用户名: 密码: 验证码:
糖基化对β-D-葡萄糖醛酸苷酶催化特性及构象的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖基化是一种重要的蛋白质翻译后修饰方式,对蛋白质的结构和功能有着重要影响。本文以课题组前期构建的三种不同糖基化类型表达系统(产紫青霉P.purpurogenum Li-3自然进化糖基化型、大肠杆菌无糖基化型和毕赤巴斯德酵母高甘露糖糖基化型)表达的β-D-葡萄糖醛酸苷酶为对象,对不同系统表达的β-D-葡萄糖醛酸苷酶进行分离纯化;确定β-D-葡萄糖醛酸苷酶在不同表达系统中的糖基化水平;研究不同糖基化水平β-D-葡萄糖醛酸苷酶的酶学性质及催化反应动力学;分析和计算糖基化后酶的构象稳定性及热力学参数,探讨糖基化对β-D-葡萄糖醛酸苷酶催化特性和结构的影响。主要研究结果如下:
     采用硫酸铵分级沉淀、阴离子交换层析、凝胶层析和亲和层析等方法,分别纯化了产紫青霉、重组大肠杆菌和重组毕赤巴斯德酵母表达的β-D-葡萄糖醛酸苷酶(分别称为PGUS、PGUS-P和PGUS-E),获得了三种β-D-葡萄糖醛酸苷酶的电泳级纯品,HPLC检测纯度分别为92.1%、95.3%和98.3%,其纯度满足后续糖基化与质谱分析的要求。
     采用MALDI - TOF MS测定PGUS、PGUS-E和PGUS-P的精确分子量分别为69.72 kDa、67.93 kDa和78.83 kDa。肽质量指纹图谱结合串联质谱对氨基酸序列鉴定表明,三种酶均和β-D-葡萄糖醛酸苷酶基因pgus(EU095019)所编码的氨基酸序列相对应。糖基化分析结果表明,PGUS-P为N-糖基化类型翻译后修饰,其糖含量为14.42%,而PGUS和PGUS-E无明显糖基化修饰。酶学性质比较分析表明,三种β-D-葡萄糖醛酸苷酶最适pH、最适反应温度、对底物对硝基苯-葡萄糖醛酸苷(PNPG)和甘草酸的催化反应动力学参数及催化水解甘草酸模式均有显著差异。
     以纯化后的PGUS-P为研究对象,用糖苷酶F(PNGase F)对其进行去糖基化,比较了PGUS-P去糖基化前后的酶学性质和反应动力学,表明PGUS-P去糖基化后,其最适反应温度未明显变化,但最适pH值范围增大,对金属离子敏感性降低。去N-糖基化后的PGUS-P与底物PNPG和甘草酸的亲和力均增强。
     比较了去糖基化前后PGUS-P的稳定性及构象变化,表明去糖基化后的PGUS-P耐变性剂、有机溶剂及表面活性剂能力均下降,且更容易被胰蛋白酶水解。差示量热扫描(DSC)研究表明,去糖基化的PGUS-P热变性温度Td和ΔH均下降,酶蛋白的热稳定性降低。荧光光谱和圆二色谱分析表明,去糖基化处理未改变PGUS-P酶蛋白的二级结构,但诱导了酶蛋白分子伸展及其三级结构的改变。构象稳定性机理分析表明,N-糖基化有利于提高酶蛋白去折叠中间态的自由能变ΔG(H2O),从而增加其构象稳定性
Glycosylation, one of the major naturally occurring modifications of the covalent structure of proteins, has been found to effect the structure and function of protein. To research the effects of glycosylation on the catalytic characteristic and structure of enzyme, threeβ-D-glucuronidases from different glycosylation expression systems—Penicillium purpurogenum Li-3 (natural evolutionary type glycosylation, E.coli BL21(DE3) (non-glycosylation) and Pichia pastoris GS115 (high mannose type glycosylation ) were purified and their glycosylation level were analysis. The catalytic characteristic and kinetics of theβ-D-glucuronidases with different glycosylation level were investigated, and we also studied the effect of glycosylation on the conformation stability and structure ofβ-D-glucuronidase. Main results are as follows:
     Threeβ-D-glucuronidases from Penicillium purpurogenum Li-3, E.coli and P. pastoris were purified to homogeneity by ammonium sulfate fractionation, DEAE-cellulose chromatography, Sephadex G-100 chromatography and Ni-NTA Sepharose chromatography. The purity of the PGUS, PGUS-E and PGUS-P obtained were 92.1% %、95.3% and 98.3% by HPLC assay, respectively. These purities can meet the analysis requirement of glycosylation and mass spectrum in the next work.
     The molecular mass of PGUS, PGUS-E and PGUS-P were determined to be 69.72 kDa, 67.93 kDa and 78.83 kDa by MALDI-TOF MS, respectively. Segments of the amino acids sequence analysis ofβ-D-glucuronidases by combining peptide mass finger printing and tandem mass spectrometry matched well with the deduced amino acid sequence of pgus (EU095019). According to the difference between theoretical and practical molecular mases, PGUS-P expressed by P. pastoris was estimated to be N-glycosylated with a glycan content of 14.42%, but PGUS expressed by P.purpurogenum Li-3 and PGUS-E expressed by E.coli were non-glycosylated. The comparison of catalytic properties of threeβ-D-glucuronidases were carried out, and results showed the optimum pH, optimum temperature and the kinetic parameters of threeβ-D-glucuronidases were obviously different.
     The enzymatic deglycosylation of PGUS-P was investigated using peptide- N-glycosidase F (PNGase F), and then the comparison of catalytic properties and kinetic parameters of native and deglycosylated PGUS-P were studied. The results showed temperature-optima of both native and deglycosylated isoforms of PGUS-P remained unchanged. However, the deglycosylated PGUS-P showed a wider range of pH-optima, a lower sensitivity on ion metal, and a greater affinity for substrates p-nitrophenyl-β-D-glucuronide and glycyrrhizin compered to glycosylated enzyme.
     The possible role of carbohydrate moieties in the stabilization of enymes has been investigated by using PGUS-P as a model system. A comparative study of native and deglycosylated PGUS-P was performed at various water-miscible organic solvents, detergents and chaotropic agent like urea. The glycosylated form of PGUS-P retained greater fraction of enzyme activity against the exposure caused by various physical and chemical denaturants. A significantly less stability for the deglycosylated enzyme than for the native form can be found when treatment with chymotryptic enzyme. DSC analysis indicated the deglycosylated PGUS-P samples presented lower Td andΔH, relative to that of untreated PGUS-P, indicating the deglycosylated PGUS-P has a lower thermal stability. Near-UV CD spectra and intrinsic fluorescence spectrum analyses confirmed much loss of tertiary conformation of deglycosylated PGUS-P, relative to native form, but the secondary structure were nearly unaffected by the deglycosylation treatment.
引文
[1] Hagglund P., Bunkenborg J.,Elortza F., et al., A new strategy for identifieation of N-glycosylated Proteins and unambiguous assignment of their glycosylation sites Using HILIC enrichment and Partial deglycosylation [J]. J Proteome Res, 2004, 3(3): 556-566
    [2] Hirabayashi J., Kasai K., Glycome Project: concept, strategy and preliminary application to caenorhabditis elegans [J]. Proteomies, 2001, l (2): 295-303.
    [3] Haltiwanger R. S., Lowe J. B., Role of glycosylation in development. Annu RevBioehem, 2004, 73:491-537.
    [4] Zhang Y., Zhao J. H., Zhang X. Y., et al., Relations of the type and branch of surface N-glycans to cell adhesion,migration and integrin expressions [J]. Mol Cell Bioehem, 2004, 260:137-146.
    [5] Haltiwanger R. S., Regulation of signal transduection pathways in development by glycosylation [J]. Curr Opin Struct Biol, 2002, 12: 593-598.
    [6] Rudd P. M., Elliott T., Cresswell P., et al., Glycosylation and the immune system. Seience, 2001, 291: 2370-2376.
    [7] Lowe J. B., Glycan-dependent leukocyte adhesion and recruitment in inflammation [J]. Curr Opin Cell Biol, 2001, 15:531一538.
    [8]吴东儒主编.糖类的生物化学[M].北京:高等教育出版社, 1987, 687一755.
    [9]孙兴权,李静,耿美玉.糖组学研究中糖蛋白糖链结构分析技术[J].化学进展, 2007 19(1):130-135.
    [10] Blom N., Sicheritz-Pontn T., Gupta R., Prediction of post translational glycosylation and phosphorylation of proteins from the amino acid sequence [J]. Proteomics. 2004, 4(6): 1633-1649.
    [11] Hofsteenge J., Muller D., Journal of Molecular Catalysis B:Enzymatic, 2004, 31 (4-6): 73-81.
    [12] Dwek, R. A., Glycobiology-More Functions for Oligosaccharides [J]. Science, 2001, 269 (5228): 1234-1235.
    [13] Helenius, A., Aebi, M., Intracellular functions of N-linked glycans [J]. Science, 2001, 291(5512): 2364-2369.
    [14] R, de Beer T. New Type of Linkage between a Carbohydrate and a Protein C- Glycosylation of a Specific Tryptophan Residue in Human RNase Us [J]. Biochemistry, 1994, 33, 46: 13524-13530.
    [15] Varki A et al. Essentials of Glycobiology [M], New York: Cold Spring Harbor Laboratory Press, 1999, 7.
    [16] Khmelnitsky, Y. L., Current strategies for in vitro protein glycosylation [J]. Journal of Biochemical and Biophysical Methods,2001, 49(1-3): 625-640.
    [17]许强,王克夷.异源表达系统中蛋白质糖基化[J].生物化学与生物物理学报, 1999, 31 (2) : 111– 115.
    [18] Li,J.S.S., Li,J.Y., Characterization of N-linked oligosaccharides in chorion peroxidase of Aedes aegypti mosquito [J]. Protein Science, 2005,14 (9): 2370-2386.
    [19] Minamisawa,T., Suzuki,K., Kajimoto,N., et al. Microscale preparation of even-and odd-numbered N-acetylheparosan oligosaccharides [J]. Carbohydrate Research, 2006,34: 230-237.
    [20] Kuster,B., Krogh,T.N., Mortz,E., Harvey,D.J., Glycosylation analysis of gel-separated proteins [J]. Proteomics,2001,1(2):350-361.
    [21] Hirabayashi,J., Oligosaccharide microarrays for glycomics [J]. Trends in Bio- technology, 2003, 21(4):141-143.
    [22] Hirabayashi,J., Kasai,K., Separation technologies for glycomics [J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2002, 771(1-2): 67-87.
    [23] Hirabayashi, J., Lectin-based structural glycomics: Glycoproteomics and glycan profiling [J]. Glycoconjugate Journal,2004,21(1-2):35-40.
    [24] Hirabayashi,J., Arata,Y., Kasai,K., Glycome project: Concept, strategy and preliminary application to Caenorhabditis elegans [J]. Proteomics, 2001, 1(2): 95-303.
    [25] Yang Z. P., Hancock W. S., Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography [J]. Journal ofChromatography A, 2005, 1070 (1-2): 57-64.
    [26] Satish P. R., Surolia, A., Exploiting lectin affinity chromatography in clinical diagnosis [J]. Journal of Biochemical and Biophysical Methods,2001, 49(1-3): 625-640.
    [27] Anumula K. R., High-sensitivity and high-resolution methods for glycoprotein analysis [J]. Analytical Biochemistry, 2000, 283(1): 17-26.
    [28] Kuraya N., Hase S., Analysis of pyridylaminated O-linked sugar chains by two-dimensional sugar mapping [J]. Analytical Biochemistry, 1996, 233(2): 205-211.
    [29] Makino Y., Omichi K., Hase S., Analysis of oligosaccharide structures from the reducing end terminal by combining partial acid hydrolysis and a two-dimensional sugar map [J].Analytical Biochemistry,1998,264(2): 172-179.
    [30] OhEda M., Tominaga E., Nabuchi Y., Preparation of pyridylaminated O-linked sugar chains from glycoproteins blotted on a polyvinylidene difluoride membrane and application to human granulocyte colony-stimulating factor [J]. Analytical Biochemistry, 1996,236(2):369-371.
    [31] Ohara K., Sano M., Kondo A., Kato I., 2-Dimensional Mapping by High- Performance Liquid-Chromatography of Pyridylamino Oligosaccharides from Various Glycosphingolipids [J]. Journal of Chromatography,1991,586(1):35-41.
    [32] Shen X. Y., Hong M. S., Moss J., Martha V., BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of intergrinβ1[J]. PNAS, 2007,104(4):1230-1235.
    [33] Hiroyuki O. I., Shunsuke H., Tomonori A., Notch deficiency implicated in the pathogenesis of congential disorder of glycosylation [J]. PNAS, 2005, 102(51): 18532-18537.
    [34] Jonathan H., LeBowitz, Jeffrey H. G., John A. M., Glycosylation- ndependent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis typeⅦmice [J]. PNAS, 2004,101(9):3083-3088.
    [35] Haltiwanger R.S., Lowe J. B., Role of glycosylation in development [J]. Biochem, 2004, 73: 491-537.
    [36] ZhangY., Zhao J.H., Zhang X.Y., Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions [J]. Mol CellBiochem, 2004, 260: 137-46.
    [37] Yuka M., Satoshi T., Seiya M., The role of asparagine-linked glycosylation site on the catalytic domain of matriptase in its zymogen activation [J]. Biochimica et Biophysica Acta, 2010, 1804: 156–165.
    [38] Cecilia H. L., Sonoko N., JoséL. M., et al., Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms [J]. Bone, 2009, 45: 987–993
    [39] Odón V., Laura A., Edgar Dantán-G., The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase [J]. Enzyme and Microbial Technology, 2009, 45: 233–239.
    [40] Marguerite M. D., David A. G., Jennifer J. K., et al., Effects of N-glycosylation on the activity and localization of GlcNAc-6-sulfotransferase [J]. Glycobiology, 2009, 19(10): 1068–1077.
    [41] Escrevente C., Morais V. A., Keller S., Soares C. M., Altevogt P., and Costa, J. Functional role of N-glycosylation from ADAM10 in processing, localization and activity of the enzyme [J]. Biochim. Biophys. Acta, 2008, 1780: 905–913.
    [42] Chloe Stengel, Simon P. Newman, Joanna M. Day, et al. Effects of mutations and glycosylations on STS activity: A site-directed mutagenesis study [J]. Molecular and Cellular Endocrinology, 2008, 283(1-2):76-82.
    [43] Wu Qingyu, LiaoXudong. Role of Glycosylation in Corin Zymogen Activation [J]. The Journal of Biological Chemistry, 2007, 282(38): 27728–27735.
    [44] Manoel C. B., Roberto N. S., Marcelo H. S. R., The in?uence of N-glycosylation on biochemical properties of Amy1, an a-amylase from the yeast Cryptococcus ?avus [J]. Carbohydrate Research, 2009, 344: 1682–1686.
    [45] Gopal B. A., Sridevi A. S., Muralikrishna G., et al., Porcine pancreatic alpha amylase and its isoforms—Effect of deglycosylation by peptide-N- glycosidase F [J]. International Journal of Biological Macromolecules, 2008,43: 100–105.
    [46] Aiman F., Qayyum H., A role of glycosyl moieties in the stabilization of bitter gourd (Momordica charantia) peroxidase [J]. International Journal of Biological Macromolecules, 2007, 41: 56–63.
    [47] Silva-Junior F. P., et al., BJ-48, a novel thrombin-like enzyme from the Bothrops jararacussu venom with high selectivity for Arg over Lys in P1: Role ofN-glycosylation in thermostability and active site accessibility [J]. Toxicon, 2007, 50: 18–31.
    [48] Tatsuya K., Mami S., Enoch Y. P.. The effects of N-glycosylation sites and the N-terminal region on the biological function ofβ-1,3-N- acetylglucosaminyltransferase 2 and its secretion [J]. Biochemical and Biophysical Research Communications, 2005, 329(2): 699–705.
    [49] Katrien L. R., Maureen V., Anja R., N-glycosylation affects substrate specificity of chicory fructan 1-exohydrolase: evidence for the presence of an inulin binding cleft [J]. New Phytologist, 2007, 176 (2): 317–324.
    [50] Skropeta, D., C, et al. N-Glycosylation regulates endothelial lipase-mediated phospholipid hydrolysis in apoE- and apoA-I-containing high density lipoproteins [J]. J. Lipid Res, 2007, 48: 2047–2057.
    [51] Wang Y., Maria N., Goran A., et al. N-glycosylation infuences the latency and catalytic properties of mammalian purple acid phosphatase [J]. Archives of Biochemistry and Biophysics, 2005, 435(1):147-156.
    [52] Masakatsu U., Toshiaki S., Yasuko G., et al. Effective reduction of antigenicity of hen egg lysozyme by site-specific glycosylation [J]. FEBS Letters, 2004, 557(1-3): 169-173.
    [53] Lori L., Anderson L. L. A., Mao X., Barbara A. S., Crowder M. C., Survival from Hypoxiain C. elegans by Inactivation of Aminoacyl- tRNA Synthetases [J]. Science, 2009, 30 (323): 630-633.
    [54] Dalit S. B., Yaakov L.. Effect of glycosylation on protein folding: A close look at thermodynamic stabilization [J]. PNAS, 2008,105(24): 8256-8261.
    [55] Koseki T., Yozo M., Yuichiro M., et al. Mutational analysis of N-glycosylation recognition sites on the biochemical properties of Aspergillus kawachiiα-L-arabinofuranosidase 54 [J]. Biochimica et Biophysica Acta, 2006, 1760(9): 1458– 1464.
    [56] Akira H., Nana K., Sasuki L., et al. Site-specific N-glycosylation analysis of human plasma ceruloplasmin using liquid chromatography with electrospray ionization tandem mass spectrometry [J]. Biochem, 2006, 348: 259–268.
    [57] Dorota H., Terry D. B., Anna L., Characterization of the oligosaccharide component of microsomalβ-glucuronidase from rat liver [J]. Biochimie, 2004,86(6):363-372.
    [58] http://www.xssc.ac.cn/Web/ListConfs/ConfBrief.asp?rno=427,糖链结构与功能调控前瞻,香山国际会议第192次学术讨论会, 2002, 11.
    [59] Wang Z. K., Qi Q. S., Wang P., Engineering of Cyclodextrin Glucanotransferase on the Cell Surface of Yeast for improved cyclodextrin production [J]. Applied and Environmental Microbiology, 2006, 72: 1873-1877.
    [60] Huang G. L., Mei X. Y., Zhang H. C.,Wang P., Chemo-enzymatic synthesis of tetra-N-acetyl-chitotetraosyl allosamizoline [J]. Bioorganic & Medicinal Chemistry Letters, 2006, 16: 2860-2861.
    [61] Cheng J., Glycosylation pathway in Aspergillus fumigatus. Enzyme Engineering XVIII, invited speaker, Oct.9-14, 2005, Gyeong-ju, Korea.
    [62] Guo M., Hang H., Zhu T., et al., Effect of glycosylation on biochemical characterization of recombinant phytase expressed in Pichia pastoris [J]. Enzyme and Microbial Technology, 2008, 42(4):340-345.
    [63] Hase S., High-Performance Liquid Chromatography of Pyridylaminated Saccharides, in Guide to Techniques in Glycobiology [J]. Academic Press Inc: San Diego, 1994: 225-237.
    [64] Shen,X.D.,Perreault,H.,Characterization of carbohydrates using a combination of derivatization,high-performance liquid chromatography and mass spectrometry. Journal of Chromatography A,1998,811(1-2) 47-59.
    [65] Lattova E., Perreault H., Labelling saccharides with phenylhydrazine fo electrospray and matrix-assisted laser desorption-ionization mass spectrometry [J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2003,793(1):167-179.
    [66] Gennaro L. A., Harvey D. J., Vouros P., Reversed-phase ion-pairing liquid chromatography/ion trap mass spectrometry for the analysis negatively charged, derivatized glycans [J]. Rapid Communications in Mass Spectrometry, 2003, 17(14): 1528-1534.
    [67] Viseux N., Hoffmann E., Domon B., Structural analysis opermethylated oligosaccharides by electrospray tandem mass spectrometry [J]. Analytical Chemistry, 1997, 69(16):3193-3198.
    [68] Viseux N., Hoffmann E., Domon B., Structural assignment opermethylatedoligosaccharide subunits using sequential tandem mass spectrometry [J].Analytical Chemistry,1998,70(23):4951-4959.
    [69] Wuhrer M., Koeleman C.A.M., Deelder A.M., Nano-scale liquid chromatography mass spectrometry o-aminobenzamide-labeled oligosaccharides at low femtomole sensitivity [J]. International Journal of Mass Spectrometry, 2004, 232(1): 51-57.
    [70] Royle L., Mattu T.S., Hart E., Langridge J.I., An analytical and structural database provides a strategy for Sequencing O-glycans from microgram quantities of glycoproteins [J]. Analytical Biochemistry, 2002,304(1):70-90.
    [71] Wing D. R., Garner B., Hunnam V., Reinkensmeier G., High-performance liquid chromatography analysis of ganglioside carbohydrates at the picomole level after ceramide glycanase digestion and fluorescent labeling with 2-amino benzamide [J]. Analytical Biochemistry, 2001,298(2):207-217.
    [72] Rudd P. M., Colominas C., Royle L., High-performance liquid chromatography based strategy for rapid,sensitive sequencing of N-linked oligosaccharide modifications to proteins in sodium dodecyl sulphate polyacrylamide electro- phoresis gel bands [J]. Proteomics, 2001,1(2): 285-294.
    [73] Shen X., Myoung H., Joel M., Martha V., BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein, is required for correct glycosylation and function of intergrinβ1 [J]. PNAS, 2007,104(4):1230-1235.
    [74] Hiroyuki O. I., Shunsuke H., Tomonori A.., Notch deficiency implicated in the pathogenesis of congential disorder of glycosylationⅡc [J]. PNAS, 2005,102(51):18532-18537.
    [75] Jonathan H., LeBowitz J. H., Grubb J. A., Glycosylation independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis typeⅦmice [J]. PNAS, 2004,101(9):3083-3088.
    [76] Haltiwanger R.S., Lowe J. B., Role of glycosylation in development [J]. Biochem, 2004, 73: 491-537.
    [77] ZhangY., Zhao J. H., Zhang X. Y., Relations of the type and branch of surface N-glycans to cell adhesion, migration and integrin expressions [J]. Mol Cell Biochem, 2004, 260: 137-46.
    [78] Yuka M., Satoshi T., Seiya M., The role of asparagine-linked glycosylation site on the catalytic domain of matriptase in its zymogen activation [J]. Biochimica etBiophysica Acta, 2010, 1804: 156–165.
    [79] Cecilia H. L., Sonoko N., JoséL. M., Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms [J]. Bone, 2009, 45: 987–993.
    [80] Odón V. V., Laura A., Palomaresb E. D., The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase [J]. Enzyme and Microbial Technology, 2009, 45: 233–239.
    [81] Callanan M.J., Russell W. M., Klaenhammer T. R., Modification of Lactobacillusβ-glucuronidase activity by random mutagenesis [J]. Gene, 2007, 289:122-127.
    [82] Diane B., Patrick T., Jamila A. M., Genetic characterization of the b-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus [J]. Microbiology, 2005, 151:2323–2330
    [83] Takashi K., Sumio K., Microbial Production of Glycyrrhetic Acid 3-0-Mono-β-Glucuronide from Glycyrrhizin by Cryptococcus magnus MG-27 [J]. Biosci. Biotech. Biochem. 1994,58:455-458.
    [84]鱼红闪,吴少杰,金凤燮,郭勇.酶法改变甘草苷糖醛酸基提高其甜度的研究(Ⅱ)-能水解甘草苷糖醛酸基酶的提纯与酶性质研究[J].食品与发酵工业,1999,25(4):5-12.
    [85]吴少杰,鱼红闪,扬志娟.甘草皂苷生物转化的研究[J].中草药,2003,34 (6):516-518
    [86] Natowicz M., Baenziger J. U., Sly W. S., Structural studies of the phosphorylated high mannose-type oligosaccharides on humanβ-glucuronidase [J]. J.Biol.Chem. 1982(251):4412-4420.
    [87] Watson G., Felder M., Rabinow L., Moore K., Laberca C., Tietze C., Molen G.V., Bracey L., Properties of rat and mouse b-glucuronidase mRNA and cDNA, including evidence for sequence polymorphism and genetic regulation of mRNA levels [J], Gene. 1985(36):15–25.
    [88] Bernfeld P., Fishman W. H.,β-glucuronidase: I.Purification of calf spleenβ-glucuronidase [J]. J. Biol.Chem. 1953,202 (2): 757-767.
    [89] Zhang C., Zhang Y. F., Chen J. P., et al., Purification and characterization of baicalin-β-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scutellaria viscidula Bge [J]. Process Biochemistry, 2005,40:1911–1915.
    [90] Osamu T., Akihiro I., et al., Klotho Is a Novelβ-Glucuronidase Capable of Hydrolyzing Steroidβ-Glucuronides [J]. J. Biol.Chem. March, 2004, 279(11); 9777-9784.
    [91] Shunji Tomatsu, Koji O. Orii, et al., Production of MPS VII mouse doubly tolerant to human and mouse ?-glucuronidase [J]. Human Molecular Genetics, 2003, 12(9):961-973.
    [92] Ray J., Bouvet A., Desanto C., Fyfe J.C., Xu D., Wolfe J.H., Aguirre G.D., Patterson D.F., Haskins M.E., Henthorn P.S. Cloning of the canine beta-glucuronidase cDNA, mutation identification in canine MPS VII, and retroviral vector-mediated correction of MPS VII cells [J]. Genomics, 1998, 48:248-253.
    [93] Martijn R. M, Jan N. M., Commandeur and Nico P.E.Vermeulen. Enzyme Catalyzed Activation of Anticancer Prodrugs [J]. Pharmacolgical Revviews, 2004, 56(1): 93-102.
    [94] Alaoui El A., Saha N., Schmidt F., Monneret C. and Florent J. C., New Taxol (paclitaxel) prodrugs designed for ADEPT and PMT strategies in cancer chemotherapy [J]. Bioorganic & Medicinal Chemistry, 2006, 14: 5012-5019.
    [95] Portsmouth D., Hlavaty J., Renner M., Suicide genes for cancer therapy [J]. Molecular Aspects of Medicine, 2007,28(1): 34-41.
    [96] Houba P. H., Boven E., Haisma H. J., Pronouned antitumor efficacy of dox-orubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody beta-glucuronidase conjugate [J]. Int J Cancer, 2001,91(4):550-554.
    [97] Charu S., Shiva P., Prasanna B., Shalu J., Neera B. S., Ubiquitous presence ofβ-glucuronidase (GUS) in plants and its regulation in some model plants [J]. Planta, 2006,224(4):853-864.
    [98] Jefferson R.A., The GUS gene fusion system [J]. Plant Molecular Biology Reporter, 1987,5(4): 387-405.
    [99] Ayra-Pardo C., Montejo-Sierra I.L.,β-glucuronidase gene from Escherichia coli is a functional reporter in the methylotrophic yeast Pichia pastoris [J]. Letters in Applied Microbiology, 1999,29: 278-288.
    [100]Mwangi S. M., Stabel J., Lee E., et al., Expression and characterization of arecombinant souble form of bovine tumornecrosis factor receptor type I. Veterinary Immunology and Immunopathology, 2000, 77(3-4):233-241.
    [101]冯世江,李春,曹竹安.糖苷酶及其在糖基化合物改性中的研究[J].生物加工过程, 2006, 4(3): 16-21.
    [102]Teruaki A., Taiko A., Masao H., Matao K., Keiichi Ya., Tsuneo N., Kyoichi K., Hydrolysis of Glycyrrhizin to Glycyrrhetyl Monoglucuronide by Lysosomalβ-Glucuronidase of Animal Livers [J]. Biochem. Pharmacol. 1991, 41,1025-1029.
    [103]Lu D. Q., Li H., Ouyang P. K., Biocatalytic properties of a novel crude glycyrrhizin hydrolase from the liver of the domestic duck [J]. Journal of Molecular Catalysis B: Enzymatic, 2006,43:148-152.
    [104]冯世江,李春,李晖,王小艳.葡糖酸苷酶生产菌株的筛选及其酶学特性的研究[J].高校化学工程学报. 2007, 21(6): 977-982.
    [105]王小艳,李春,文先军,冯世江.真菌三种β-D-Glucuronidase催化甘草酸多样性的酶学性质的研究[J].生物加工过程.2007,5(2):17-22.
    [106]卢丽丽,肖敏,赵晗,王鹏,钱新民.氟代糖在糖苷酶研究中的应用[J].生物工程学报, 2006,22(2): 351-360.
    [107]Nurizzo D., Nagy T., Gilbert J., Davies G. J., The Structural Basis for Catalysis and Specificity of the Pseudomonas cellulosaα-Glucuronidase, GlcA67A [J]. Structure, 2002,10(4):547-556.
    [108]Philip B., Grace P. T., Purification of the crude solution from Helix pomatia for use asβ-glucuronidase and aryl sulfatase in phytoestrogen assays [J]. Journal of Chromatography B, 2006, 832(1):158-161.
    [109]Henrissat B., Bairoch A., Updating the sequence-based classification of glycosyl hydrolases [J]. Biochemical Journal, 1996,316 (pt2):695-696.
    [110]Henrissat B., A classification of glycosyl hydrolases based on amino acid sequence Similarities [J]. Biochemical Journal, 1991, 280 (pt2):309-316.
    [111]Yoshinori S., Yasutsugu S., Toshifumi T., N-glycosylation at Asn491 in the Asn-Xaa-Cys motif of human transferring [J]. FEBS Letters, 2004, 576 (1-2): 51-56.
    [112] Dorota H., Terry D. B., Anna L., Characterization of the oligosaccharidecomponent of microsomalβ-glucuronidase from rat liver [J]. Biochimie, 2004 , 86(6):363-372.
    [113]Dorota H. Lu., Anna L., Boguslaw S., Affinity chromatography of branched oligosaccharides in rat liver b-glucuronidase [J], Journal of Chromatography B, 755 (2001) 173–183.
    [114]郭尧君.蛋白质电泳实验技术[M].北京科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700