用户名: 密码: 验证码:
铂(Ⅱ)、铱(Ⅲ)等环金属配合物光电性质理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属配合物由于其分子和电子结构的多样性已成为催化、分析化学、生物科学以及光电技术等诸多领域的重要研究课题。特别是在发光材料领域,过渡金属配合物,尤其是铱和铂过渡金属配合物由于重金属原子的引入使其可以有效的利用三线态激子的辐射衰减来提高电致发光效率,进而引起人们的极大兴趣。随着研究的深入,一些涉及材料优化和发光机理的问题,如分子设计、电荷转移、电子结构与光物理性质的关系等备受关注。
     本论文通过量子化学计算研究了一系列铱和铂等过渡金属配合物的电子结构、光谱性质及载流子传输性质,为新型有机材料的设计提供理论基础和指导。研究内容主要由以下四部分组成:
     1.以系列具有不同共轭长度的桥联配体铂配合物[Pt(pip_2NCN)]_2(L)~(2+) (pip_2NCNH= 1,3-bis(piperidylmethyl)benzene, L表示桥联配体)为研究对象,使用密度泛函方法系统研究了桥联配体共轭链长的改变对一系列双核铂配合物电子结构、光谱性质和载流子传输性质的影响。随着桥联配体共轭长度的增加,HOMO和LUMO的能量、配合物的稳定性以及最大阵子强度增大,然而电离势降低;从重组能和态密度的角度来看,我们认为这些分子的空穴传输性能优于电子传输性能。由于此类配合物的HOMO和LUMO分别分布在不同的片断上,所以可以通过对不同的片断引入不同性质的取代基或杂原子来调解分子的光电性质,进而使材料性能得以改进。
     2.选取三个模型铂配合物Pt(N^N^N)Cl (N^N^N = terpyridine), Pt(N^C^N)Cl (N^C^N = 1,3-di(2-pyridyl)-benzene)和Pt(N^N^C)Cl (N^N^C = 6-phenyl-2,2’-bipyridines)作为研究体系来探讨苯环的存在和位置对分子和电子结构、几何弛豫、电荷分布以及磷光性质的影响。计算结果表明,Pt和苯环之间强的反馈键使与苯环处于反位位置的配位键键长在同类型的键中最长;Pt-C键的强σ给电子能力使更多的电子集中在Pt和与苯环处于反位位置的片断上;在发光过程中,苯环位置的不同导致了Pt(N^C^N)Cl和Pt(N^N^C)Cl的苯环到吡啶环的ππ*跃迁方向不同;与Pt(N^N^N)Cl和Pt( N^N^C)Cl相比,Pt(N^C^N)Cl具有最小的激发态几何弛豫、最大的发射能以及在发射过程中跃迁轨道的最大空间重叠,而且三个配合物的辐射弛豫率相似,这些特征使得Pt(N^C^N)Cl具有最大的发射效率,与实验观察结果一致;基于Pt(N^C^N)Cl的种种优势,我们使用卡宾类配体3-methylimidazolin-2-ylidene取代了配合物Pt(N^C^N)Cl中的吡啶片断得到新型高效的发蓝光磷光材料。
     3.系统研究了以2-苯基吡啶和8-羟基喹啉为配体的铱配合物(ppy)_2IrQ、(ppy)IrQ_2和IrQ_3的光电性质,并且将这些衍生物的电子传输和发光性质与原始配合物AlQ3的电子传输性质和Ir(ppy)_3的发光性质进行比较。计算结果显示了喹啉铱配合物在多层OLED装置中的功能:通过与AlQ_3的对比研究,从电子迁移率、电子注入对分子构象稳定性的影响以及HOMO和LUMO的分布来看,(ppy)_2IrQ和IrQ_3具有成为好的电子传输材料的可能,但是不能作为主体材料,因为它们低的激子能量不能有效的传递给客体材料;其中(ppy)_2IrQ的电子传输性能可能会被其差的电子注入能力所干扰。这些喹啉铱配合物最低三重激发态的特征都是由A-喹啉配体所主导,这是被基态和最低三态之间的几何弛豫所证实的,通过与实验数据对比分析,它们均为红光磷光材料。
     4.系统研究了包含二噻吩基乙烯的1,10-邻二氮杂菲配体(闭环配体L_1和开环配体L_2)和它们的Re(I)配合物[Re(CO)_3(L)Cl(]闭环配合物1和开环配合物2)的光物理性质。研究的目的是通过对体系基态和激发态性质的分析确定金属配合和开闭环结构的不同对激发态性质的影响。计算结果表明,开闭环配合物的最强吸收峰以及发射峰的特征明显不同,开环配合物主要为MLCT/LLCT跃迁,而闭环配合物由于配体部分较大的共轭程度,使其光谱特征主要为π→π*跃迁。我们认为第二激发三重态对1的磷光有贡献,而2的磷光主要源于最低三重激发态的贡献。另外,旋轨偶合对有5d(Re)参与的跃迁的激发能有较大影响,但是对配合物1和2跃迁特征的影响是可以忽略的。
Due to the variety of molecular and electronic structures, transition-metal complexes have become very important research contents on the aspect of catalysis, analytical chemistry, bioscience, and optoelectronic devices and so on. In the area of luminescent materials, transition-metal complexes, especially for Ir(III) and Pt(II) transition-metal complexes, can utilize both singlet and triplet excitons due to the strong spin-orbit coupling effects of the heavy transition metals, and thus they are considered as attractive electrophosphorescence materials in view of their high internal quantum efficiency. With research deepening, some questions concerning material optimum and emission mechanism, such as molecular architecture, charge transport, relationship between electronic and photophysical properties, have attracted a considerable attention. In this paper, the electronic structures and optoelectronic properties of Ir(III) and Pt(II) transition-metal complexes were investigated by quantum theoretical studies. The results suggest new theoretical basis and direction for design of novel organic materials. Our work will focus on four aspects:
     1. The effect ofπ-conjugated length of bridging ligand on the optoelectronic properties of several platinum(II) dimers [Pt(pip_2NCN)]_2(L)~(2+) (pip_2NCNH = 1,3-bis(piperidylmethyl)benzene, L represents the bridging ligands pyrazine, 4,4’-bipyridine, or trans-1,2-bis(4-pyridyl)ethylene) were studied by density-functional method. The theoretical calculations reveal that thatπ-conjugated length of the bridging ligand provides remarkable control over optoelectronic properties of these complexes. As theπ-conjugated length of bridging ligand increases, the energies of HOMOs and LUMOs, stabilities of dimers and the largest absorption strength increase whereas the ionization potentials decrease. According to the inner reorganization energy and density of states, we presume the hole-transporting properties of these dimers are better than the electron-transporting. Moreover, the optoelectronic properties of these complexes are easy to be tailored by modifying the peripheral and central ligands. These theoretical results are beneficial to the design of new functional materials with excellent optoelectronic properties.
     2. Three platinum(II) complexes Pt(N^N^N)Cl (N^N^N = terpyridine), Pt(N^C^N)Cl (N^C^N = 1,3-di(2-pyridyl)-benzene) and Pt( N^N^C)Cl (N^N^C = 6-phenyl-2,2’-bipyridines) are selected to study the effect of the presence and position of phenyl group on the electronic and phosphorescent properties by using quantum theoretical calculations. The calculated results show that the presence and position of phenyl group significantly affect the molecular and electronic structures, geometry relaxation, charge distribution and phosphorescent properties. Due to the strongest feedback from Pt to phenyl group, the coordination bond length trans to phenyl group is the longest among the same type of bonds. The strongσ-donor ability of Pt-C bond makes more electrons center at Pt atom and the fragments trans to phenyl group. In the luminescent process, the direction ofπphenyl→π*pyridines charge transfer of Pt(N^N^C)Cl differs from that of Pt(N^C^N)Cl owing to the different position of phenyl group. Compared with Pt(N^N^N)Cl and Pt(N^N^C)Cl, Pt(N^C^N)Cl has the smallest excited-state geometry relaxation and the biggest emission energy and spatial overlap between the transition orbitals in emission process. The radiative rate of the three complexes is nearly the same. These lead to the largest emission efficiency of Pt(N^C^N)Cl, which agrees well with the experimental observation. Thus, based on the Pt(N^C^N)Cl, new blue emitters are designed. The complex using 3-methylimidazolin-2-ylidene to instead of pyridine groups in Pt(N^C^N)Cl may be a potential efficient blue emitting material.
     3. The optoelectronic properties of Ir(III) complexes with 2-phenylpyridyl and 8-hydroxyquinolate ligands, including (ppy)_2IrQ, (ppy)IrQ_2, IrQ_3, were systematically investigated, and a comparison between the main performances (e.g. electron transport and luminescent properties) of these derivatives and the original complexes AlQ3 and Ir(ppy)_3 were drawn. Both AlQ_3 and Ir(ppy)_3 are green emitters, whereas the derivative Ir(III) complexes can serve as a new kind of red phosphorescence emitting materials. The character of the lowest triplet excited states for these Ir(III) complexes are mainly dominated by A-quinolate ligand as evidenced by the structural relaxation between the first triplet and ground states. Although all Ir(III) complexes with the 8-hydroxyquinolate group(s) can not be employed as effective host materials in organic light-emitting diodes (OLEDs) due to their low exciton energies, these phosphorescence materials, except (ppy)IrQ_2, are thought to possess excellent electron transfer performance. However, the electron transport performance of (ppy)2IrQ may be disturbed by its poor ability of electron injection. The above predicted properties of these Ir(III) complexes indicate their potential applications in OLEDs.
     4. The photophysical properties of diarylethene-containing 1, 10-phenanthroline ligands (L1 and L2) and their rhenium(I) complexes [Re(CO)3(L)Cl] (1 and 2) were studied systematically. As shown, the transition character of the strongest absorption band and luminescent spectrum for closed-ring complex 1 is different from that of 2, the former hasππ* character and the latter has MLCT and LLCT character. We presume the second triplet excited state contributes to the phosphorescence of 1, while the lowest triplet excited state accounts for the phosphorescence of 2. Spin-orbit coupling influences the excitation energies for d(Re)-joined transitions whereas it has negligible effect on the transition character for complexes 1 and 2.
引文
[1]李文连.有机/无机光电功能材料及其应用[M].北京:科学出版社,2005. 1-11.
    [2]《功能材料及其应用手册》编写组.功能材料及其应用手册[M].北京:北京机械工业出版社,1991.
    [3] Fuhrmann T, Salbeck J. Organic materials for photonic devices[J]. MRS Bulletin, 2003, 05: 354-359.
    [4] Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 2004, 428: 911-918.
    [5] Burroughes J H, Bradley D D C, Brown A R, et al. Light emitting diodes based on conjugated polymers[J]. Nature, 1990, 347: 539-541.
    [6] Forrest S R. Ultrathin organic films grown by organic molecular beam deposition and related techniques[J]. Chem Rev, 1997, 97: 1793-1896.
    [7] Kalinowski J. Electroluminescence in organics[J]. J Phys D: Appl Phys, 1999, 32: R179-R250.
    [8] Shen Z L, Burrows P E, Bulovi? V, et al. Three-color, tunable, organic light-emitting devices[J]. Science, 1999, 276: 2009-2011.
    [9] Haskal E I, Büchel M, Duineveld P C, et al. Passive-matrix polymer light-emitting displays[J]. MRS Bulletin, 2002, 864-869.
    [10] Forrest S R. The road to high efficiency organic light emitting devices[J]. Organic Electronics, 2003, 4: 45-48
    [11] Tang C W, Vanslyke S A. Organic electro luminescent diodes[J]. Appl Phys Lett, 1987, 51: 913-915.
    [12] Shibata T. Jp 6, 1994, 122: 874.
    [13] Tashiro M, Mataga S, Takahashi K, et al. Us 5, 1991, 059: 863.
    [14] Zhang A, Braun D, Heeger A J. Light-emitting diodes from partially conjugated poly(p-phenylene vinylene)[J]. J Appl Phys, 1993, 73:5177-5180.
    [15] Gaustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers[J]. Narure, 1992, 357: 477-479.
    [16] Wang S N, Luminescence and electroluminescence of Al(III), B(III), Be(II), and Zn(II) complexes with nitrogen donors[J]. Coord Chem Rev, 2001, 215: 79-98.
    [17]苏忠民,程红,高洪泽等, 8-羟基喹啉铝光电性质的Ab initio和DFT研究[J].高等学校化学学报[J]. 2000, 21(9): 1416-1421.
    [18]苏忠民,高洪泽,程红等,发光金属配合物8-羟基喹啉镓的电子性质及其分子设计[J].中国科学, 2001, 31(1): 16-27.
    [19] Halls M D, Schlegel H B, Molecular orbital study of the first excited state of the OLED material tris(8-hydroxyquinoline)aluminum(III)[J]. Chem Mater, 2001, 13: 2632-2640.
    [20]廖奕,苏忠民,陈亚光等,8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J].高等学校化学学报,2003, 24(3): 477-480.
    [21] Liao Y, Chen Y G, Su Z M, et al. TD-DFT study on electronic spectrum property for Bepp2 and its related complexes[J]. Synth Met, 2003, 137(1-3): 1093-1094.
    [22] Amati M, Lelj F. Luminescent compounds fac- and mer-aluminum tris(quinolin-8-olate). A pure and hybrid density functional theory and time-dependent density functional theory investigation of their electronic and spectroscopic properties[J]. J Phys Chem A, 2003, 107: 2560-2569.
    [23] Kido J, Iizumi Y. Efficient electroluminescence from tris(4-methyl-8-quinolinolato)aluminum(III)[J]. Chem Lett, 1997, 963-964.
    [24] Yu J S, Chen Z J, Sakuratani Y, et al. A novel blue light emitting diode using tris(2,3methyl-8-hydroxyquinoline)aluminum(III) as emitter[J]. Jpn J Appl Phys, 1999, 38: 6762-6763.
    [25] Bryan P S, Lovecchio F V, Vanslyke S A. Mixed ligand 8-quinolinolate aluminum chelate luminophors[P]. US patent, 5141671. 1992-8-25.
    [26] Qiu Y, Shao Y, Zhang D Q, et al. Preparation and characterization of high efficient blue light emitting materials with a secondary ligand for organic electroluminescence[J]. Jpn J Appl Phys, 2000, 39: 1151-1153.
    [27] Chen C H, Shi J M. Metal chelates as emtitting materials for organic electroluminescence[J]. Coord Chem Rev, 1998, 171: 161-174.
    [28] Leung L M, Lo W Y, So S K, et al. A high efficiency blue emitter for small molecule based organic light emitting diode[J]. J Am Chem Soc, 2000, 122: 5640-5641.
    [29] Sapochak L S, Padmaperuma A, Washton N, et al. Effects of systematic methyl substitution of metal (III) tris(n-methyl-8-quinolinolato) chelates on material properties for optimum electroluminescence device performance[J]. J Am Chem Soc, 2001, 123: 6300-6307.
    [30] Shi Y W, Shi M M, Huang J C, et al. Fluorinated Alq3 derivatives with tunable optical properties[J]. Chem Commun, 2006, 18: 1941-1943.
    [31] Kido J, Ontaki C, Hongawa K, et al. 1,2,4-triazole derivative as an electron transport layer in organic electroluminescent devices[J]. Jpn J Appl Phys, 1993, 32: L917-L920.
    [32]曹红,黄春辉.光致和电致发光配合物[M].北京:高等教育出版社,2000.
    [33] Burrows P E, Sapochak L S, Mc Carty D M, et al. Metal ion dependent luminescence effects in metal tris-quinolate organic heterojunction light emitting devices[J]. Appl Phys Lett, 1994, 64(20): 2718-2720.
    [34] Wu Q G, Esteghamatian M, Hu N X, Synthesis, structure, and electroluminescence of BR2q(R=Et, Ph, 2-naphthyl and q=8-hydroxy-quinolato)[J]. Chem Mater, 2000, 12: 79-83.
    [35] Li Y Q, Liu Y, Wang Y, et al. A mixed pyridine-phenol boron complex as an organic electroluminescent material, Chem Commun[J]. 2000, 1551-1552.
    [36] Liu Y, Guo J H, Zhang H D, et al. Highly efficient white organic electroluminescence from a double-layer device based on a boron hydroxyphenylpyridine complex[J]. Angew Chem Int Ed, 2002, 41: 182-184.
    [37] Tao X T, Suzuki S, Wada T, Highly efficient blue electroluminescence of lithium tetra-(2-methyl-8-hydroxy-quinolinato) boron[J]. J Am Chem Soc, 1999, 121: 9447-9448.
    [38] Kido J, Okamoto Y, Organic lanthanide metal complexes for electroluminescent materials[J]. Chem Rev, 2002, 102: 2357-2368.
    [39]苏锵.变价稀土有机配合物光谱学研究及其应用-变价稀土元素化学及物理[M].北京:科学出版社. 1994.
    [40]卞祖强,黄春辉.影响稀土配合物电致发光性能的几个重要因素[J].中国稀土学报,2004,22(1):7-16.
    [41] Yam V W W, Lo K K W. Luminescent polynuclear d10 metal complexes[J]. Chem Soc Rev, 1999, 29: 323-334.
    [42] Vogler A, Kunkely H. Comments Inorg Chem, 1990, 9: 201.
    [43] Kunkely H, Vogler A. Ligand-to-Ligand Charge Transfer in (2,2-Biquinoline)bis(cyclopentadienyl)zirconium(IV) - Absorption and Emission in the Visible Range[J]. Eur J Inorg Chem, 1998, 1863-1865.
    [44] Kunkely H, Vogler A. Optical ligand-to-ligand charge transfer of (1,2-diimine)Pt(II)- (μ-S2MS2) with M = Mo(VI) and W(VI)[J]. Inorg Chim Acta, 1997, 264: 305-307.
    [45] Benedix R, Vogler A. Electronic structure and spectroscopic properties of copper catecholate complexes with interligand charge-transfer behavior[J]. Inorg Chim Acta, 1993, 204: 189-193.
    [46] Benedix R, Hennig H, Kunkely H, et al. Optical ligand-to-ligand charge transfer of Zn (2,2′-bipyridyl) (3,4-toluenedithiolate)[J]. Chem Phys Lett, 1990, 175: 483-487.
    [47] Stor G J, Stufkens D J, Oskam A. Electronic absorption and resonance Raman spectra of tricarbonyl(p-tolyl-1,4-diaza-1,3-butadiene)halorhenium. Evidence for a lowest ligand to ligand charge-transfer (LLCT) transition[J]. Inorg Chem, 1992, 31: 1318–1319.
    [48] Barigelletti F, Flamigni L. Photoactive molecular wires based on metal complexes[J]. Chem Soc Rev, 2000, 29: 1-12.
    [49] Baldo M A, O’Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R Highly efficient phosphorescent emission from organic electroluminescent devices[J] Nature 1998, 395: 151-154.
    [50] Baldo M A, Lamansky S, Burrows P E, Thompson M E, Forrest S R Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phys Lett, 1999, 75: 4.
    [51] O’Brien D F, Baldo M A, Thompson M E, et al. Improved energy transfer in electrophosphorescent devices[J]. Appl Phys Lett, 1999, 74: 442.
    [52] Adachi C, Baldo M A, Forrest S R, et al. High-efficiency red electrophosphorescence devices[J]. Appl Phys Lett, 2001, 78: 1622.
    [53] Williams J A G, Develay S, Rochester D L, et al. Optimising the luminescence of platinum(II) complexes and their application in organic light emitting devices (OLEDs)[J]. Coord Chem Rev, 2008, 252: 2596-2611.
    [54] D’Andrade B W, Brooks J, Adamovich V, et al. White light emission using triplet excimers in electrophosphorescent organic light-emitting devices[J]. Adv Mater, 2002, 14: 1032-1036.
    [55] Yang X H, Wang Z X, Madakuni S, et al. Efficient blue- and white-emitting electrophosphorescent devices based on platinum(II) [1,3-difluoro-4,6-di(2-pyridinyl)benzene] chloride[J]. Adv Mater, 2008, 20: 2405-2409.
    [56] Baldo M A, O'Brien, D F, Thompson M E, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film[J]. Phys Rev B, 1999, 60: 14422–14428.
    [57] Baldo M A, Thompson M E, Forrest S R. Phosphorescent materials for application to organic light emitting devices[J]. Pure Appl Chem, 1999, 71: 2095-2106.
    [58] Gong X, Robinson M R, et al. High-Efficiency Polymer-Based Electrophosphorescent Devices[J]. Adv Mater, 2002, 14(8): 581-585.
    [59] Gong X, Ostrowski J C, et al. Electrophosphorescence from a Polymer Guest-Host System with an Iridium Complex As Guest: Foster Energy Transfer and Charge Trapping[J]. Adv Funct Mater, 2003, 13(6): 439-444.
    [60] Suzki H, Hoshino A. Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes[J]. J Appl Phys, 1996, 79: 8816.
    [61] Lamansky S, Djurovich P I, Abdel-Razzaq F, et al. J Appl Phys, 2002, 92: 1570.
    [62] Gong X, Ostrowski J C, Mose D, et al. Electrophosphorescence from a Polymer Guest-Host System with an Iridium Complex as Guest: F?rster Energy Transfer and Charge Trapping[J]. Adv Funct Mater, 2003, 13: 439-444.
    [63] Wang X J, Andersson M R, Thompson M E, et al. Synth Met, 2003, 137: 1019.
    [64] Lamansky S, Djurovich P I, Abdel-Razzaq F, et al. Cyclometalated Ir complexes in polymer organic light-emitting devices[J]. J Appl Phys, 2002, 92: 1570.
    [65] Tessler N, Ho P K H, et al. Material and device related properties in the context of the possible making of electrically pumped polymer laser[J]. Thin Solid Films, 2000, 363: 64-67.
    [66] Yam V W W, Tang R P L, Wong K M C, et al. Syntheses, Electronic Absorption, Emission, and Ion-Binding Studies of Platinum(II) C^N^C and Terpyridyl Complexes Containing Crown Ether Pendants[J]. Chem Eur J, 2002, 8: 4066–4076.
    [67] Zuleta J A, Chesta C A, Eisenberg R. Square-planar complexes of platinum(II) that luminesce in fluid solution[J]. J Am Chem Soc, 1989, 111: 8916–8917.
    [68] Yersin H, Humbs W, Strasser J. Low-lying electronic states of [Rh(bpy)3]3+, [Pt(bpy)2]2+, and [Ru(bpy)3]2+. A comparative study based on highly resolved and time-resolved spectra[J]. Coord Chem Rev, 1997, 159: 325–358.
    [69] Che C M, Wan K T, He L Y, et al. Novel luminescent platinum(II) complexes. Photophysics and photochemistry of Pt(5,5-Me2bpy)(CN)2(5,5-Me2bpy=5,5-dimethyl-2,2-bipyridine)[J]. J Chem Soc Chem Commun, 1989, 943-944.
    [70] Xiang H-F, Lai S-W, Lai P T, et al. Phosphorescent platinum(II) materials for OLED applications.
    [71] Lippard S J. Platinum complexes: probes of polynucleotide structure and antitumor drugs[J]. Acc Chem Res, 1978, 11: 211-217.
    [72]陈金鑫,黄孝文. OLED有机电致发光材料与器件[M].北京:清华大学出版社. 2007年.
    [73] Ikai M, Ichinosawa S, Sakamoto Y. Appl Phys Lett, 2001, 79: 156-158.
    [74] Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J Appl Phys, 2001, 90: 5048-5051.
    [75] Cocchi M, Virgili D, Fattori V, et al. N^C^N-Coordinated Platinum(II) Complexes as Phosphorescent Emitters in High-Performance Organic Light-Emitting Devices[J]. Adv Funct Mater, 2007, 17: 285-289.
    [76] Adachi C, Kwong R C, Djurovich P, et al. Endothermic energy transfer :A mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl Phys Lett, 2001, 79: 2082-2084.
    [77] Holmes R J, Andrade B W D, Forrest S R, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping[J]. Appl Phys Lett, 2003, 83: 3818–3820.
    [78] Ren X, Li J, Holmes R J, et al. Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices[J]. Chem Mater, 2004, 16: 4743–4747.
    [79] D’Andrade B W, Forrest S R. Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices[J]. J Appl Phys, 2003, 94: 3101-3109.
    [80] Rudzinski C M, Nocera D G. Mol Supramol Photochem, 2001, 7: 1-3.
    [81] Elliott C M, Pichot F, Bloom C J, et al. Highly Efficient Solid-State Electrochemically Generated Chemiluminescence from Ester-Substituted Trisbipyridineruthenium(II)-Based Polymers[J]. J Am Chem Soc, 1998, 120: 6781-6784.
    [82] Erkkila K E, Odom D T, Barton J K. Recognition and Reaction of Metallointercalators with DNA[J]. Chem Rev, 1999, 99: 2777-2796.
    [83] Luong J C, Nadjo L, Wrighton M S. Ground and excited state electron transfer processes involving fac-tricarbonylchloro(1,10-phenanthroline)rhenium(I) Electrogenerated chemiluminescence and electron transfer quenching of the lowest excited state[J]. J Am Chem Soc, 1978, 100: 5790.
    [84] Kotch T G, Lees A J, Fuerniss S J, et al. Luminescence rigidochromism of fac-tricarbonylchloro(4,7-diphenyl-1,10-phenanthroline)rhenium as a spectroscopic probe in monitoring polymerization of photosensitive thin films[J]. Inorg Chem, 1993, 32: 2570.
    [85] Thornton N B, Schanze K S. A chromophore-quencher-based luminescence probe for DNA[J]. Inorg Chem, 1993, 32: 4994.
    [1] Foresman J B, Gordon M, Pople J A, et al. Spectroscopic characterization of the X 1 and C 11 states of the ZnKr molecule[J]. J Chem Phys, 1992, 96: 136.
    [2] Pople J A, Krishnan R, Schegel H, et al. Electron correlation theories and their application to the study of simple reaction potential surfaces[J]. Int J Quantum Chem, 1978, 14: 545-560.
    [3] Pople J A, Binkley J S, Seeger R. Int J Quantum Chem Symp, 1976, 10: 1.
    [4] Adv J C. Chem Rev, 1969, 14: 35.
    [5] Purvis G D, Bartlett R J. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples[J]. J Chem Phys, 1982, 76: 1910.
    [6] Scuseria G E, Schaefer H F. Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?[J]. J Chem Phys, 1989, 90: 3700.
    [7] Head-Gordon M, Pople J A, Frisch M J. MP2 energy evaluation by direct methods[J]. Chem Phys Lett, 1988, 153: 503-506.
    [8] Frisch M J, Head-Gordon M, Pople J A. The diode laser spectrum of three isotopic forms of PbH in its 2Π1/2 ground state[J]. Chem Phys Lett, 1990, 166: 253-257.
    [9] Pople J A, Seeger R, Krishnan R. Variational configuration interaction methods and comparison with perturbation theory[J]. Int J Quant Chem Symp, 1977, 11: 149.
    [10] Krishnan R, Pople J A. Approximate fourth-order perturbation theory of the electron correlation energy[J]. Int J Quant Chem, 1978, 14: 91-100.
    [11] Head-Gordon M, Head-Gordon T. Analytic MP2 frequencies without fifth order storage: theory and application to bifurcated hydrogen bonds in the water hexamer[J]. Chem Phys Lett, 1994, 220: 122.
    [12] Trucks G W, Frisch M J, Andres J L, et al. An efficient theory and implementation of MP2 second derivatives[M]. 1998.
    [13] Pople J A, Krishnan R, Schlegel H B, et al. Electron correlation theories and their application to the study of simple reaction potential surfaces[J]. Int J Quant Chem XIV, 1978, 545.
    [14] Bartlett R J, Purvis G D. General applicability of a big molecule Gaussian SCF/CI program for calculations of excited metastables and of negative ion bound states and resonances. [J]. Int J Quant Chem, 1978, 14: 515-518.
    [15] Foresman J B, Head-Gordon M, Pople J A, et al. Toward a systematic molecular orbital theory for excited states[J]. J Phys Chem, 1992, 96: 135.
    [16] Trucks G W, Frisch M J. Analytic second derivatives of excited states: configuration interaction singles theory and application[M], 1998.
    [17] Pople J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. A general technique for determining electron correlation energies[J]. J Chem Phys, 1987, 87: 5968.
    [18] Salter E A, Trucks G W, Bartlett R J. Analytic energy Derivatives in many-body methods I first derivatives[J]. J Chem Phys, 1989, 90: 1752.
    [19] Moller C, Plesset M S. Note on an Approximation Treatment for Many-Electron Systems[J]. Phys Rev, 1934, 46: 618 - 622.
    [20] Hegarty D, Robb M A. Mol Phys, 1979, 38: 1795.
    [21] Eade R H E, Robb M A. Direct minimization in mc scf theory. The quasi-newton method[J]. Chem Phys Lett, 1981, 83: 362-368.
    [22] Frisch M J, Ragazos I N, Robb M A, et al. An evaluation of 3 direct MCSCF procedures[J]. Chem Phys Lett, 1992, 189: 524.
    [23] Yamamoto N, Vreven T, Robb M A, et al. A direct derivative MC-SCF procedure[J]. Chem Phys Lett, 1996, 250: 373.
    [24] Theophilou A K, Gidopoulos N I. Density functional theory for excited states[J]. Int J Quantum Chem,1995, 56: 333-336.
    [25] Theophilou A K. J Phys, 1979, C12: 5419.
    [26] Hadjisavvas N, Theophilou A K. Phys Rev, 1984, A30: 2183; ibid, 1985, A32: 720.
    [27] Peukert V. J Phys, 1978, C11: 4945.
    [28] Jamorski C, Casida M E, Salahub D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time-dependent density-functional response theory: N2 as a case study[J]. J Chem Phys, 1996, 104(13): 5134-5147.
    [29] Born M, Oppenheimer J R. Zur quantentheorie der molekeln[J]. Ann Physik, 1927, 84(20): 457-484.
    [30] Roothaan C C J. New developments in molecular orbital theory[J]. Rev Mod Phys, 1951, 23(2): 69-89.
    [31] Koch W, Holthausen M C A. Chemist’s Guide to Density Functional Theory[M]. Weinheim, Germany: Wiley-VCH, 2000.
    [32] Marques M A L, Gross E K U. Time-dependent density functional theory[J]. Annu Rev Phys Chem, 2004, 55: 427-455.
    [33] Petersilka M, Gossmann U J, Gross E K U. Excitation energies from time-dependent density-functional theory[J]. Phys Rev Lett, 1996, 76: 1212-1215.
    [34]王志中.现代量子化学计算方法[M],长春:吉林大学出版社,1998.
    [35] Hay P J, Wadt W R. J Chem Phys, 1985, 82: 207-229.
    [36] Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. J Chem Phys, 1985 82, 284-293.
    [1] Albinati A, Isaia F, Kaufmann W, et al. Solution studies of complexes of the types trans-PtCl2L(1 4-diazine) and trans-Lcl2Pt( mu -1 4-diazine)PtCl2L (L = phosphine C2H4) X-ray structures of Pt2Cl4L2(ppz) (L = C2H4 PEt3, ppz - 2 5-dimethylpyrazine) and the relative trans influence of alkene and tertiary phosphine ligands[J]. Inorg Chem, 1989, 28: 1112-1122.
    [2] Komeda S, Kalayda G V, Lutz M, et al. New Isomeric Azine-Bridged dinuclear platinum(II) complexes circumvent cross-resistance to cisplatin[J]. J Med Chem, 2003, 46: 1210- 1219.
    [3] Kumazawa K, Biradha K, Kusukawa T, et al. Multicomponent assembly of a pyrazine-pillared coordination cage that selectively binds planar guests by intercalation[J]. Angew Chem Int Ed, 2003, 42: 3909-3913.
    [4] Schweiger M, Seidel S R, Arif A M, et al. The Self-Assembly of an Unexpected Unique Supramolecular Triangle Composed of Rigid Subunits[J] Angew Chem Int Ed, 2001, 40: 3467-3469.
    [5] Lu W, Chan M C W, Cheung K -K, et al.π?πInteractions in Organometallic Systems Crystal Structures and Spectroscopic Properties of Luminescent Mono- Bi- and Trinuclear Trans-cyclometalated Platinum(II) Complexes Derived from 2,6-Diphenylpyridine[J]. Organometallics, 2001, 20: 2477-2486.
    [6] Kryschenko Y K, Seidel S R, Arif A M, et al. Coordination-Driven Self-Assembly of Predesigned Supramolecular Triangles [J]. J Am Chem Soc, 2003, 125: 5193-5198.
    [7] Schweiger M, Seidel S R, Arif A M, et al. Solution and Solid State Studies of a Triangle?Square Equilibrium: Anion-Induced Selective Crystallization in Supramolecular Self-Assembly[J]. Inorg Chem, 2002, 41: 2556-2559.
    [8] Schalley C A, Muller T, Linnartz P, et al. Mass Spectrometric Characterization and Gas-Phase Chemistry of Self-Assembling Supramolecular Squares and Triangles[J]. Chem -Eur J, 2002, 8: 3538-3551.
    [9] Chen W, Liu X, You X. [Pt(CN)2?2Me3SnCN?2Me3SnOH?bpe]n(bpe=trans-1 2-bis(4-pyridyl)ethylene) the First Double-Sinusoidal Platinum-Tin Coordination Polymer[J]. Chem Lett, 2002, 734-735.
    [10] Kuehl C J, Arif A M, Stang P J. Coordination-Driven Assembly of Molecular Rectangles via an Organometallic“Clip”[J]. Org Lett, 2000, 2: 3727-3729.
    [11] Lowe G, Droz A S, Vilaivan T, et al. Cytotoxicity of 2 2:6 2-Terpyridineplatinum(II) Complexes against Human Ovarian Carcinoma[J]. J Med Chem, 1999, 42: 3167-3174.
    [12] Lowe G, McCloskey J A, Ni J, et al. Mass Spectrometric Investigation of the Reaction Between 4 4′-Vinylenedipyridine Bis[2 2′:6′2″-terpyridine Platinum(II)] and the Self-Complementary Oligonucleotide d(CpGpTpApCpG)[J]. Bioorg Med Chem, 1996, 4: 1007-1013.
    [13] Sun S -S, Anspach J A, Lees A J. Self-Assembly of Transition-Metal-Based Macrocycles Linked by Photoisomerizable Ligands: Examples of Photoinduced Conversion of Tetranuclear?Dinuclear Squares[J]. Inorg Chem, 2002, 41: 1862-1869.
    [14] Kaim W, Schwederski B, Dogan A, et al. Metalla-Supramolecular Rectangles as Electron Reservoirs for Multielectron Reduction and Oxidation[J]. Inorg Chem, 2002, 41: 4025-4028.
    [15] Cafeo G, Lo Passo C, Scolaro L M, et al. Synthesis of binuclear platinum(II) organometallic complexes as potential cross-linking reagents[J]. Inorg Chim Acta, 1998, 275: 141-149.
    [16] Orita A, Jiang L, Nakano T, et al. Solventless reaction dramatically accelerates supramolecular self-assembly[J]. Chem Commun, 2002, 1362-1363.
    [17] Fujita M, Ibukuro F, Yamaguchi K, et al. A Molecular Lock[J]. J Am Chem Soc, 1995, 117: 4175-4176.
    [18] Pfennig B W, Mordas C J, McCloskey A, et al. Excited-State Electronic Coupling and PhotoinducedMultiple Electron Transfer in Two Related Ligand-Bridged Hexanuclear Mixed-Valence Compounds[J]. Inorg Chem, 2002, 41: 4389-4395.
    [19] Stang P J, Cao D H. Transition Metal Based Cationic Molecular Boxes Self-Assembly of Macrocyclic Platinum(II) and Palladium(II) Tetranuclear Complexes [J]. J Am Chem Soc, 1994, 116: 4981-4982.
    [20] Stang P J, Cao D H, Saito S, et al. Self-Assembly of Cationic Tetranuclear Pt(II) and Pd(II) Macrocyclic Squares x-ray Crystal Structure of [Pt2+(dppp)(4 4'-bipyridyl) cntdot 2-OSO2CF3]4[J]. J Am Chem Soc, 1995, 117: 6273-6283.
    [21] Pfennig B W, Mordas C J, McCloskey A, et al. Excited-State Electronic Coupling and Photoinduced Multiple Electron Transfer in Two Related Ligand-Bridged Hexanuclear Mixed-Valence Compound[J]. Inorg Chem 2002, 41: 4389-4395.
    [22] Balashev K P, Khanukaeva O R. Spectroscopic and Electrochemical Properties of Palladium(II) and Platinum(II) 2-(2-Pyridyl)thiophenide Complexes with 4 4'-Bipyridyl[J]. Russ J Gen Chem 2001, 71: 1149-1150.
    [23] Jude H, Bauer J A K, Connick W B. Luminescent Platinum(II) Dimers with a Cyclometallating Aryldiamine Ligand[J]. Inorg Chem, 2005, 44: 1211-1220.
    [24] Jude H, Bauer J A K, Connick W B. Tuning the Electronic Structures of Platinum(II) Complexes with a Cyclometalating Aryldiamine Ligand[J]. Inorg Chem, 2004, 43: 725-733.
    [25] Fukuda M, Sawada K, Yoshino K. Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics[J]. J Polym Sci Part A , 1993, 31: 2465-2471.
    [26] Klaener G, Miller R D. Polyfluorene Derivatives: Effective Conjugation Lengths from Well-Defined Oligomers[J]. Macromolecules 1998, 31: 2007-2009.
    [27] Greczynski G, Fahlman M, Salaneck W R. Electronic structure of hybrid interfaces of poly(9 9-dioctylfluorene)[J]. Chem Phys Lett, 2000, 321: 379-384.
    [28] Koentjoro O F, Rousseau R, Low P. Electronic Structure of Ruthenium(II) Polyynyl Complexes[J]. J Organometallics, 2001, 20: 4502-4509.
    [29] Makedonas C, Mitsopoulou C A, Lahoz F J, et al. Synthesis Characterization and Crystal Structure of the Pd(phen)(bdt) Complex A DFT and TDDFT Study of Its Ground Electronic and Excited States Compared to Those of Analogous Complexes[J]. Inorg Chem, 2003, 42: 8853-8865.
    [30] Batista E R, Martin R I. On the Excited States Involved in the Luminescent Probe [Ru(bpy)2dppz]2+ [J]. J Phys Chem A , 2005, 109: 3128-3133.
    [31] Urtel H, Bikzhanova G A, Grotjahn D B, et al. Reversible Carbon?Carbon Double Bond Cleavage of a Ketene Ligand at a Single Iridium(I) Center: A Theoretical Study[J]. Organometallics, 2001, 20: 3938-3949.
    [32] Iron M A, Martin J M L, Van der Boom M E. Cycloaddition Reactions of Metalloaromatic Complexes of Iridium and Rhodium: A Mechanistic DFT Investigation[J]. J Am Chem Soc, 2003, 125: 11702-11709.
    [33] Stoyanov S R, Villegas J M, Rillema D P. Time-Dependent Density Functional Theory Study of the Spectroscopic Properties Related to Aggregation in the Platinum(II) Biphenyl Dicarbonyl Complex[J]. Inorg Chem , 2003, 42: 7852-7860.
    [34] Boulet P, Chermett H, Daul C, et al. Absorption Spectra of Several Metal Complexes Revisited by the Time-Dependent Density-Functional Theory-Response Theory Formalism[J]. J Phys Chem A, 2001, 105: 885- 894.
    [35] Li J, Djurovich P I, Alleyne B D, et al. Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands[J]. Inorg Chem, 2005, 44: 1713-1727.
    [36] Koch W, Holthausen M C. A Chemist’s Guide to Density Functional Theory[M], Wiley-VCH: Weinheim Germany 2000.
    [37] Adamo C, di Matteo B V. Adv Quantum Chem, 1999, 36: 4.
    [38] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. JChem Phys, 1993, 98, 5648-5652.
    [39] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys ReV B, 1988, 37: 785-789.
    [40] Miehlich B, Savin A, Stoll H, et al. Results Obtained With The Correlation Energy Density Functionals Of Becke And Lee Yang And Parr[J]. Chem Phys Lett, 1989, 157: 200-206.
    [41] Nguyen K A, Kennel J, Pachter R. A density functional theory study of phosphorescence and triplet–triplet absorption for nonlinear absorption chromophores[J]. J Chem Phys, 2002, 117: 7128-7136.
    [42] Stoyanov S R, Villegas J M, Rillema D P. Time-Dependent Density Functional Theory Study of the Spectroscopic Properties Related to Aggregation in the Platinum(II) Biphenyl Dicarbonyl Complex[J]. Inorg Chem, 2003, 42: 7852–7860.
    [43] Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold[J]. J Chem Phys, 1988, 180, 4439-4449.
    [44] Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J]. Chem Phys Lett, 1996, 256:454-464.
    [45] Stratman R E, Scuseria G E, Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J Chem Phys, 1998, 109: 8218-8224.
    [46] Andrae D, Haeussermann U, Dolg M, et al. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements[J]. Theor Chim Acta, 1990, 77: 123-141.
    [47] Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold[J]. J Chem Phys, 1998, 108: 4439-4449.
    [48] Stratmann R E, Scuseria G E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J Chem Phys, 1998, 109: 8218-8224.
    [49] Frisch M J, Trucks G W, Schlegel H B, et al. A Gaussian 03 revision C 02, Gaussian Inc, Wallingford CT 2004.
    [50] Gorelsky S I. AOMix: Program for Molecular Orbital Analysis, York University: Toronto 1997 http://www sg-chem net/
    [51] Gorelsky S I, Lever A B P. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S Comparison of the two methods[J]. J Organomet Chem, 2001, 635: 187-196.
    [52] Fraile J M, Garca J I, Gil M J, et al. Chem Eur J, 2004, 10: 758-765.
    [53] Ebrahimi A, Habibi M, Amirmijani A. The study of counterion effect on the reactivity of nucleophiles in some SN2 reactions in gas phase and solvent media[J]. J Mol Struc–THEOCHEM, 2007, 809: 115-124.
    [54] Remko M, Swart M, Bickelhaupt F M. Conformational Behavior of Basic Monomeric Building Units of Glycosaminoglycans: Isolated Systems and Solvent Effect[J]. J Phys Chem B, 2007, 111: 2313-2321
    [55] Ma W-Y, Zhu Y-F, Zhou J-H, et al. Solvent effect on the structures and isomerization of germylenoid GeH2LiF[J]. J Mol Struc–THEOCHEM, 2007, 817: 77-81.
    [56] van Duijineveldt F B, van Duijineveldt-van de Rijdt J C M, van Lenthe J H. State of the Art in Counterpoise Theory[J]. Chem Rev, 1994, 94: 1873-1885.
    [57] Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Mol Phys, 1970, 19: 553.
    [58] Epstein A J, Lee W P, Prigodin V N. Low-dimensional variable range hopping in conducting polymers[J]. Synth Met, 2001, 117: 9-13.
    [59] Reedijk J A, Martens H C F, van Bohemen S M C, et al. Charge transport in doped polythiophene[J]. Synth Met, 1999, 101: 475-476.
    [60] Mott N F, Davis E A. Electronic Processes in Non-Crystalline Materials[M], 2d ed, Oxford University Press: Oxford 1979.
    [61] Geoffrey R Hutchison, Mark A Ratner, Tobin J. Marks Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects[J]. J Am Chem Soc, 2005, 127: 2339-2350.
    [62] Marcus R A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer[J]. J Chem Phys, 1965, 24: 966-978.
    [63] Marcus R A. Electron transfer reactions in chemistry Theory and experiments[J]. Rev Mod Phys, 1993, 65: 599-610.
    [64] Hutchison G R, Ratner M A, Marks T J. Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors[J]. J Am Chem Soc, 2005, 127: 16866-16881.
    [65] Norton J E, Bredas J L. Polarization Energies in Oligoacene Semiconductor Crystals[J]. J Am Chem Soc, 2008, 130: 12377-12384.
    [66] Lin B C, Cheng C P, Lao Z P M. Reorganization Energies in the Transports of Holes and Electrons in Organic Amines in Organic Electroluminescence Studied by Density Functional Theory[J]. J Phys Chem A, 2003, 107: 5241-5251.
    [67] Chu T-Y, Ho M-H, Chen J-F, et al. Ab initio molecular orbital study of 1,3,5-triazine derivatives for phosphorescent organic light emitting devices[J]. Chem Phys Lett, 2005, 415: 137-140.
    [68] Avilov I, Minoofar P, Cornil J, et al. Influence of Substituents on the Energy and Nature of the Lowest Excited States of Heteroleptic Phosphorescent Ir(III) Complexes: A Joint Theoretical and Experimental Study[J]. J Am Chem Soc, 2007, 129: 8247-8258.
    [69] Beljonne D, Cornil J, Brédas J L, et al. Influence of Chain Length and Derivatization on the Lowest Singlet and Triplet States and Intersystem Crossing in Oligothiophenes[J]. J Am Chem Soc, 1996, 118: 6453-6461.
    [70] Beljonne D, Cornil J, Brédas J L, et al. Theoretical investigation of the lowest singlet and triplet excited states in oligo(phenylene vinylene)s and oligothiophenes[J]. Synth Met, 1996, 76: 61-65.
    [71] Beljonne D, Wittmann H F, K?hler A, et al. Spatial extent of the singlet and triplet excitons in transition metal-containing poly-ynes[J]. J Chem Phys, 1996, 105: 3868-3877.
    [72] Dos Santos D A, Beljonne D, Cornil J, et al. Chem Phys, 1998, 227: 1-10.
    [73] Avilov I, Marsal P, Brédas J L, et al. Quantum-Chemical Design of Host Materials for Full-Color Triplet Emission[J]. AdV Mater, 2004, 16: 1624-1629.
    [74] Grimme S, Parac M. Substantial Errors from Time-Dependent Density Functional Theory for the Calculation of Excited States of Large Systems[J]. ChemPhysChem, 2003, 3: 292-295.
    [75] Casida M E, Gutierrez F, Guan J, et al. Charge-transfer correction for improved time-dependent local density approximation excited-state potential energy curves: Analysis within the two-level model with illustration for H2 and LiH[J]. J Chem Phys, 2000, 113: 7062-7071.
    [76] Dreuw A, Weisman J L. Head-Gordon M Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange[J]. J Chem Phys, 2003 119: 2943-2946
    [77] Cai Z L, Sendt K, Reimers J R. Failure of density-functional theory and time-dependent density-functional theory for large extended systems[J]. J Chem Phys, 2002, 117: 5543-5549.
    [78] Casida M E, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of thetime-dependent local density approximation ionization threshold[J]. J Chem Phys, 1998, 108: 4439-4449.
    [1] Williams J A G, Develay S, Rochester D L, et al. Optimising the luminescence of platinum(II) complexes and their application in organic light emitting devices (OLEDs) [J]. Coord Chem Rev, 2008,252:2596-2611.
    [2] Lu W, Mi B X, Chan M C W, et al. Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containingσ-Alkynyl Auxiliaries: Tuning of Photo- and Electrophosphorescence [J]. J Am Chem Soc, 2004, 126:4958-4971.
    [3] Ma B, Djurovich P I, Garon S, et al. Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light-Emitting Diodes[J]. Adv Funct Mater, 2006, 16: 2438-2446.
    [4] He Z, Wong W Y, Yu X, et al. Phosphorescent Platinum(II) Complexes Derived from Multifunctional Chromophores: Synthesis, Structures, Photophysics, and Electroluminescence[J]. Inorg Chem, 2006, 45: 10922-10937.
    [5] D’Andrade B W, Forrest S R. Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices[J]. J Appl Phys, 2003, 94: 3101-3109.
    [6] Yip H K, Cheng L K, Cheung K K, et al. Luminescent platinum(II) complexes. Electronic spectroscopy of platinum(II) complexes of 2,2’:6’,2’’-terpyridine (terpy) and p-substituted phenylterpyridines and crystal structure of [Pt(terpy)CI][CF3SO3][J]. J Chem Soc Daltan Trans, 1993, 2933-2938.
    [7] Wong K H, Chan M C W, Che C M. Modular Cyclometalated Platinum(II) Complexes as Luminescent Molecular Sensors for pH and Hydrophobic Binding Regions[J]. Chem.-Eur J, 1999, 5: 2845-2849.
    [8] Brooks J, Babayan Y, Lamansky S, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes[J]. Inorg Chem, 2002, 41: 3055-3066.
    [9] Aldridge T K, Stacy E M, McMillin D R. Studies of the Room-Temperature Absorption and Emission Spectra of [Pt(trpy)X]+ Systems[J]. Inorg Chem, 1994, 33, 722-727.
    [10] Field J S, Haines R J, Ledwaba L P, et al. Synthesis, electrochemistry and luminescence of [Pt{4’-(R)trpy}(CN)]+ (R = Ph, o-CH3C6H4, o-ClC6H4 or o-CF3C6H4; trpy = 2,2’:6’,2’’-terpyridine): crystal structure of [Pt{4’-(Ph)trpy}(CN)]BF4?CH3CN[J]. Daltan Trans, 2007, 192-199.
    [11] Lai S W, Chan M C W, Cheung T C, et al. Inorg Chem, 1999, 38: 4046-4055.
    [12] Mdleleni M M, Bridgewater J S, Watts R J, et al. Synthesis, Structure, and Spectroscopic Properties of Ortho-Metalated Platinum(II) Complexes[J]. Inorg Chem, 1995, 34: 2334-2342.
    [13] Williams J A G, Beeby A, Davies E S, et al. An Alternative Route to Highly Luminescent Platinum(II) Complexes: Cyclometalation with N^C^N-Coordinating Dipyridylbenzene Ligands[J]. Inorg Chem, 2003, 42: 8609-8611.
    [14] Yang X H, Wang Z X, Madakuni S, et al. Efficient Blue- and White-Emitting Electrophosphorescent Devices Based on Platinum(II) [1,3-Difluoro-4,6-di(2-pyridinyl)benzene] Chloride[J]. Adv Mater, 2008, 20: 2405-2409.
    [15] Koch W, Holthausen M C. A Chemist’s Guide to Density Functional Theory[M]. Wiley-VCH: Weinheim, Germany, 2000.
    [16] Adamo C, di Matteo B V. Adv. Quantum Chem, 1999, 36, 4.
    [17] Nguyen K A, Kennel J, Pachter R. A density functional theory study of phosphorescence and triplet–triplet absorption for nonlinear absorption chromophores [J]. J Chem Phys, 2002, 117: 7128–7136.
    [18] Stoyanov S R, Villegas J M, Rillema D P. Time-Dependent Density Functional Theory Study of the Spectroscopic Properties Related to Aggregation in the Platinum(II) Biphenyl Dicarbonyl Complex[J]. Inorg Chem, 2003, 42: 7852–7860.
    [19] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J Chem Phys, 1993, 98: 5648-5652.
    [20] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37: 785-789.
    [21] Miehlich B, Savin A, Stoll H, et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr[J]. Chem Phys Lett, 1989, 157: 200-206.
    [22] Casida M K, Jamorski C, Casida K C, et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold[J]. J Chem Phys, 1998, 108: 4439-4449.
    [23] Stratmann R E, Scuseria G E. Theoretical Methods and Algorithms - An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J Chem Phys, 1998, 109: 8218-8224.
    [24] Pyykk? P, Mendizabal F. Theory of d10?d10 Closed-Shell Attraction. III. Rings [J]. Inorg Chem, 1998, 37: 3018- 3025.
    [25] Zhou X, Pan Q J, Xia B H, et al. DFT and TD-DFT Calculations on the Electronic Structures and Spectroscopic Properties of Cyclometalated Platinum(II) Complexes [J]. J Phys Chem A, 2007, 111: 5465-5472.
    [26] Zhou X, Zhang H X, Pan Q J, et al. Theoretical Studies of the Spectroscopic Properties of [Pt(trpy)C≡CR]+ (trpy = Terpyridine; R = H, CH2OH, and C6H5) [J]. J Phys Chem A, 2005, 109: 8809-8818.
    [27] Cardenas D J, Echavarren A M, de Arellano M C R. Divergent Behavior of Palladium(II) and Platinum(II) in the Metalation of 1,3-Di(2-pyridyl)benzene [J]. Organometallics, 1999, 18: 3337-3341.
    [28] Hofmann A, Dahlenburg L, van Eldik R. Cyclometalated Analogues of Platinum Terpyridine Complexes: Kinetic Study of the Strongσ-Donor Cis and Trans Effects of Carbon in the Presence of aπ-Acceptor Ligand Backbone [J]. Inorg Chem, 2003, 42: 6528-6538.
    [29] Liao Y, Shi L L, Feng J K, et al. Effect of Substitution on the Structures and Optoelectronic Properties of Mercury-containing diethynylfluorene[J]. J Theoret Comp Chem, 2006, 5: 401-409.
    [30] Kan Y H, Yang G C, Yang S Y, et al. Theoretical study on characteristics of structure and vibrational frequency of spiro-linked complex Zn(PyIm)2 (PyIm = 2(2’-pyridine)-imidazole) in excited state [J]. Chem Phys Lett, 2006, 418: 302-306.
    [31] Cheung T C, Cheung K K, Peng S M, et al. Photoluminescent cyclometallated diplatinum(II,II) complexes: photophysical properties and crystal structures of [PtL(PPh3)] ClO4 and [Pt2L2(μ-dppm)] [ClO4]2 (HL = 6-phenyl-2,2’-bipyridine, dppm = Ph2PCH2PPh2) [J]. J Chem Soc Daltan Trans, 1996, 1645-1651.
    [32] Sotoyama W, Satoh T, Sato H, et al. Excited States of Phosphorescent Platinum(II) Complexes Containing N^C^N-Coordinating Tridentate Ligands: Spectroscopic Investigations and Time-Dependent Density Functional Theory Calculations [J]. J Phys Chem A, 2005, 109: 9760-9766.
    [33] Turki M, Daniel C, Zalis S, et al. UV?Visible Absorption Spectra of [Ru(E)(E‘)(CO)2(iPr-DAB)] (E = E‘= SnPh3 or Cl; E = SnPh3 or Cl, E‘= CH3; iPr-DAB = N,N‘-Di-isopropyl-1,4-diaza-1,3-butadiene): Combination of CASSCF/CASPT2 and TD-DFT Calculations [J]. J Am Chem Soc, 2001, 123: 11431-11440.
    [34] Wilson J S, Chawdhury N, Al-Mandhary M R A, et al. The Energy Gap Law for Triplet States in Pt-Containing Conjugated Polymers and Monomers [J]. J Am Chem Soc, 2001, 123: 9412-9417.
    [35] Hartmut Y. High efficient OLEDs with phosphorescent materials[M]. 2008, Wiley-VCH verlag GmbH & Co. KGaA, Weinheim. ISBN: 978-3-527-40594-7.
    [36] Sajoto T, Djurovich P I, Tamayo A, et al. Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands[J]. Inorg Chem, 2005, 44: 7992-8003.
    [37] Thompson M E, Tamayo A, Djurovich P, et al. Luminescent compounds with carbene ligands[P]. Pub.No.: WO/2005/113704. International Applicatio No.: PCT/US2005/017336.
    [1] Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl Phys Lett, 1987, 51, 913-915.
    [2] Mitschke U, Bauerle P. The electroluminescence of organic materials[J]. J Mater Chem, 2000, 10: 1471-1507.
    [3] Kelley T W, Baude P F, Gerlach C, et al. Recent Progress in Organic Electronics: Materials, Devices, and Processes[J]. Chem Mater, 2004, 16: 4413-4422.
    [4] Kappaun S, Eder S, Sax S, et al. Organoiridium Quinolinolate Complexes: Synthesis, Structures, Thermal Stabilities and Photophysical Properties[J]. Eur J Inorg Chem, 2007, 26: 4207-4215.
    [5] Lin B C, Cheng C P, You Z Q, et al. Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): Why It Is an Electron Transporter[J]. J Am Chem Soc, 2005, 127: 66-67.
    [6] Curioni A, Boero M, Andreoni W. Alq3: ab initio calculations of its structural and electronic properties in neutral and charged states[J]. Chem Phys Lett, 1998, 294: 263-271.
    [7] Johansson N, Osada Johansson N, Osada T, et al. Electronic structure of tris(8-hydroxyquinoline) aluminum thin films in the pristine and reduced states[J]. J Chem Phys, 1999, 111: 2157-2163.
    [8] Martin R L, Kress J D, Campbell I H, et al. Molecular and solid-state properties of tris-(8-hydroxyquinolate)-aluminum[J]. Phys Rev B, 2000, 61: 15804-15811.
    [9] Burrows P E, Shen Z, McCarty D M, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices[J]. J Appl Phys, 1996, 79: 7991.
    [10] Rothberg L J, Lovinger A J. J Mater Res, 1996, 11: 3174-3187.
    [11] Baldo M A, O’Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395: 151-154.
    [12] Lamansky S, Djurovich P, Murphy D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J Am Chem Soc, 2001, 123: 4304-4312.
    [13] Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J Appl Phys, 2001, 90: 5048-5051.
    [14] Baldo M A, Lamansky S, Burrows P E, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl Phys Lett, 1999, 75: 4-7.
    [15] Foresman J B, Head-Gordon M, Pople J A, et al. Toward a systematic molecular orbital theory for excited states[J]. J Phys Chem, 1992, 96: 135-149.
    [16] Song Y B, Di C A, Yang X D, et al. Cyclic Triphenylamine Dimer for Organic Field-Effect Transistors with High Performance[J]. J Am Chem Soc, 2006, 128: 15940-15941.
    [17] Garces, F O; Dedian, K; Keder, N L; Watts, R J Acta Crystallogr 1993, C49, 1117-1120
    [18] Hay, P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(III) Complexes Using Density Functional Theory[J]. J Phys Chem A, 2002, 106: 1634-1641.
    [19] Tamayo A B, Alleyne B D, Djurovich P I, et al. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes[J]. J Am Chem Soc, 2003, 125: 7377-7387.
    [20] Kappaun S, Sax S, Eder S, et al. 8-Quinolinolates as Ligands for Luminescent Cyclometalated Iridium Complexes[J]. Chem Mater, 2007, 19: 1209-1211.
    [21] Colle M, Dinnebier R E, Brutting W. The structure of the blue luminescent -phase of tris(8-hydroxyquinoline)aluminium(III) (Alq3)[J]. Chem Commun, 2002, 2908-2909.
    [22] Chu T-Y, Ho M-H, Chen J-F, et al. Ab initio molecular orbital study of 1,3,5-triazine derivatives forphosphorescent organic light emitting devices[J]. Chem Phys Lett, 2005, 415: 137-140.
    [23] Schein L B, McGhie A R. Band-hopping mobility transition in naphthalene and deuterated naphthalene[J]. Phys Rev B, 1979, 20: 1631 - 1639.
    [24] Yang X, Li Q, Shuai Z. Theoretical modelling of carrier transports in molecular semiconductors: molecular design of triphenylamine dimer systems[J]. Nanotechnology, 2007, 18: 424029
    [25] Yang X, Wang L, Wang C, et al. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors: Oligothiophenes[J]. Chem Mater, 2008, 20, 3205–3211.
    [26] Hutchison G R, Ratner M A, Marks T. Intermolecular Charge Transfer between Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing on Hopping Transport in Organic Semiconductors[J]. J J Am Chem Soc, 2005, 127: 16866–16881.
    [27] Cornil J, Beljonne D, Calbert J P, et al. Interchain Interactions in Organic -Conjugated Materials: Impact on Electronic Structure, Optical Response, and Charge Transport[J]. Adv Mater, 2001, 13: 1053-1067.
    [28] Jordan K D, Paddon-Row M N. Long-range interactions in a series of rigid nonconjugated dienes. 1. Distance dependence of the .pi.+,.pi.- and .pi.+*,.pi.-* splittings determined from ab initio calculations[J]. J Phys Chem, 1992, 96: 1188–1196.
    [29] Liang C, Newton M D. Ab initio studies of electron transfer: pathway analysis of effective transfer integrals[J]. J Phys Chem, 1992, 96: 2855–2866.
    [30] Curtiss L A, Naleway C A, Miller J R. Theoretical Study of Long-Distance Electronic Coupling in H2C(CH2)n-2 CH2 Chains, n=3-16[J]. J Phys Chem, 1993, 97: 4050–4058.
    [31] Valeev E F, Coropceanu V, da Silva Filho D A, et al. Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors[J]. J Am Chem Soc, 2006, 128: 9882–9886.
    [32] Brinkmann M, Gadret G, Muccini M, et al. Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III)[J]. J Am Chem Soc, 2000, 122: 5147–5157.
    [33] Kwiatkowski J J, Nelson J, Li H, et al. Phys Chem Chem Phys, 2008, 10: 1852-1858.
    [34] Norton J E, Bredas J L. Polarization Energies in Oligoacene Semiconductor Crystals[J]. J Am Chem Soc, 2008, 130: 12377-12384.
    [35] McGehee M D, Heeger A J. Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers[J]. Adv Mater, 2000, 12: 1655-1668.
    [36] Tessler N. Lasers Based on Semiconducting Organic Materials[J]. Adv Mater, 1999, 11: 363-370.
    [37] Yang G C, Su T, Shi S Q, et al. Theoretical Study on Photophysical Properties of Phenolpyridyl Boron Complexes[J]. J Phys Chem A, 2007, 111: 2739-2744.
    [38] Zhan C G, Nichols J A, Dixon D A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies[J]. J Phys Chem A, 2003, 107: 4184-4195.
    [39] Ballardini R, Varani G, Indelli M T, et al. Phosphorescent 8-quinolinol metal chelates. Excited-state properties and redox behavior[J]. Inorg Chem, 1986, 25: 3858-3865.
    [40] Wang F, Ziegler T. The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry[J]. J Chem Phys, 2005, 122: 204103.
    [41] Wang F, Ziegler T. Theoretical study of the electronic spectra of square-planar platinum (II) complexes based on the two-component relativistic time-dependent density-functional theory[J]. J Chem Phys, 2005, 123: 194102.
    [42] ADF 200601, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://wwwscmcom
    [43] Shi L L, Liao Y, Zhao L, et al. Theoretical studies on the electronic structure and spectral properties ofversatile diarylethene-containing 1,10-phenanthroline ligands and their rhenium(I) complexes[J]. J Organomet Chem, 2007, 692: 5368-5374.
    [44] Nozaki K. J Chin Chem Soc, 2006, 53: 101-112.
    [45] Ide N, Matsusue N, Kobayashi T, et al. Photoluminescence properties of facial- and meridional-Ir(ppy)3 thin films[J]. Thin Solid Films, 2006, 509: 164-167.
    [46] Zhang J P, Frenking G. Quantum Chemical Analysis of the Chemical Bonds in Tris(8-hydroxyquinolinato)aluminum as a Key Emitting Material for OLED[J]. J Phys Chem A, 2004, 108: 10296-10301.
    [47] Ziegler T, Rauk A. Theor Chim Acta, 1977, 46, 1-10.
    [48] Morokuma K. Molecular Orbital Studies of Hydrogen Bonds. III. CO···HO Hydrogen Bond in H2CO···H2O and H2CO···2H2O[J]. J Chem Phys, 1971, 55, 1236-1244.
    [1] Irie M. Chem Photochromism: Memories and Switches Introduction[J]. Chem Rev, 2000, 100:1683.
    [2] Irie M. Diarylethenes for Memories and Switches[J]. Chem. Rev, 2000, 100: 1685.
    [3] Tamai N, Miyasaka H. Ultrafast Dynamics of Photochromic Systems[J]. Chem Rev, 2000 100: 1875.
    [4] Joachim C, Gimzewski J. K, Aviram A. Electronics using hybrid-molecular and mono-molecular devices[J]. Nature,2000, 408: 541.
    [5] Raymo F. M. Digital Processing and Communication with Molecular Switches[J]. Adv Mater, 2002, 14: 401.
    [6] Gilat S L, Kawai S H, Lehn J-M. Light-Triggered Molecular Devices: Photochemical Switching Of optical and Electrochemical Properties in Molecular Wire Type Diarylethene Species[J]. Chem.-Eur. J, 1995, 1: 275.
    [7] Balzani V, Credi A, Venturi M. Molecular Logic Circuits[J]. Chem Phys Chem, 2003, 4: 49.
    [8] Tian H, Yang S. Recent progresses on diarylethene based photochromic switches[J]. J Chem. Soc Rev, 2004, 33: 85.
    [9] Dürr H, Bouas-Laurent H. Photochromism: Molecules and Systems Eds[M]. Elsevier: New York, 1990.
    [10] Crano J C, Guglielmetti R J. Organic Photochromic and Thermochromic Compounds[M]. Eds Plenum: New York, 1999, 1.
    [11] Luo Q F, Sheng S H, Cheng S H, et al. Tunable Luminescence of New Photochromic Bisthienylethenes Containing Triphenylamine[J]. Aust J Chem, 2005, 58: 321.
    [12] G?rner H, Fischer C, Gierisch S, et al. Dihydroazulene/vinylheptafulvene photochromism: effects of substituents, solvent, and temperature in the photorearrangement of dihydroazulenes to vinylheptafulvenes[J]. J Phys Chem, 1993, 97: 4110.
    [13] Walz J, Ulrich K, Port H, et al. Field electron emission microscopy and spectroscopy of YBa2Cu3O6.9 single crystals at different temperatures[J]. Chem Phys Lett, 1993, 213: 321.
    [14] Huck N P M, Feringa B L. Dual-mode photoswitching of luminescence[J]. J Chem Soc Chem Commun, 1995, 1095.
    [15] Tsivgoulis G M, Lehn J–M. Photonic Molecular Devices: Reversibly Photoswitchable Fluorophores for Nondestructive Readout for Optical Memory[J]. Angew Chem Int Ed, 1995, 34: 1119.
    [16] Irie M, Miyatake O, Uchida K, et al. Photochromic Diarylethenes with Intralocking Arms[J]. J Am Chem Soc, 1994, 116: 9894.
    [17] Norsten T B, Peters A, McDonald R, et al. Reversible [7]-Thiahelicene Formation Using a 1, 2-Dithienylcyclopentene Photochrome[J]. J Am Chem Soc, 2001, 123: 7447.
    [18] Murguly E, Norsten T B, Branda N R. Nondestructive Data Processing Based on Chiroptical 1,2-Dithienylethene Photochromes[J]. Angew Chem Int Ed, 2001, 40: 1752.
    [19] Fernández-Acebes A, Lehn J M. Optical Switching and Fluorescence Modulation in Photochromic Metal Complexes[J]. Adv Mater, 1998, 10: 1519.
    [20] Jukes R T F, Adamo V, Hartl F, et al. Photochromic Dithienylethene Derivatives Containing Ru(II) or Os(II) Metal Units. Sensitized Photocyclization from a Triplet State[J]. Inorg Chem, 2004, 43: 2779.
    [21] Bianco A, Bertarelli C, Rabolt J F, et al. Diarylethenes with Electroactive Substituents: A Theoretical Study to Understand the Effect on the IR Spectrum and a Simple Way to Read Optical Memory in the Mid-IR[J]. Chem Mater, 2005, 17: 869.
    [22] Yam V W, Ko C C, Zhu N. Photochromic and Luminescence Switching Properties of a Versatile Diarylethene-Containing 1,10-Phenanthroline Ligand and Its Rhenium(I) Complex[J]. J Am Chem Soc, 2004, 126: 12734.
    [23] Wang F, Ziegler T. The calculation of excitation energies based on the relativistic two-component zeroth-order regular approximation and time-dependent density-functional with full use of symmetry[J]. J Chem Phys, 2005, 122: 204103.
    [24] Wang F, Ziegler. Theoretical study of the electronic spectra of square-planar platinum (II) complexes based on the two-component relativistic time-dependent density-functional theory[J]. J Chem Phys, 2005, 123: 194102.
    [25] Gorelsky S I. AOMix: Program for Molecular Orbital Analysis. York University: Toronto, 1997, http://www.sg-chem.net/.
    [26] Gorelsky S I, Lever A B P. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods[J]. J Organomet Chem, 2001, 635: 187.
    [27] te Velde G, Bickelhaupt S J A, Gisbergen V, et al. Chemistry with ADF[J]. J Comput Chem, 2001, 22:931.
    [28] ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
    [29] Adamo C, Bareone V. Theor Chem Acc, 2000, 105: 169.
    [30] Morokuma K. Molecular Orbital Studies of Hydrogen Bonds. III. C O???H O Hydrogen Bond in H2CO???H2O and H2CO???2H2O[J]. J Chem Phys, 1971, 55: 1236.
    [31] Ziegler T, Rauk A. Theor Chem Acta, 1977, 46: 1.
    [32] Dapprich S, Frenking G. Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals[J]. J Phys Chem, 1995, 99: 9352.
    [33] Frenking G, Frohlich N. The Nature of the Bonding in Transition-Metal Compounds[J]. Chem Rev, 2000, 100: 717.
    [34] Stufkens D. J, Vl?ek A Jr. Coord Chem Rev, 1998, 177: 127.
    [35] Nieawenhuis H A, Stufkens, Derk J. Time-Resolved Absorption, Infrared, and Resonance Raman Spectra of the Complexes [Ru(X)(R)(CO)2(.alpha.-Diimine)] (X = Halide; R = Alkyl): Influence of X on the Charge Transfer Character of the Lowest Excited State[J]. J Am Chem Soc, 1995, 117: 5579.
    [36] van Leeuwen R, Baerends E. Exchange-correlation potential with correct asymptotic behavior[J]. Phys Rev A , 1994, 49: 2421.
    [37] Pope M, Swenberg C. Electronic Processes in Organic Materials[M]. Oxford University Press: New York, 1982.
    [38] Pope M, Swenberg C E. Electronic Processes in Organic Crystals and Polymers[M]. Oxford University Press: New York, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700