hybrid molecules, J. Chem. Soc. Perkin Trans. I, 1993, 21: 2667-2669.
    [46]. O.J. Clarke, R.W. Boyle, Othiocyanatoporphyrins: useful intermediates for the conjugation of porphyrins with biomolecules and solid supports. Chem. Commun.1999, 21, 2231-2232.
    [47]. (a)A.W. Johnson, D. Oldfield, meso-Substitution products of ?tioporphyrin, J. Chem. Soc. 1966, 794-798. (b)D.P. Arnold, A.W. Johnson, et al. Some reactions of meso-formyloctaethylporhyrin, J. Chem. Soc. Perkin Trans.1 1978, 366-370. (c)D.P. Arnold, R. Gaete-Holmes, et al. Witting condensation products from Ni (II)meso-formyloctaethylporphyrin and etio-porphyrin I and some cyclization reactions, J. Chem. Soc. Perkin Trans.1 1978, 1660-1670.
    [48]. H. Ali, J.E. Van Lier, Metal complexes as photo- and radiosensitizers, Chem. Review 1999, 99(9): 2379-2450.
    [49]. (a)S.G. Dimagno, V.S.-Y. Lin, M.J. Therien, Facile elaboration of porphyrins via metal-mediated cross-coupling, J. Org. Chem. 1993, 58(22): 5983-5993. (b)A. Nakano, H. Shimidzu, et al. Tetrahedron Lett. 1998, 39, 9489. (c)D.A. Shultz, K.P. Gwaltney, H. Lee, A Modified Procedure for Sonogashira Couplings: Synthesis and Characterization of a Bisporphyrin, 1,1-Bis[zinc(II) 5'-ethynyl-10',15',20'-trimesityl- porphyrinyl]methylenecyclohexane, J. Org. Chem. 1998, 63(12): 4034-4038.
    [50]. (a)J. Setsune, H. Yamaji, T. Kitao, Tetrahedron Lett. 1990, 31, 5057-5060. (b)X. Jiang, D.J. Nurco, et al. Direct meso-alkylation of meso-formylporphyrins using Grignard reagents, Chem. Commun. 1996, 1759-1760.
    [51]. G.V. Ponomarev, G.B. Maravin, Khimiya Geterosiklicheskikh Soedinenii 1982, 59.
    [52]. M.M. Catalano, M.J. Crossley, et al. Control of reactivity at the porphyrin periphery by metal ion co-ordination: a general method for spedific nitration at the β-pyrrolic position of 5,10,15,20-tetraarylporphyrins, J. Chem. Soc., Chem. Commun. 1984, 22, 1535-1536.
    [53]. A. Giraudeau, H.J. Callot, et al. Substituent effects in the electroreduction of porphyrins and metalloporphyrins, J. Am. Chem. Soc. 1979, 101(14): 3857-3862.
    [54]. (a)T. Wijesekara, D. Dupre, et al. Porphyrins Bearing Halogen at the meso-Phenyl and b-Pyrrolic Positions: Synthesis and Spectral Properties, Bull. Soc. Chim. Fr. 1996, 133(7-8): 765-775. (b)X. Zhou, M.K. Tse, et al. Synthesis of β-Mono-, Tetra-, and Octasubstituted Sterically Bulky Porphyrins via Suzuki Cross Coupling, J. Org. Chem. 1996, 61(11): 3590-3593.
    [55]. Jr. H.W. Whitlock, R. Hanauer, et al. Diimide reduction of porphyrins, J. Am. Chem. Soc. 1969, 91(26): 7485-7489.
    [56]. W. Flitsch, Hydrogenated porphyrin derivatives: hydroporphyrins, Adv. Heterocycl. Chem. 1988, 43, 73.
    [57]. A. Osuka, S. Marumo, et al. Synthesis of 5,15-Diaryl-Substituted Oxochlorins from 5,15-Diaryl-octaethylporphyrin, Bull Chem. Soc. Jpn. 1993, 66, 3837-3839.
    [58]. A. Scott, A. Irwin, et al. Prosthetic group of sulfite and nitrite reductases and its role in the biosynthesis of vitamin B12, J. Am. Chem. Soc. 1978, 100(25): 7987-7994.
    [59]. V.S. Pangka, A.R. Morgan, et al. The Diels-Alder reactions of protoporphyrin IX dimethyl ester with electron-deficient alkynes, J. Org. Chem. 1986, 51(7): 1094-1100.
    [60]. A.R. Morgan, A. Rampersaud, et al. New sensitizers for photodynamic therapy. Controlled synthesis of purpurins and their effect on normal tissue, J. Med. Chem. 1989, 32(4): 904-908.
    [61]. A.R. Morgan, S. Gupta, Synthesis of benzopurpurins, isobacteriobenzopurpurins and bacteriobenzopurpurins, Tetrahedron Lett. 1994, 35(25): 4291-4294.
    [62]. M.J. Gunter, B.C. Robinson, A synthesis of purpurin derivatives substituted at the 6,16-meso positions, Tetrahedron Lett. 1990, 31(2): 285-288.
    [63]. M.G.H. Vicente, K.M. Smith, Vilsmeier reactions of porphyrins and chlorins with 3-(dimethylamino)acrolein to give meso-(2-formylvinyl)porphyrins: new syntheses of benzochlorins, benzoisobacteriochlorins, and benzobacteriochlorins and reductive coupling of porphyrins and chlorins using low-valent titanium complexes, J. Org. Chem. 1991, 56(14): 4407-4418.
    [64]. M.J. Gunter, B.C. Robinson, et al. 5,15-diaryl substituted benzochlorins : synthesis and structure, Tetrahedron, 1991, 47(37): 7853-7868.
    [65]. K.S. Chan, X. Zhou, et al. J. Chem. Soc., Chem. Commun. 1994, 271.
    [66]. X. Zhou, Z.-Y. Zhou, et al. Synthesis of p-Octasubstituted Sterically Bulky Porphyrins by Suzuki Cross coupling, J. Chem. Soc. Perkin Trans.1 1994, 2519-2520.
    [67]. (a)M.J. Crossley, L.G. King, Temperature-dependent competition between nucleophilic addition and single-electron transfer processes, J. Chem. Soc., Perkin Trans.1 1996, 1251-1260. (b)K.M. Shea, L. Jaquinod, K.M. Smith, Dihydroporphyrin Synthesis: New Methodology, J. Org. Chem. 1998, 63(20): 7013-7021.
    [68]. M.J. Crossley, L.G. King, Novel heterocyclic systems from selective oxidation at the -pyrrolic position of porphyrins, J. Chem. Soc. Chem. Commun. 1984, 14: 920-922.
    [69]. (a)L.R. Milgrom, Synthesis of Some New tera-Arylporphyrins for Studies in Solar Energy Conversion, J. Chem. Soc. Perkin Trans.1 1983, 10: 2535-2539. (b)P. Maillard, C. Hery, et al. Synthesis, characterization and photocytotoxicity of aglycoconjugated meso-monoarylbenzochlorin, Tetrahedron Lett. 1997, 38: 3731-3734.
    [70]. S.E. Matthews, C.W. Pouton, et al. Monofunctional electrophilic and nucleophilic derivatives of meso-tetraphenylporphyrin for attachment to peptides, J. Chem. Soc., Chem. Commun. 1995, 17: 1809-1811.
    [71]. R.G. Litter, The synthesis of covalently linked tetraarylporphyrin dimers, J. Heterocycl. Chem.1978, 15: 203-208.
    [72]. 王莉红, 汤福隆, 卟啉类试剂合成的发展, 化学试剂, 1999, 21 (5) : 273 - 289.
    [73]. W.J. Youngblood, D.T. Gryko, et al. Glaser - Mediatec Syntheses and Photophysical Characterization of Diphemylbutadiyne - Linked Prophyrin Dyads. J. Org. Chem. 2002, 67(7): 2111-2117.
    [74]. D. Knciauskas, P.A. Liddell, An Atrificial Photosynthetic Antenna - Reaction Center Complex. J. Am. Chem. Soc. 1999, 121(37): 8604 - 8614.
    [75]. R.W. Wanger, T.E. Johnson, Synthesis of Ethyne Linked or Butadiyne Linked Porphyrin Arrays Using Mild Copper - Free, Pd -Mediated Coupling Reaction, J. Org. Chem. Soc. 1995, 360: 6266 - 6273.
    [76]. N. Aratani, A. Osuka. Synthesis of meso – meso Linked Hybrid Porphyrin Arrays by Pd- Catalyzed Cross- Coupling Reaction. Org. Lett., 2001, 3(26): 4213-4216.
    [77]. T. Ogawa, Y. Nishimoto, Competely Regioselective Synthesis of Dirctly Linked meso - meso βPorphyrins Dincers by One – Pot Electrochemical Oxidation of Metalloprophyrins. Angew Chem. Int Ed Engl. 1999, 38: 176 - 179.
    [78]. Graca M, Vicante H, Laurent Jaquinod, et al. Oligomeric Porphyrinarrays, Chem. Commu. 1999, 18: 1771-1782.
    [79]. M.O. Senge, X. Feng, Synthesis of Directly meso- meso Linked BisprophyrinsUsing Organolithium Reagents.Tetrahedron Lett. 1999, 40(22): 4165 - 4168.
    [80]. J. Zelaski, Z. Physiol. Chem. 1902, 37, 54.
    [81]. A.D. Alder, F.R. Longo, et al, On the preparation of metalloporphyrins, J. Inorg. Nucl. Chem. 1970, 33: 2443-2445.
    [82]. W.I. White, R.C. Bachann, and B.F. Bnham, in D. Dolphin, The Porphyrins, Academic Press, Inc., New York, San Frandisco, London, 1979, Vol.I~VII.
    [83]. S. Granick, L. Bogorad, and H. Jaffe, Hematoporphyrin IX, a probable precursor of protoporphyrin in the biosynthetic chain of heme and chlorophyll, J. Biol. Chem. 1953, 202(2): 801-803.
    [84]. J.O. Alben, W.S. Caughey, An infrared study of bound carbon monoxide in the human red blood cell, isolated hemoglobin, and heme carbonyls, Biochemistry, 1968, 7(1): 175-183.
    [85]. 卢涌泉, 邓振华编, 实用红外光谱解析, 电子工业出版社, 1989, p22.
    [86]. Y. Hirohito et al. Resonance Raman scattering study on the π-cation radicals of magnesium, Zinc, and Copper tetraphenylporphyrines, Chem. Lett. 1982, 128(9): 1397-1400.
    [87]. E.D. Becker and R.B. Bradley, J. Chem. Phys., 1959, 31: 1413-1414.
    [88]. F. Li, S.I. Yang, et al. Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments, J. Am. Chem. Soc. 1998, 120(39): 10001-10017.
    [89]. J. Li, A. Ambroise, et al. Template-directed synthesis, excited-stste photodynamics, and electronic communication in a hexameric wheel of porphyrins, J. Am. Chem. Soc. 1999, 121(38): 8927-8940.
    [90]. 马金石, 卟啉类第二代光敏剂的发展, 感光科学与光化学, 2002, 20(2): 131-148.
    [91]. 许德余, 光动力治癌药物的历史、现状、进展、问题和前景.中国激光杂志, 2001, 10(1): 44-47.
    [92]. 金晓敏, 吴健, 卟啉类光敏药物的研究进展, 中国药物化学杂志, 2002, 12(1):52-56.
    [93]. 邱红, 刘彦钦, 等, 卟啉在医学上的应用研究进展. 河北师范大学学报(自然科学版)2000, 24(4): 497-500.
    [94]. 苏炳银, 李淑蓉, 等, 水溶性金属衍生物的合成及其对癌细胞生长的抑制活性.中国药学杂志, 1995, 30(12): 746-748.
    [95]. 韩高义, 等, 水溶性不对称卟啉及其金属配合物合成及与 DNA 的作用. 化学学报, 2001, 59(6): 925-930.
    [96]. 黄素秋, 刘德伟, 等, 卟啉胆甾酯及其金属络合物的合成、结构与光敏活性. 药学学报, 1989, 24(11): 817-819.
    [97]. 张浩, 许德余, 半合成血卟啉衍生物的制备及肿瘤光生物活性研究. 中国医药工业杂志, 1989, 20(2): 60-63.
    [98]. 陈志龙, 蔡建明, 等, 光化疗抑制剂四苯基卟吩氮芥的合成. 有机化学, 1999, 19(6): 621-624.
    [99]. 延玺, 吴福丽, 等, 卟啉介导抗癌药物研究. 化学学报, 2003, 61(5): 721-723.
    [100]. 刘彦钦, 张慧娟, 韩士田, 5-氟尿嘧啶-卟啉化合物的合成及抗癌活性, 有机化学, 2002, 20(4): 279-282.
    [101]. G. Li, S.V. Bhosale, et al. Nanowells on Silica Particles in Water Containing Long-Distance Porphyrin Heterodimers, J. Am. Chem. Soc. 2003, 125(35): 10693-10702.
    [102]. C.-C. You, F. Wurthner, Porphyrin-Perylene Bisimide Dyads and Triads:Synthesis and Optical and Coordination Properties, Org. Lett., 2004, 6(14): 2401-2404.
    [103]. J. Springer, G. Kodis, et al. Stepwise Sequential and Parallel Photoinduced Charge Separation in a Porphyrin-Triquinone Tetrad, J. Phys. Chem. A 2003, 107(18): 3567-3575.
    [1]. J.P. Collma, R.R. Gagne, et al. Picket fence porphyrins. Synthetic models for oxygen binding hemoproteins, J. Am. Chem. Soc. 1975, 97(6): 1427-1439.
    [2]. D.H. Busch 主编, 陈声昌, 等译, 无机合成, 北京, 科学出版社, 1986, P162.
    [3]. W.J. Krupre, T.A. Chemberli Regiospecific aryl nitration of meso-substituted tetraarylporphyrins: a simple route to bifunctional porphyrins, J. Org. Chem. 1989, 54(11): 2753-2756.
    [4]. 朱宝库, 徐志康, 徐又一, 四(4-硝基苯基)卟啉和四(4-氨基苯基)卟啉的合成, 应用化学, 1999, 16(1): 68-70.
    [5]. 黄素秋, 张克凌, 等, 卟啉化合物的研究 XV: 双卟啉的合成及其与钴离子的络合反应,有机化学, 1989, 9(4): 321-324.
    [6]. 黄素秋, 孙鲁民, 叶荞, 卟啉化合物的研究(I), 5-对羟基-10, 15, 20-三对甲氧基苯基卟啉及其蒽醌衍生物金属络合物的合成, 高等学校化学学报, 1983, 4(3): 381-384.
    [7]. N. Nagata, S-i. Kugimiya, et al. Antenna functions of 5,15-bis(imidazol-4-yl)-10,20-bis(4-dodecyloxyphenyl)-porphyrin supramolecular assembly through imidazole-imidazole hydrogen bonding, J. Chem. Soc. Chem. Commun. 2000, 1389-1390.
    [8]. D. Gust, T.A. Moore, et al. Long-lived photoinitiated charge separation in carotene-diporphyrin triad molecules, J. Am. Chem. Soc. 1991, 113(10): 3638-3649.
    [9]. A. Osuka, G. Noya, et al. Energy-gap dependence of photoinduced charge separation and subsequent charge recombination in 1, 4-phenylene-bridged zinc-free-base hybrid porphyrins, Chem. Eur. J., 2000, 6(1): 33-46.
    [10]. J.L. Sessler, B. Wang and A. Harriman, Photoinduced energy transfer in associated, but noncovalently-linked photosynthetic model systems. J. Am. Chem. Soc., 1995, 117(2): 704-714.
    [11]. C.J. Chang, Y. Deng, et al. Xanthene-Bridged Cofacial Bisporphyrins, Inorg. Chem. 2000, 39(5): 959-966.
    [12]. 乐学义, 毋福海, 等, 三元(UTP)L2-配合物分子内芳环堆积作用, 科学通报, 1997, 42(10): 1103-1105.
    [13]. 计亮年, 乐学义, 组成DNA的小分子配体和芳香氮碱配合物的堆积作用, 科学通报,2001, 46(15): 1235-1244.
    [14]. 马丽, 中山大学博士学位毕业论文, 2003, pp60.
    [15]. 任奇志, 黄锦汪, 等, 双卟啉化合物的构象平衡及π-π作用研究, 高等学校化学学报, 1997, 20(3): 333-338.
    [16]. X.-M. Guo, L.-J. Su, et al. Synthesis and characterization of L-glutamic acid bridged porphyrin and its CD spectrum Chem. J. Chinese Universities, 2006, 27(3): 410-413.
    [17]. W.-M. Mo, J. Xue, et al. The application of FT-IR in the synthesis of nicotinic derivative, Chinese J. Spectroscopy Laboratory, 2004, 21(4): 678-680.
    [18]. S.-T. Fu, K. Wang, et al. Synthesis and characterization of novel bridged porphyrin dimers, Chem. J. Chinese Universities, 2004, 25(7): 1204-1208.
    [19]. R.D. Morgan, P.J. Derrick, et al. Direct Raman evidence for resonance interactions between the porphyrin ring system and ring-conjugated substituents in porphyrins,porphyrin dications, and metalloporphyrins, J. Am. Chem. Soc. 1977, 99(12): 4190-4192.
    [20]. H.-Y. Jia, W.-Q.Xu, et al. Spectral study of 5, 10, 15, 20-tetra(p-chlorophenyl)- porphyrin lanthanide complexes, Chem. J. Chinese Universities, 2004, 25(2): 383-341.
    [1]. D. Dolphin. “The porphyrin”, New York: Acad. Press, 1978, 1, 7.
    [2]. 汪秀智, 梁晓光, 陈玉仪, 感光科学与光化学, 1985, 1: 51.
    [3]. S.D. Straight, J. Andreasson, et al. Molecular AND and INHIBIT Gates Based on Control of Porphyrin Fluorescence by Photochromes. J. Am. Chem. Soc., 2005, 127(26): 9403-9409.
    [4]. J. Andreasson, G. Kodis, et al. Photoinduced Hole Transfer from the Triplet State in a Porphyrin-Based Donor-Bridge-Acceptor System. J. Phys. Chem. A., 2003, 107(42): 8825-8833.
    [5]. A.D. Adler, F.R. Longo, et al. On the preparation of metalloporphyrins, J. Inorg. Nucl. Chem. 1970, 32, 2443-2445.
    [6]. X.-M. Guo, L.-J. Su, et al. Synthesis and characterization of L-glutamic acid bridged porphyrin and its CD spectrum Chem. J. Chinese Universities, 2006, 27(3): 410-413.
    [7]. W.-M. Mo, J. Xue, et al. The application of FT-IR in the synthesis of nicotinic derivative, Chinese J. Spectroscopy Laboratory, 2004, 21(4): 678-680.
    [8]. S.-T. Fu, K. Wang, et al. Synthesis and characterization of novel bridged porphyrin dimers, Chem. J. Chinese Universities, 2004, 25(7): 1204-1208.
    [9]. R.D. Morgan, P.J. Derrick, et al. Direct Raman evidence for resonance interactions between the porphyrin ring system and ring-conjugated substituents in porphyrins, porphyrin dications, and metalloporphyrins, J. Am. Chem. Soc. 1977, 99(12): 4190-4192.
    [10]. H.-Y. Jia, W.-Q.Xu, et al. Spectral study of 5, 10, 15, 20-tetra(p-chlorophenyl)-porphyrin lanthanide complexes, Chem. J. Chinese Universities, 2004, 25(2): 383-341.
    [11]. R.M. Silverstein, G.C.Bassler, T.C.Morrill, Spectrometric Identification of Organic Compounds, 4th Ed. a.pp.88, b.pp.159, John Wiley, 1981.
    [12]. X.Z. Song, W. Jentzen, et al. Substituent-Induced Perturbation Symmetries and Distortions of meso-tert-Butylporphyrins, Inorg. Chem. 1998, 37(9): 2117-2128.
    [1]. [Am.]F. Anson, W.-Z. Huang Ed., Eelectrochemistry and Electroanalytical chemistry, Beijing: Perking University Press, 1983: 5-16.
    [2]. K.M. Kadish, E.-K. Wang, The electrochemistry of metalloporphyrin in nonaqueous media, Chin. J. Appl. Chem. 1986, 3(3): 1-7.
    [3]. K.M. Kadish, Electrochemical and structural properties of metalloporphyrins, Prog. Inorg. Chem. 1986, 34: 435-605.
    [4]. Y. Kazuya, M. Isao, Low-valent iron porphyrins. NMR evidence for π-anion-radical character in two-electron-reduced iron(III) meso- or beta- pyrrole-substituted porphyrins. Inorg. Chem. 1992, 31(15): 3216-3222.
    [5]. S.M. Chen, Y.L. Chen, The electropolymerization and electrocatalytic properties of polymerized MnTAPP film modified electrodes in aqueous solutions. J. Electroanal. Chem. 2004, 573(2): 277-287.
    [6]. D.J. Quimby and F.R. Longo, Luminescence studies on several tetraarylporphins and their zinc derivatives, J. Am. Chem. Soc. 1975, 97(18): 5111-5117.
    [7]. 任奇志, 黄锦汪, 等, 双卟啉化合物的构象平衡及π-π作用研究, 高等学校化学学报, 1997, 20(3): 333-338.
    [8]. D.-M. Chen, et al. Raman and UV–visible absorption spectra of ion-paired aggregates of copper porphyrins. Spectrochimica Acta Part A, 2002, 58: 2291-2297.
    [9]. Y.-H. Zhang, D.-M. Chen, et al. Raman and infrared spectral study of meso-sulfonatophenyl substituted porphyrins (TPPSn, n=1, 2A, 2O, 3, 4). Spectrochimica Acta Part A 2003, 59: 87-101.
    [10]. W. Jentzen, M.C. Simpson, et al. Ruffling in a Series of Nickel(II) meso-Tetrasubstituted Porphyrins as a Model for the Conserved Ruffling of the Heme of Cytochromes c, J. Am. Chem. Soc. 1995, 117(45): 11085-11097.
    [11]. X.-Z. Song, W. Jentzen, et al. Substituent-Induced Perturbation Symmetries and Distortions of meso-tert-Butylporphyrins, Inorg. Chem. 1998, 37(9): 2117-2128.
    [12]. K. Butje, K. Nakamoto, The metalloderivatives were prepared via minor modification of literature methods, Inorg. Chim. Acta, 1990, 167, 97.
    [13]. Y. Hirohito et al. Resonance Raman scattering study on the π-cation radicals of magnesium, Zinc, and Copper tetraphenylporphyrines, Chem. Lett. 1982, 128(9): 1397-1400.
    [14]. X.-Y. Li, R.S. Czernuszewicz, et al. Consistent porphyrin force field. 1. Normal-mode analysis for nickel porphine and nickel tetraphenylporphine from resonance raman and infrared spectra and isotope shifts, J. Phys. Chem. 1990, 94(1): 31-47.
    [15]. O.-K. Song, M.-J. Yoon, et al. Surface-enhanced Raman scattering of zinc. tetrakis(4-N-methylpyridyl)porphyrin, J. Raman Spectrosc. 1989, 20(11): 739-743.
    [16]. N. Blom, J. Odo, et al. Resonance Raman studies of metal tetrakis(4-N-methylpyridyl)porphine: band assignments, structure-sensitive bands, and species equilibria, J. Phys. Chem. 1986, 90(13): 2847-2852.
    [17]. M. Prochazka, P. Mojzes, et al. Surface-Enhanced Resonance Raman Scattering from Copper(II) 5,10,15,20-Tetrakis(1-methyl-4-pyridyl)porphyrin Adsorbed on Aggregated and Nonaggregated Silver Colloids, J. Phys. Chem. B 1997, 101(16): 3161-3167.
    [18]. P. Smejkal, B. Vlckova, et al. Testing anionic spacers by SERRS (surface-enhanced resonance Raman scattering) of a cationic free-base porphyrin in systems with laser ablated Ag colloids, Vibrational Spectrosc. 1999, 19(2): 243-247.
    [19]. C. Mou, D. Chen, et al. Coupling FT Raman and FT SERS Microscopy with TLC Plates for in Situ Identification of Chemical Compounds, Spectrochim. Acta 1991, 47A, 1575.
    [19]. H. Oshio, T. Ama, et al. Spectrochim. Acta, 1984, 40A: 863-870.
    [21]. 郭喜明, 吉林大学博士学位论文, 2006, PP89.
    [22]. 师同顺, 郑国栋等, 四(对-硝基苯基)卟啉配合物的红外和拉曼光谱, 高等学校化学学报, 1992, 13(11): 1432-1435.
    [23]. S. Sunnder, R. Mendelsohn et a1., Vinyl influences on protoheme resonance Raman spectra: nickel(II) protoporphyrin IX with deuterated vinyl groups, J. Am. Chem. Soc. 1982, 104(16): 4337-4344.
    [20]. W.R. Scheidtin “The Porphyrins”, Vol. III (D. DolPhin, Ed.) Chapter 10, Academic Press, work 1978.
    [21]. J.E. Falk, “Porphyrins and Metalloporphyrins”, p.55. Elsevier, Amsterdan, 1964.
    [22]. M.A. Fox, C.C. Chen, et al., Oxidative cleavage of substituted naphthalenes induced by irradiated semiconductor powders, J. Org. Chem. 1984, 49(11): 1969-1974.
    [23]. R. Farwaha, P. de Mayo, et al., ibid, 1985, 50, 245.
    [24]. N. Djeghri and S.J. Teichner, Heterogeneous Photocatalysis: The Photooxidation of 2-Methybutane, J. Catal. 1980, 62(1): 99-106.
    [25]. K.M. Kadish, Electrochemical and structural properties of metalloporphyrins, Prog. Inorg. Chem., 1986, 34: 435-605.
    [26]. T. Kanno, T. Oguchi, et al. ibid. 1980, 21, 467.
    [27]. R. Farwaha, P. de Mayo, et al. ibid, 1985, 50, 245.
    [28]. 刘向阳, 张振龙, 运用表面光电压技术对半导体表面光电特性的研究, 烟台师范学院学报(自然科学版), 2003, 19(1): 64-67.
    [1]. E.J. Brandon, C. Kollmar, et al. Orbital overlap and antiferromagnetic coupling in substituted tetraphenylporphinatomanganate(III) tetracyanoethenide based magnets. The importance of -dz2-pz overlap, J. Am. Chem. Soc. 1998, 120(8): 1822-1826.
    [2]. A.S. David, H. Lee, et al. Cross-conjugated bis(porphryin)s: synthesis, electrochemical behavior, mixed valency, and biradical dication formation, J. Org. Chem. 1999, 64(25): 9124-9436.
    [3]. H.S. Cho, D.H. Jeong, et al. Photophysical properties of porphyrin tapes, J. Am. Chem. Soc. 2002, 124(49): 14642-14654.
    [4]. H.L. Anderson, S.J. Martin, et al. Synthesis and Third-or der Nonlinear Optical Porpertiesof a Conjugated Porphyrin, Angew. Chem. Int. Ed. 1994, 33(6): 655-657.
    [5]. M.J. Frampton, H. Akdas, et al. Synthesis, crystal structure, and nonlinear optical behavior of β-unsubstituted meso-meso E-vinylene-linked porphyrin dimers, Org. Lett. 2005, 7(24): 5365-5368.
    [6]. J.-D. Lee, N.T. Greene, et al. Carbohydrate recognition by porphyrin-based molecularly imprinted polymers, Org. Lett. 2005, 7(6): 963-966.
    [7]. R.W. Wanger, J.S. Lindsey, et al. Molecular optoelectronic gates, J. Am. Chem. Soc. 1996, 118(16): 3996-3997.
    [8]. P.J.F. de Rege, S.A. Williams, et al. Direct Evaluation of Electronic Coupling Mediated by Hydrogen Bonds: Implications for Biological Electron Transfer, Science 1995, 269(5229): 1409-1413.
    [9]. R.W. Wagner, J. Seth, et al. Synthesis and excited-state photodynamics of a molecular square containing four mutually coplanar porphyrins, J. Org. Chem. 1998, 63(15): 5042-5049.
    [10]. P.G. Van Patten, A.P. Shreve, et al. Energy-Transfer Modeling for the Rational Design of Multiporphyrin Light-Harvesting Arrays, J. Phys. Chem. B. 1998, 102(21): 4209-4216.
    [11]. J. Larsen, B. Bruggemann, et al. Energy transfer within Zn-porphyrin dendrimers: study of the singlet-singlet annihilation kinetics, J. Phys. Chem. A. 2005, 109(47): 10654-10662.
    [12]. A.A. Kumar, L. Giribabu, et al. New molecular arrays based on a Tin(IV) porphyrin scaffold, Inorg. Chem. 2001, 40(26): 6757-6766.
    [13]. D.H. Jeong, S.M. Jang, et al. Investigation of interporphyrin charge resonance of dihedral angle controlled porphyrin dimers by resonance raman spectroscopy and MO approaches, J. Phys. Chem. A. 2002, 106(46): 11054-11063.
    [14]. R. Guilard, S. Brandes, et al. Synthesis, characterization, and reactivity toward dioxygen of copper manganese cofacial porphyrins. Crystal and molecular structures of a heterobimetallic biphenylene-pillared cofacial diporphyrin, J. Am. Chem. Soc. 1994, 116(22): 10202-10211.
    [15]. A. Hamilton, J.M. Lehn, et al. Coreceptor molecules. Synthesis of metalloreceptors containing porphyrin subunits and formation of mixed substrate supermolecules by binding of organic substrates and of metal ions, J. Am. Chem. Soc. 1986, 108(17): 5158-5167.
    [16]. R.R. French, P. Holzer, et al. A supramolecular Enzyme Model Catalyzing the Central Cleavage of Carotenoids, J. Inorg. Biochem. 2002, 88: 295-304.
    [17]. T. Takemura, S. Nakajima, et al. Tumor-localizing fluorescent diagnostic agents without phototoxicity, J. Photochem. Photobiol. 1994, 59: 366-370.
    [18]. R. Farwaha, P. de Mayo, et al., ibid, 1985, 50, 245.
    [19]. W.J. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev. 1971, 7(1): 81-122.
    [20]. X. Cheng, Y. Li, et al. Synthesis, characterization and electrochemistry of succinyloxyl-bridged metal-free and transition metal porphyrin dimers, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 2006, 36: 673–679.
    [21]. 任奇志, 黄锦汪, 等, 双卟啉化合物的构象平衡及π-π作用研究, 高等学校化学学报, 1999, 20(3): 333-338.
    [22]. D. Dolphin, “The Porphyrins” Academic: New York, 1978, 5: 56, 60.
    [23]. Y. Kazuya, M. Isao, Low-valent iron porphyrins. NMR evidence for π-anion-radical character in two-electron-reduced iron(III) meso- or beta- pyrrole-substituted porphyrins, Inorg. Chem. 1992, 31 (15): 3216-3222.
    [24]. S.M. Chen, Y.L. Chen, The electropolymerization and electrocatalytic properties of polymerized MnTAPP film modified electrodes in aqueous solutions, J. Electroanal.Chem. 2004, 573 (2): 277-287.
    [25]. 刘向阳, 张振龙, 运用表面光电压技术对半导体表面光电特性的研究, 烟台师范学院学报(自然科学版), 2003, 19(1): 64-67.
    [26]. D.J. Quimby, F.R. Longo, Luminescence studies on several tetraarylporphins and their zinc derivatives, J. Am. Chem. Soc. 1975, 97(18): 5111-5117.
    [27]. A. Hariman, Luminescence of porphyrins and metalloporphyrins: Part 2, copper(Ⅱ), chromium(Ⅲ), manganese(Ⅲ), iron(Ⅱ)and iron(Ⅲ)porphyrins, J. C. S. Faraday I, 1981, 77(2): 369-377.
    [28]. 祝大昌, 陈剑宏, 朱世盛译. 分子发光分析法, 上海:复旦大学出版社, 1985, P10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700