新型甲型H1N1流感病毒血凝素蛋白人源化中和单抗和多肽表位疫苗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感病毒作为最主要人类感染病毒之一,对人类的危害巨大。曾在上个世纪引起了三次全球性的流感大流行,造成数千万人的死亡。进入新世纪以来,在2009年爆发了全球性的流感大流行,给世界的社会与经济发展造成了一定程度的负面影响。
     尽管已经研发出灭活流感疫苗,较好的控制了该病毒株的持续流行和毒性加剧。但是,目前针对新型甲型H1N1流感病毒的免疫学及其致病机理仍了解不多。血凝素(haemegglutinin, HA),作为最主要的参与病毒感染的表面抗原之一,对于H1N1病毒的研究具有重要意义。
     本研究利用杆状病毒昆虫表达系统表达了具有生物学活性的新型甲型H1N1 HA蛋白和NA蛋白,以此为基础,开展了如下两方面研究:
     首先,开展了新型甲型H1N1 HA蛋白人中和单克隆抗体的制备。利用EBV转化记忆性B细胞,在CpG和饲养细胞的存在下,培养转化B细胞;经有限稀释后筛选能分泌HA蛋白特异性抗体的细胞克隆,共筛选96U孔板135块包含12960株B细胞样品;最终,经多次筛选获得45株阳性克隆细胞。这些阳性细胞克隆中有36株阳性细胞克隆在随后1-2月中死亡,提示EBV转化的B细胞中绝大部分是短寿命的,而仅有少数才能长期存活(>2月)。为避免阳性克隆细胞进一步丢失,我们将阳性细胞与K6H6/B5细胞系进行PEG融合以获得永生的阳性细胞。然而经多次实验,但却无法筛选到杂交瘤细胞。在不能获得永生阳性细胞的情况下,本研究改变研究策略,通过单细胞克隆团5'-RACE方法获得4对阳性细胞轻、重链可变区cDNA基因,进而利用杆状病毒昆虫细胞表达该基因工程抗体。结果表明,昆虫细胞不是基因工程抗体表达的合适宿主细胞,尽管本研究在采用昆虫表达时也有文献支持。下一步研究中需要使用更合适的CHO细胞表达上述HA特异性人基因工程抗体。
     其次,本课题进行了新型甲型流感病毒HA表位肽疫苗研究。流感病毒利用连续点突变和基因重组导致不断变异,进而逃避机体的记忆免疫应答。目前的疫苗往往只是针对某一特定的病毒株或亚型,不能保护机体不被其他病毒株感染。而针对表位疫苗的设计,通常利用的是线性表位,无论是B细胞表位,还是T细胞表位。本部分课题通过设计能模拟构象表位的肽疫苗,进而免疫小鼠,利用ELISA、血凝抑制实验、中和实验以及肽阻断ELISA实验,评价其是否能够引起抗体免疫应答。结果显示,该HA肽疫苗免疫接种的小鼠血清能够结合肽、重组H1N1 HA蛋白、重组H5N1 HA蛋白以及H1N1灭活疫苗;能够抑制血凝实验,同时还能够中和非同种流感病毒亚型的H1N1和H5N1病毒。上述结果表明,新型HA肽疫苗能够诱导机体产生相应的体液免疫应答,并且具有交叉保护作用。
     综上所述,本研究取得了以下主要成果:
     1、利用杆状病毒表达系统成功表达出具有生物学活性的HA蛋白和NA蛋白,对BaculoGold system和Bac-to-Bac system这两种杆状病毒昆虫表达系统进行比较,结果表明后者更适合表达HA蛋白。
     2、EBV转化B细胞,筛选到9株能够分泌HA特异性抗体的B细胞,进一步获得4对阳性细胞轻、重链可变区cDNA基因,为进一步制备基因工程抗体打下了基础。
     3、首次改进了国外文献中报道的单细胞5'-RACE获取轻、重链可变区cDNA的方法,使用挑取单细胞克隆团进行5'-RACE,提高了效率的同时降低了操作的难度。
     4、新型流感HA肽疫苗能够诱导机体产生保护性抗体免疫应答,对不同流感病毒亚型(H1N1和H5N1)具有交叉保护性。
Influenza virus, as an ancient virus, presents a significant and persistent threat to public health and killed millions of people worldwide, especially three global influenza pandemic in the last century. In this century, the outbreak of novel swine-origin H1N1 influenza A virus pandemic worldwide, resulted in global panic.
     Despite the inactivated influenza vaccine developed for control and prevention of this novel virus strain. However, at present the learning for the novel influenza H1N1 virus and its pathogenic mechanism of the immunological research is still poorly understood. Haemegglutinin (HA), as one of the most major surface antigen for viral infection, has a great significance for H1N1 virus research.
     In this study, recombinant H1N1 HA and NA proteins were expressed in two baculovirus insect expression system. As the basis of the following research:
     First of all, make human monoclonal antibodies from memory B cells:potent neutralization of 2009 novel H1N1 influenza virus. Using EBV transformed memory B cells, under feeder cells in the presence of CpG, culture the transformed B cells; after limited dilution, screened HA-protein specific antibody-secreting cell clones; 96U-platex 135 were screened totally, that were 12960 B cell samples; the results showed that 45 positive clones were obtained, but 36 of which were died during the culture in vitro. It indicated that EBV-transformed B cells in a large part were short-lived, and only a small part lived for a long survival (>two months). In order to avoid further loss of the positive clone cells, we try to fuse the positive cells and K6H6/B5 using PEG to obtain immortal positive cells. The hybridomas couldn't be obtained in repeated experiments. In the case of failure of fusion experiments,4 pairs of variable region cDNA of light and heavy chain were obtained from positive cell clones by single-cell clone 5'-RACE method, and then genetic engineering antibody was expressed in insect cells by the baculovirus expression system. The result showed that there's no antibody production and insect cells are not suit as host cell to produce antibody. And the better is CHO cells, which become ideal host cells for antibody expression in next step.
     Second, we research on novel influenza A virus hemmagglutinin-peptide based vaccine. The continuous antigenic drifts and shifts of Influenza virus HA leads to the continuous variation of the virus, and can evade the immune response. Current vaccines only provide immunity to viral isolates similar to the vaccine strain and always based the whole HA proteins, which could not protect against the infection of devise influenza virus strains. At present, the design of epitope-based vaccine is utilizing the linear epitope, including both the B-cell epitope and T-cell epitope. In this part of the study, we provided a novel strategy to mimic conformational epitope as a linear peptide-based vaccine to induce antibody response of mice. The immunogenicity and protective efficiency of the peptides were examined after vaccination using EIISA, haemegglutination inhibition (HI) and neutralization assays. We found that this novel HA peptide-based vaccine could induce strong humoral responses against H1N1 and H5N1 in mice after immunization. This novel peptide is a promising strategy for vaccine design and a candidate for eliciting antibody response against diverse subtypes of influenza virus.
     In summary, our findings:
     1. Functional HA and NA proteins were successfully expressed in two distinct bacularvirus expression systems (BaculoGold systema and Bac-to-Bac system), of which the Bac-to-Bac bacularvirus expression system is more suitable for expression of A/Sichuan/1/2OO9(H1N1) HA protein.
     2.9 HA-specific antibody-secreting cell clones were obtained and 4 pairs of variable region cDNA of light and heavy chains were obtained by 5'-RACE; This is the base of the next genetic engineering antibody production.
     3. Firstly improved single-cell clone 5'-RACE method has been used to obtain the cDNA of variable region of antibody and more efficient, compare with the single-cell 5'-RACE method.
     4. Novel HA peptide-based vaccine could induce strong humoral responses against H1NI and H5N1 in mice after immunization. This novel peptide is a promising strategy for vaccine design and a candidate for eliciting antibody response against diverse subtypes of influenza virus.
引文
1. DeWit, E.& Fouchier RA. Emerging influenza. J Clin Virol 2008.41:1-6.
    2. Henderson DA, Brooke C, Inglesby TV, et al. Public health and medical responses to the 1957-58 influenza pandemic. Biosecur Bioterror 2009,7:265-273.
    3. Ahmed R, Oldstone MB& Palese P. Protective immunity and susceptibility to infectious diseases:lessons from the 1918 influenza pandemic. Nature Immunol 2007,8:1188-1193.
    4. WHO Factsheet 211:influenza. World Health Organization/http://www.who.int/ mediacentre/factsheets/2003/fs211/en/S,2003.
    5. Webster, R.G.1918 Spanish influenza:the secrets remain elusive. Proc Natl Acad Sci USA 1999,96:1164-1166.
    6. Smith GJ, Vijaykrishna D, Bahl J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009,459(25):1122-6.
    7. Garten RJ, Davis CT, Russell CA, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 325(5937):197-201.
    8. Morens MD, Taubenberger KJ, Fauci SA. The persistent legacy of the 1918 influenza virus. N Engl J Med 2009,361 (3):225-229.
    9. Lipsitch M. Riley S, Cauchemez S, et al. Managing and reducing uncertainty in an emerging influenza pandemic. N Engl J Med 2009,361(2):112-115.
    10. Bouvier MN, Palese P. The biology of influenza viruses. Vaccine 2008.26S D:49-53.
    11. Weldon WC, Wang B, Martin MP, et al. Enhanced immunogenicity of stabilized trimeric soluble influenza hemagglutinin. PLoS ONE 2010,5(9):e12466.
    12. King JC. Cox MM, Reisinger K. et al. Evaluation of the safety, reactogenicity and immunogenicity of FluBlok trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy children aged 6-59 months. Vaccine 2009,27:6589-6594.
    13. de Vries RP, de Vries E, Bosch BJ, et al. The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology 2010,403:17-25.
    14. Kost TA, Condreay JP. Jarvis DL Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology 2005,32:567-575.
    15. Treanor JJ, Schiff GM, Hayden FG, Brady RC, Hay CM, et al. Safety and immunogenicity of a baculovirus-expressed hemagglutinin influenza vaccine:a randomized controlled trial. JAMA 2007,297:1577-1582.
    16. Vanlandschoot P, Beimaert E, Neirynck S. et al. Molecular and immunological characterization of soluble aggregated A/Victoria/3/75 (H3N2) influenza haemagglutinin expressed in insect cells. Arch Virol 1996,141:1715-1726.
    17. Bac-to-Bac baculovirus expression system:procedures and methods manual. Invitrogen life technologies.2004. Available at www.invitrogen.com.
    18. Baculovirus expression vector system:Procedures and methods manual. BD Biosciences Pharmingen, San Diego, CA.6th ed. Available at www.bdbiosciences.com.
    19. Ekiert DC, Bhabha G, Elsliger M, Friesen RH.E. Jongeneelen M. Throsby M, et al. Antibody recognition of a highly conserved influenza virus epitope. Science 2009, 324(5924):247-251.
    20. Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen L, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 2009; 16(3):265-273.
    21. Ben-Yedidia T, Arnon R. Towards an epitope-based human vaccine for influenza. Hum Vaccin 2005, 1(3):95-101.
    22. Nardin E, Oliveira G, Calvo-Calle J et al. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J Infect Dis 2000, 182(5):1486-1496.
    23. Keogh E, Fikes J, Southwood S, et al. Identification of new epitopes from four different tumor-associated antigens:recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity. J Immunol 2001,167(2):787-796.
    24. Levi R, Aboud-Pirak E, Leclerc C. et al. Intranasal immunization of mice against influenza with synthetic peptides anchored to proteosomes. Vaccine 1995,13: 1353-1359.
    25. Bui H. Peters B, Assarsson E, Mbawuike I, et al. Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci USA 2007, 104(1):246-251.
    26. Puzelli S, Facchini M, Di Martino A, et al. Evaluation of the antiviral drug susceptibility of influenza viruses in Italy from 2004/05 to 2009/10 epidemics and from the recent 2009 pandemic. Antiviral Res 2011,90(3):205-212.
    27. Sheu TG, Deyde VM, Okomo-Adhiambo M, et al. Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 2008,52(9):3284-92.
    28. Reece PA. Neuraminidase inhibitor resistance in influenza viruses. J Med Virol 2007, 79(10):1577-86.
    29. Luke TC, Kilbane EM, Jackson JL, et al. Meta-analysis:convalescent blood products for Spanish influenza pneumonia:a future H5N1 treatment? Ann Intern Med 2006, 145:599-609.
    30. Behring E& Kitasato S. On the development of immunity to diphtheria and tetanus in animals. Dtsch Med Wochenschr 1965,90:2183.
    31. Keller MA& Stiehm ER. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 2000,13:602-614.
    32.中华人民共和国卫生行业标准—人感染性高致病性禽流感诊断标准(WS284-2008)。
    33.陈慧,李峥,何小鹃,等.具有生物学活性的hMSH2蛋白在昆虫Sf9细胞中的表达。《基础医学与临床》2008.28(7):670-675。
    34. Glachino C, Padovan E, Lanzavecchia A. Kappa+lambda+dual receptor B cells are present in the human peripheral repertoire. J Exp Med 1995,181 (3):1245-50.
    35. Ozaki K, Spolski R, Feng GC, et al. A critical role for IL-21 in regulating immunoglobulin production. Science 2002,298:1630-34.
    36. Banchereau J, de Paoli P, Valle A, et al. Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 1991.251 (4989):70-2.
    37. Gauchat JF, Gascan H, de Waal Malefyt, et al. Regulation of germ-line epsilon transcription and induction of epsilon switching in cloned EBV-transformed and malignant human B cell lines by cytokines and CD4+T cells. J Immunol 1992, 148(7):2291-9.
    38. Wroblewski JM, Copple A, Batson LP, et al. Cell surface phenotyping and cytokine production of Epstein-Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCLs). J Immunol Methods 2002,264(1-2):19-28.
    39. Ichikawa A, Katakura Y, Teruya K, et al. In vitro immunization of human peripheral blood lymphocytes:establishment of B cell lines secreting IgM specific for cholera toxin B subunit from lymphocytes stimulated with IL-2 and IL-4. Cytotechnology 1999,31 (1-2):133-141.
    40. Saito T, Kitayama D. Sakamoto A, et al. Effective collaboration between IL-4 and IL-21 on B cell activation. Immunobiology 2008,213(7):545-55.
    41. Tatsuhiko Ozawa, Hiroyuki Kishi, and Atsushi Muraguchi. Amplification and analysis of cDNA generated from a single cell by 5'-RACE:application to isolation of antibody heavy and light chain variable gene sequences from single B cells. BioTechniques 2006,40:469-78.
    42. Chen SS, Chenchik A, Lukyanov KA, et al. Improved technique for walking in uncloned genomic DNA. In P.D. Siebert and L. Larrick (Eds.), BioTechniques Books. Eaton Publishing, Natick. MA.1998, p.289-302.
    43. Park DJ, Pask AJ, Renfree MB, et al..3'RACE walking along a large cDNA employing tiered suppression PCR. BioTechniques 2003,34:750-756.
    44. Ozawa T, Itoyama T, Sadamori N, et al. Rapid isolation of viral integration site reveals frequent integration of HTLV-1 into expressed loci. J Hum Genet 2004. 49:154-165.
    45. Ozawa T, Kondo M, and Isobe M..3'rapid amplification of cDNA ends (RACE) walking for rapid structural analysis of large transcripts. J Hum Genet 2004. 49:102-105.
    46. Keller, M.A.& Stiehm, E.R. Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 2000,13:602-614.
    47. Reichert J.C., Rosensweig C.J.. Faden L.B., et al. Monoclonal antibody successes in the clinic, Nat Biotechnol 2005.23:1073-1078.
    48. Beck A, Wurch T, Bailly C, et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 2010,10(5):345-352.
    49. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 2010,10(5):301-16.
    50. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy:clinical response, cellular immunity, and immunoescape. J Clin Oncol 2010,28(28):4390-9.
    51. Kozbor, D.& Roder, J.C. Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique. J Immunol 1981,127:1275-1280.
    52. Traggiai, E. et al. An efficient method to make human monoclonal antibodies from memory B cells:potent neutralization of SARS coronavirus. Nat Med 2004,10:871-875.
    53. Winter, G.& Milstein, C. Man-made antibodies. Nature 1991,349:293-299.
    54. Steinitz, M., Klein. G., Koskimies, S.& Makel, O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 1977,269:420-422.
    55. Yu X, Tsibane T, McGraw PA, et al. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 2008,455(7212):532-6.
    56. Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000,164:944-52.
    57. Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995,374:546.
    58. Yi AK, Chang M, Peckham DW,et al.CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol 1998,160:5898.
    59. Birch JR, Racher AJ. Antibody production. Advanced Drug Delivery Reviews 2006,58:671-685.
    60. O'Callaghan PM, McLeod J, Pybus LP, et al. Cell line-specific control of recombinant monoclonal antibody production by CHO cells. Biotechnol Bioeng. 2010,106(6):938-51.
    61. Kim JM. Kim JS. Park DH, et al. Improved recombinant gene expression in CHO cells using matrix attachment regions, J Biotechnol 2004,107:95-105.
    62. Rendall MH, Maxwell A. Tatham D, et al. Transfection to manufacturing:reducing timelines for high yielding GS-CHO processes, in:F. Go'dia, M. Fussenegger (Eds.), Animal Cell Technology Meets Genomics. Springer. Dordrecht,2005, pp.701-704.
    63. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 1985, 314:537-539.
    64. Shen X, Hu GB, Jiang SJ, et al. Engineering and characterization of a baculovirus-expressed mouse/human chimeric antibody against transferrin receptor. Protein Eng Des Sel 2009,22(12):723-31.
    65. Arnett SO, Teillaud JL. Wurch T, et al. IBC's 21st Annual Antibody Engineering and 8th Annual Antibody Therapeutics International Conferences and 2010 Annual Meeting of The Antibody Society December 5-9.2010, San Diego, CA USA. MAbs. 2011.3(2):133-52.
    66. Rita Costa A, Elisa Rodrigues M. Henriques M, et al. Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm 2010,74(2):127-38.
    67. Seo MJ, Jeong KJ, Leysath CE, et al. Engineering antibody fragments to fold in the absence of disulfide bonds. Protein Sci 2009,18(2):259-67.
    68. Tatsuhiko Ozawa, Hiroyuki Kishi, and Atsushi Muraguchi. Amplification and analysis of cDNA generated from a single cell by 5'-RACE:application to isolation of antibody heavy and light chain variable gene sequences from single B cells. BioTechniques 2006,40:469-78.
    69. Carroll WL, Thielemans K, Dilley J,et al. Mouse x human heterohybridomas as fusion partners with human B cell tumors. J Immunol Methods 1986,89(1):61-72.
    70. Posner MR, Elboim H, Santos D. The construction and use of a human-mouse myeloma analogue suitable for the routine production of hybridomas secreting human monoclonal antibodies. Hybridoma 1987,6:611.
    71. Kozbor, D, Roder JC, Chang TH, et al. Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma. Hybridoma 1982,1:323-328.
    72. Zimmermann U, Gessner P, Schnettler R. et al. Efficient hybridization of mouse-human cell lines by means of hypo-osmolar electrofusion. J Immunol Methods 1990,134:43.
    73. Yu X, McGraw AP, House SF, et al. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J Immunol Methods 2008, 336(2):142-51.
    74. Dessain SK, Adekar SP, Stevens JB, et al. High efficiency creation of human monoclonal antibody-producing hybridomas. J Immunol Methods 2004,291:109.
    75. Karpas, A, Dremucheva A, and Czepulkowski BH. A human myeloma cell line suitable for the generation of human monoclonal antibodies. Proc Natl Acad Sci USA 2001,98:1799-1804.
    76. Hoffmann E, Lipatov AS, Webby RJ, et al. Role of specific hemagglutinin amino acids in the immunogenecity and protection of H5N1 influenza virus vaccines. Proc Natl Acad Sci 2005,102(36):12915-20.
    77. Kaiser J.A one-size-fits-all flu vaccine? Science 2006.312(5772):380-2.
    78. Paul-Henri Lambert,Margaret Liu,Claire-Anne Siegrist.Can successful vaccines teach us how to induce efficient protective immune responses? Nature medicine, 2005, 11(4):54-62.
    79. Vishal Gupta, David J. Earl, Michael W. Deem. Quantifying influenza vaccine efficacy and antigenic distance.Vaccine 2006,24 (18):3881-3888.
    80. Ezekiel J. Emanuell and Alan Wertheimer. Who Should Get Influenza Vaccine When Not All Can? Science 2006,312:854-855.
    81. Kanta Subbarao, Brian R. Murphy and Anthony S. Fauci. Development of Effective Vaccines against Pandemic Influenza. Immunity 2006,24:5-9.
    82. Neirynck S. Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W:A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 1999.5:1157-1163.
    83. Jegerlehner A, Schmitz N, Storni T, et al. Influenza A vaccine based on the extracellular domain of M2:weak protection mediated via antibody-dependent NK cell activity. J Immunol 2004,172,5598-5605.
    84. De Filette M, Fiers W, Martens W et al. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine 2006,24(44-46):6597-6601.
    85. D.T. O'Hagan, A. Wack, and A. Podda, MF59 is a safe and potent vaccine adjuvant of flu vaccines in humans:what did we learn during its development? Clin. Pharmacol Ther 2007,82:740-744.
    86. A. Huckriede, L. Bungener, T. Stegmann, T. Daemen, J. Medema, A.M. Palache. and J.Wilschut, The virosome concept for influenza vaccines. Vaccine 2005, 23:S26-S38,
    87. P. Palese, Making better influenza virus vaccines? Emerg Infect Dis 2006,12:61-65,
    88. K.L. Nichol and J.J. Treanor, Vaccines for seasonal and pandemic influenza. J Infect Dis 2006,194:S111-S118,
    89. De Donato S, Granoff D, Minutello M, et al. Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly. Vaccine 1999,17:3094-3101.
    90. Giudice GD, Hilbert AK, Bugarini R, et al. An MF59-adjuvanted inactivated influenza vaccine containing A/Panama/1999 (H3N2) induced broader serological protection against heterovariant influenza virus strain A/Fujian/2002 than a subunit and a split influenza vaccine. Vaccine 2006,24:3063-3065.
    91. Stephenson I, Bugarini R, Nicholson KG, et al. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine:a potential priming strategy. J Infect Dis 2005,191:1210-1215.
    92. Ansaldi F, Bacilieri S, Durando P, et al. Cross-protection by MF59-adjuvanted influenza vaccine:neutralizing and haemagglutination-inhibiting antibody activity against A (H3N2) drifted influenza viruses. Vaccine 2008,26:1525-1529.
    1. Stanley WM. An evaluation of methods for the concentration and purification of influenza virus. J Exp Med 1944,79:255-66.
    2. Salk JE. Reactions to concentrated influenza vaccines. J Immunol 1948,58:369-95.
    3. Quilligan JJJ, Francis TJ, Minuse E. Reactions to an influenza virus vaccine in infants and children. Am J Dis Child 1949,78:295-301.
    4. Davenport FM, Rott R, Schafer W. Physical and biological properties of influenza virus components obtained after ether treatment. J Exp Med 1960,112:765-83.
    5. Peck FB Jr. Purified influenza virus vaccine. A study of viral reactivity and antigenicity. JAMA 1968,206:2277-82.
    6. Mostow SR, Schoenbaum SC, Dowdle WR, et al. Studies with inactivated influenza vaccines purified by zonal centrifugation.1. Adverse reactions and serological responses. Bull World Health Organ 1969,41:525-30.
    7. Glezen WP, Loda FA, Denny FW. A field evaluation of inactivated, zonal-centrifuged influenza vaccines in children in Chapel Hill, North Carolina, 1968-69. Bull World Health Organ 1969,41:566-9.
    8. Gross PA, Ennis FA, Gaerlan PF, Denson LJ, et al. A controlled double-blind comparison of reactogenicity, immunogenicity, and protective efficacy of whole-virus and split-product influenza vaccines in children. J Infect Dis 1977, 136:623-32.
    9. Davenport FM, Hennessy AV, Brandon FM, et al. Comparisons of serologic and febrile responses in humans to vaccination with influenza A viruses or their hemagglutinins. J Lab Clin Med 1964,63:5-13.
    10. Webster RG, Laver WG. Influenza virus subunit vaccines:immunogenicity and lack of toxicity for rabbits of ether-and detergent-disrupted virus. J Immunol 1966, 96:596-605.
    11. Duxbury AE, Hampson AW, Sievers JG. Antibody response in humans to deoxycholate- treated influenza virus vaccine. J Immunol 1968,101:62-7.
    12. Warburton MF. Desoxycholate-split influenza vaccines. Bull World Health Organ 1969,41:639-41.
    13. Warburton MF, Duxbury AE. Desoxycholate-split influenza virus vaccines in infants and young children. Symp Series Immunobiol Std 1973,20:93-8.
    14. Tarmina DF, Milner KC, Ribi E, et al. Modification of selected host-reactive properties of endotoxin by treatment with sodium deoxycholate. J Bacteriol 1968, 96:1611-6.
    15. Badakhsh FF. Herzberg M. Deoxycholate-treated, nontoxic, whole-cell vaccine protective against experimental salmonellosis of mice. J Bacteriol 1969,100:738 -44.
    16. Rastogi SC, Hochstein HD, Seligmann EB Jr. Statistical determination of endotoxin content in influenza virus vaccine by the limulus amoebocyte lysate test. J Clin Microbiol 1977,6:144-8.
    17. Smith GJ. Fan XH, Wang J, et al. Emergence and predominance of an H5N1 influenza variant in China. Proc. Natl. Acad. Sci. USA 2006,103:16936-16941.
    18. Palese P. Making better influenza virus vaccines? Emerg Infect Dis 2006,12:61-65.
    19. Fukuda K, Levandowski RA, Bridges CB, and Cox NJ. Inactivated InfluenzaVaccines. In:Vaccines. S.A. Plotkin,W.A. Orenstein, Eds. Elsevier: Philadelphia.2004,339-370.
    20. Treanor JJ, King JC, and Zangwill KM. New approaches to influenza vaccine. In: New Generation Vaccines.M. Levine, JB Kaper, R. Rappuoli, M.A. Liu. andMF Good, Eds. New York, Basel:Marcel Dekker 2004, pp.537-558.
    21. Johansson BE, and Brett IC. Changing perspective on immunization against influenza. Vaccine 2007,25:3062-3065.
    22. Hoskins TW, Davies JR, Smith AJ, et al. Assessment of inactivated influenza A vaccine after three outbreaks of influenza at Christ's Hospital. Lancet 1979, 1:33-35.
    23. Treanor JJ, Wilkinson BE, Masseoud F, et al. Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine 2001, 19:1732-1737.
    24. Nicholson KG, Colegate AE, Podda A,et al.Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine:a randomised trial of two potential vaccines against H5N1 influenza. Lancet 2001,357:1937-43.
    25. The World Health Organization Global Influenza Program Surveillance Network. Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis 2005, 11:1515-1521.
    26. Senne DA, Panigrahy B, Kawaoka Y, et al. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses:amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 1996,40: 425-437.
    27. Treanor JJ, Campbell JD, Zangwill KM, et al. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine.N Engl J Med 2006. 354:1343-1351.
    28. Lin J, Zhang J, Dong X. et al. Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine:a phase I randomised controlled trial. Lancet 2006,368:991-997.
    29. Zangwill KM, Treanor JJ, Campbell JD, et al. Evaluation of the safety and immunogenicity of a booster (third) dose of inactivated subvirion H5NI influenza vaccine in humans. J Infect Dis 2008,197:580-583.
    30. Poland GA, Jacobson RM, and Targonski PV. Avian and pandemic influenza:an overview. Vaccine 2007,25:3057-3061.
    31. Stephenson I. Gust I, Pervikov Y. et al. Development of vaccines against influenza H5. Lancet Infect Dis 2006,6:458-460.
    32. Leroux-Roels I, Borkowski A. Vanwolleghem T, et al. Antigen sparing and cross-reactive immunity with an adjuvanted rH5Nl prototype pandemic influenza vaccine:a randomized controlled trial. Lancet 2007.370:580-589.
    33. Luke CJ and Subbarao K. Vaccines for pandemic influenza. Emerg Infect Dis 2006, 12:66-72.
    34. Nichol KL and Treanor JJ. Vaccines for seasonal and pandemic influenza. J Infect Dis2006,194:S111-S118.
    35. Bresson JL, Launay PO, Gerdil C, et al. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine:phase 1 randomised trial. Lancet 2006,367:1657-1664.
    36. Ninomiya A, Imai M, Tashiro M, and Odagiri T. Inactivated influenza H5N1 whole-virus vaccine with aluminum adjuvant induces homologous and heterologous protective immunities against lethal challenge with highly pathogenic H5N1 avian influenza viruses in a mouse model. Vaccine 2007,25:3554-3560.
    37. Bungener L, Geeraedts F, Ter W, et al. Alum boosts TH2-type antibody responses to whole-inactivated virus influenza vaccine in mice but does not confer superior protection. Vaccine 2008,26:2350-2359.
    38. O'Hagan DT, Wack A, and Podda A. MF59 is a safe and potent vaccine adjuvant of flu vaccines in humans:what did we learn during its development? Clin Pharmacol Ther 2007,82:740-744.
    39. Huckriede A, Bungener L, Stegmann T, et al. The virosome concept for influenza vaccines. Vaccine 2005,23:S26-S38.
    40. Gluck R, Burri KG, and Metcalfe I. Adjuvant and antigen delivery properties of virosomes. Curr Drug Deliv 2005.2:395-400.
    41. Donato S, Granoff D, Minutello M, et al. Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly. Vaccine 1999,17:3094-3101.
    42. Giudice GD, Hilbert AK, Bugarini R, et al. An MF59-adjuvanted inactivated influenza vaccine containing A/Panama/1999 (H3N2) induced broader serological protection against heterovariant influenza virus strain A/Fujian/2002 than a subunit and a split influenza vaccine. Vaccine 2006,24:3063-3065.
    43. Stephenson I, Bugarini R, Nicholson KG. et al. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine:a potential priming strategy. J Infect Dis 2005.191:1210-1215.
    44. Ansaldi F, Bacilieri S. Durando P, et al. Cross-protection by MF59-adjuvanted influenza vaccine:neutralizing and haemagglutination-inhibiting antibody activity against A(H3N2) drifted influenza viruses. Vaccine 2008,26:1525-1529.
    45. Wack A, Baudner BC, Hilbert AK, et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine 2008,26:552-561.
    46. de Bruijn I, Meyer I, Gerez L, et al. Antibody induction by virosomal, MF59-adjuvanted, or conventional influenza vaccines in the elderly. Vaccine 2007, 26:119-127.
    47. de Bruijn IA, Nauta J, Gerez L, et al. The virosomal influenza vaccine Invivac: immunogenicity and tolerability compared to an adjuvanted influenza vaccine (Fluad) in elderly subjects. Vaccine 2006,24:6629-6631.
    48. Garc N, Chomez P, and Mechelen MV. GlaxoSmithKline Adjuvant Systems in vaccines:concepts, achievements and perspectives. Expert Rev Vaccines 2007, 6:723-739.
    49. Leroux-Roels I, Bemhard R, G'erard P. et al. Broad Clade 2 cross-reactive immunity induced by an adjuvanted clade 1 rH5Nl pandemic influenza vaccine. PLoS ONE 2008,3:e1665.
    50. Vandepapeliere P, Horsmans Y, Moris P, et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine 2008,26:1375-1386.
    51. Stephenson I, Zambon MC, Rudin A, et al. Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J Virol 2006, 80:4962-4970.
    52. Treanor J, Nolan C, O'Brien D, et al. Intranasal administration of a proteosome-influenza vaccine is well-tolerated and induces serum and nasal secretion influenza antibodies in healthy human subjects. Vaccine 2006,24: 254-262.
    53. G.H.B.D. Lowell and G.White, Proteosome technology for vaccines and adjuvants.In:New Generation Vaccines. Levine MM, Kaper JB, Rappuoli R, Liu MA, and Good MF, Eds. Marcel Dekker:New York-Basel 2004,271-283.
    54. Morein B, Sundquist B, Hoglund S, et al. A novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 1984, 308:457-460.
    55. Rimmelzwaan GF, Baars M, van Beek R, et al. Induction of protective immunityagainst influenza virus in amacaquemodel:comparison of conventional and iscomvaccines. J Gen Virol 1997,78:757-765.
    56. Rimmelzwaan GF, Claas EC, van Amerongen G, et al. ISCOM vaccine induced protection against a lethal challenge with a human H5N1 influenza virus. Vaccine 1999,17:1355-1358.
    57. Rimmelzwaan G.F, Baars M, van Amerongen G, et al. A single dose of an ISCOM influenza vaccine induces long-lasting protective immunity against homologous challenge infection but fails to protect Cynomolgus macaques against distant drift variants of influenza A (H3N2) viruses. Vaccine 2001,20:158-163.
    58. Govorkova EA, Webby RJ, Humberd J, et al. Immunization with reverse-genetics-produced H5NI influenza vaccine protects ferretsagainst homologous and heterologous challenge. J Infect Dis 2006,194:159-167.
    59. Lipatov AS, Hoffmann E, Salomon R, et al. Crossprotectiveness and immunogenicity of influenza A/Duck/Singapore/3/97(H5) vaccines against infection with A/Vietnam/1203/04(H5Nl) virus in ferrets. J Infect Dis 2006, 194:1040-1043.
    60. Webby R, Perez DR, Coleman JS, et al. Responsiveness to a pandemic alert:use of reverse genetics for rapid development of influenza vaccines. Lancet 2004, 363:1099-1103.
    61. Hoffmann E, Lipatov AS. Webby RJ, et al. Role of specific hemagglutinin amino acids in the immunogenicity and protection of H5NI influenza virus vaccines. Proc Natl Acad Sci USA 2005.102:12915-12920.
    62. Lipatov AS, Webby RJ, Govorkova EA, et al. Efficacy of H5 influenza vaccines produced by reverse genetics in a lethal mouse model. J Infect Dis 2005,191: 1216-1220.
    63. Tian G, Zhang S, Li Y, et al. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 2005,341: 153-162.
    64. Girard M, Cherian T, Pervikov, Y, et al. A review of vaccine research and development:human acute respiratory infections. Vaccine 2005.23:5708-5724.
    65. Fauci AS. Pandemic influenza threat and preparedness. Emerg Infect Dis 2006,12: 73-77.
    66. Shi H. Liu XF, Zhang X, et al. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses.Vaccine 2007,25:7379-7384.
    67. Cinatl JJ, Michaelis M, and Doerr HW. The threat of avian influenza A (H5N1). Part IV:Development of vaccines. Med Microbiol Immunol 2007,196:213-225.
    68. Treanor JJ, Schiff GM, Couch RB, et al. Dose-related safety and immunogenicity of a trivalent baculovirus-expressed influenza-virus hemagglutinin vaccine in elderly adults. J Infect Dis 2006,193:1223-1228.
    69. Wang K, Holtz KM, Anderson K, et al. Expression and purification of an influenza hemagglutinin-one step closer to a recombinant protein-based influenza vaccine. Vaccine 2006,24:2176-2185.
    70. Galarza JM. Latham T, and Cupo A. Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol 2005, 18:244-251.
    71. Bright RA, Carter DM, Daniluk S, et al. Influenza viruslike particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 2007,25:3871-3878.
    72. Galarza JM, Latham T, and Cupo A. Virus-like particle vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol 2005, 18:365-372.
    73. Matassov D, Cupo A, and Galarza JM. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunol 2007,20:441-452.
    74. Pushko P, Bu F, Knell J, et al. Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine 2005,23:5751-5759.
    75. Treanor JJ, Schiff GM, Hayden FG, et al. Safety and immunogenicity of a baculovirus-expressed hemagglutinin influenza vaccine:a randomized controlled trial. JAMA 2007.297:1577-1582.
    76. Carrat F and Flahault A. Influenza vaccine:the challenge of antigenic drift. Vaccine 2007,25:6852-6862.
    77. Kendal AP. Cold-adapted live attenuated influenza vaccines developed in Russia: can they contribute to meeting the needs for influenza control in other countries? Eur J Epidemiol 1997,13:591-609.
    78. Belshe RB, Edwards KM, Vesikari T, et al, CAIV-T Comparative Efficacy Study Group. Live attenuated versus inactivated influenza vaccine in infants and young children. N Engl J Med 2007,356:685-696.
    79. Besselaar TG, Botha L, McAnerney JV, et al. Antigenic and molecular analysis of influenza A (H3N2) virus strains isolated from a localised influenza outbreak in South Africa in 2003. J Med Virol 2004,73:71-78.
    80. Belshe RB, Maassab HF, and Mendelman PM. Influenza Vaccine-Live. In: vaccines, S.A. Plotkin, W.A. Orenstein. Eds. Elsevier:Philadelphia:2004,371-388.
    81. Ohmit SE, Victor JC, Rotthoff JR, et al. Prevention of antigenically drifted influenza by inactivated and live attenuated vaccines. N Engl J Med 2006, 355:2513-2522.
    82. Jameson J, Cruz J, and Ennis FA. Human cytotoxic T-lymphocyte repertoire to influenza A viruses. J Virol 1998,72:8682-8689.
    83. Boon AC. de G. Mutsert, van D. Baarle, et al. Recognition of homo-and heterosubtypic variants of influenza A viruses by human CD8+T lymphocytes. J Immunol 2004,172:2453-2460.
    84. Jameson J, Cruz J, Terajima M, et al. Human CD8+and CD4+T lymphocyte memory to influenza A viruses of swine and avian species. J Immunol 1999,162: 7578-7583.
    85. Seo SH and Webster RG. Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J Virol 2001,75:2516-2525.
    86. Li S, Liu C, Klimov A, et al. Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. J Infect Dis 1999,179: 1132-1138.
    87. Suguitan AL, McAuliffe J, Mills KL, et al. Live, attenuated influenza A H5Nl candidate vaccines provide broad cross-protection in mice and ferrets. PloS ONE. 2006,3:e360.
    88. Wang X, Li M, Zheng H, et al. Influenza A virus NSl protein prevents activation of NF-kappaB and induction of alpha/beta interferon. J Virol 2000,74:11566-11573.
    89. Donelan N. Basler CF, and Garc'ia-Sastre A. A recombinant influenza A virus expressing an RNA-binding-defective NSI protein induces high levels of beta interferon and is attenuated in mice. J Virol 2003,77:13257-13266.
    90. Egorov A, Brandt S, Sereinig S, et al. Transfectant influenza A viruses with long deletions in the NSI protein grow efficiently in Vero cells. J Virol 1998,72: 6437-6441,.
    91. Talon J, Salvatore M, O'Neill RE, et al. Influenza A and B viruses expressing altered NSI proteins:A vaccine approach. Proc. Natl. Acad. Sci. USA.2000,97: 4309-4314.
    92. Garcia-Sastre A, Egorov A, Matassov D, et al. Influenza A virus lacking the NSl gene replicates in interferon-deficient systems. Virology 1998,252:324-330.
    93. Quinlivan M, Zamarin D, Garc'ia-Sastre A, et sl. Attenuation of equine influenza viruses through truncations of the NSI protein. J Virol 2005,79:8431-8439.
    94. Ferko B, Stasakova J, Romanova J, et al. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes. J Virol 2004, 78:13037-13045.
    95. Proietti E, Bracci L, Puzelli S, et al.Type I IFN as a natural adjuvant for a protective immune response:lessons from the influenza vaccine model. J Immunol 2002, 169:375-383.
    96. Richt JA, Lekcharoensuk P, Lager KM, et al.Vaccination of pigs against swine influenza viruses by using anNSl-truncated modified live-virus vaccine. J Virol 2006,80:11009-11018.
    97. Vincent AL, Ma W, Lager KM, et al.Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine. Vaccine 2007, 25:7999-8009.
    98. Watanabe T, Watanabe S, Ito H. et al.Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. J Virol 2001,75:5656-5662.
    99. Takeda M, Pekosz A, Shuck K, et al. Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol 2002,76:1391-1399.
    1OO.Iwatsuki-Horimoto K. Horimoto T, Noda T, et al.The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J Virol 2006,80: 5233-5240.
    101. McCown MF, and Pekosz A. The influenza A virusM2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol 2005,79: 3595-3605.
    102.McCown MF, and Pekosz A. Distinct domains of the influenza a virus M2 protein cytoplasmic tail mediate binding to the Ml protein and facilitate infectious virus production. J Virol 2006,80:3590-3601.
    103.Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993,259:1745-1749.
    104.Ulmer JB, Fu TM, Deck RR, et al.Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J Virol 1998,72: 5648-5653.
    105.Robinson HL. Hunt LA and Webster RG. Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA. Vaccine 1993,11:957-960.
    106. Donnelly JJ. Friedman A. Martinez D, et al. Preclinical efficacy of a prototype DNA vaccine:enhanced protection against antigenic drift in influenza virus. Nat. Med.1995,1:583-587.
    107.Epstein S. Stack A, Misplon JA, et al. Vaccination with DNA encoding internal proteins of influenza virus does not require CD8(+) cytotoxic T lymphocytes:either CD4(+) or CD8(+) T. Int. Immunol 2000,12:91-101.
    108. Fu TM, Guan L, Friedman A, et al. Dose dependence of CTL precursor frequency induced by a DNA vaccineand correlation with protective immunity against influenza virus challenge. J Immunol 1999,162:4163-4170.
    109.Ljungberg K, Wahren B, Almqvist J, et al. Effective construction of DNA vaccines against variable influenza genes by homologous recombination. Virology 2000,268: 244-250.
    11 O.Epstein S. Kong WP, Misplon JA, et al. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 2005,23: 5404-5410.
    111.Liu MA, McClements W, Ulmer JB, et al.Immunization of non-human primates with DNA vaccines. Vaccine 1997,15:909-912.
    112.Robinson HL, Boyle CA, Feltquate DM, et al. DNA immunization for influenza virus:studies using hemagglutininand nucleoprotein-expressing DNAs. J Infect Dis 1997,176:S5O-S55.
    113.Kodihalli S. Goto H, Kobasa DL, et al. DNA vaccine encoding hemagglutinin provides protective immunity againstH5Nl influenza virus infection in mice. J. Virol.1999,73:2094-2098.
    114.Chen Z, T. Yoshikawa, S. Kadowaki, Y. Hagiwara, K. Matsuo, H. Asanuma, C. Aizawa, T. Kurata, and S. Tamura, Protection and antibody responses in different strains of mouse immunized with plasmid DNAs encoding influenza virus haemagglutinin, neuraminidase and nucleoprotein. J Gen Virol 1999.80: 2559-2564.
    115.Chen Z, Matsuo K, Asanuma H, et al. Enhanced protection against a lethal influenza virus challenge by immunization with both hemagglutinin-and neuraminidaseexpressing DNAs. Vaccine 1999,17:653-659.
    116.Epstein S. Tumpey TM, Misplon JA, et al. DNA vaccine expressing conserved influenza virus proteins protective against H5N1 challenge infection in mice. Emerg. Infect. Dis.2002,8:796-801.
    117.Wang S, Taaffe J. Parker C. et al. Hemagglutinin (HA) proteins from Hl and H3 serotypes of influenza A viruses require different antigen designs for the induction of optimal protective antibody responses as studied by codon-optimized HA DNA vaccines. J Virol 2006,80:11628-11637.
    118.Jiang Y. Yu K, Zhang H, et al. Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antviral Res.2007,75:234-241.
    119.imenez GS. Planchon R, Wei Q, et al. Vaxfectin-formulated influenza DNA vaccines encoding NP and M2 viral proteins protect mice against lethal viral challenge. Hum. Vaccin.2007.3:157-164.
    120.Ohba K, Yoshida S, Zahidunnabi DM, et al.Mutant influenza A virus nucleoprotein is preferentially localized in the cytoplasm and its immunization in mice shows higher immunogenicity and cross-reactivity. Vaccine 2007,25:4291-4300.
    121.ompkins S, Zhao ZS, Lo CY, et al. Matrix protein 2 vaccination. Vaccine 2005, 12:2331-56.
    122.Draghia-Akli R, Khan AS, Brown PA, et al. Parameters for DNA vaccination using adaptive constant-current electroporation in mouse and pig models. Vaccine 2008, 26:432-451.
    123.Khan AS, Pope MA, and Draghia-Akli R. Highly efficient constant-current electroporation increases in vivo plasmid expression. DNA Cell Biol 2005,24: 810-818.
    124.Tjelle TE, Rabussay D, Ottensmeier C, et al. Taking electroporation-based delivery of DNA vaccination into humans:a generic clinical protocol. Methods Mol. Biol. 2008,423:497-507.
    125.Patterson LJ, Peng B, Nan X, et al. Live adenovirus recombinants as vaccine vectors. In:New Generation Vaccines. M. Levine, J.B. Kaper, R. Rappuoli, M.A. Liu, and M.F. Good. Eds. Marcel Dekker:New York, Basel,2004.325-336.
    126.Lo CY, Wu Z, Misplon JA, et al.Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus:cold-adapted vaccine versus DNA prime-adenovirus boost strategies. Vaccine 2008.26:2062-2072.
    127.Hoelscher M, Garg S. Bangari DS,et al. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 2006,367:475-481.
    128.Gao W, Soloff AC, Lu X, et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol 2006,80: 1959-1964.
    129. Wesley R, Tang M. and Lager KM. Protection of weaned pigs by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of H3N2 swine influenza virus. Vaccine 2004,22:3427-3434.
    130.Roy S, Kobinger GP. Lin J, et al. Partial protection against H5Nl influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein. Vaccine 2007,25:6845-6851.
    131.Kobinger GP. HIV vaccine failure prompts Merck to halt trial. Nature 2007,449: 390.
    132.Failed HIV vaccine may have increased vulnerability to infection. Clin Infect Dis 200846:iii.
    133.Sekaly RP. The failed HIV Merck vaccine study:a step back or a launching point for future vaccine development? J. Exp. Med.2008,205:7-12.
    134.Karaca K, Swayne DE, Grosenbaugh D, et al. Immunogenicity of fowl pox virus expressing the avian influenza virus H5 gene (TROVAC AIV-H5) in cats. Clin Diagn Lab Immunol 2005,12:1340-1342.
    135.Veits J, Wiesner D, Fuchs W, et al. Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza. Proc Natl Acad Sci USA.2006,103:8197-8202.
    136.Sylte MJ, Hubby B, and Suarez DL. Influenza neuraminidase antibodies provide partial protection for chickens against high pathogenic avian influenza infection. Vaccine 2007,25:3763-3772.
    137.Hubby B, Talarico T, Maughan M, et al. Development and preclinical evaluation of an alphavirus replicon vaccine for influenza. Vaccine 2007,25:8180-8189.
    138.Neirynck S. Deroo T, Saelens X, et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med.1999,5:1157-1163.
    139.Fiers W, Filette DM. Birkett A, et al. A "universal" human influenza A vaccine. Virus Research 2004,103:173-176.
    140.Filette DM, Jou WM, Birkett A.et al. Universal influenza A vaccine:optimization of M2-based constructs. Virology 2005,337:149-161.
    141. Filette MD, Fiers W, Martens W, et al. Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine 2006,24:6597-6601.
    142.Zou P. Liu W and Chen YH. The epitope recognized by a monoclonal antibody in influenza A virus M2 protein is immunogenic and confers immune protection. Int. Immunopharmacol.2005,5:631-635
    143.Fan J, Liang X. Horton MS, et al. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 2004.22: 2993-3003.
    144.Jegerlehner A, Schmitz N, Storni T, et al. Influenza A vaccine based on the extracellular domain of M2:weak protection mediated via antibodydependent NK cell activity. J. Immunol.2004,172:5598-5605.
    145.Ernst WA, Kim HJ. Tumpey TM, et al. Protection against Hl, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine 2006,24: 5158-5168.
    146.Huleatt JW, Nakaar V, Desai P, et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine 2008,26:201-214.
    147.Race AM, Klimov Al, Rowe T, et al. Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine 1999,17:2237-2244.
    148.Slepushkin VA, Katz JM, Black RA, et al. Protection of mice against influenza A virus challenge by vaccination with baculovirusexpressed M2 protein. Vaccine 1995,13:1399-1402.
    149.Ilyinskii P, Gabai VL, Sunyaev SR, et al. Toxicity of Influenza A Virus Matrix Protein 2 for Mammalian Cells is Associated with itslntrinsic Proton-Channeling Activity. Cell Cycle.2007,6:2043-2047.
    150.Saha S, Yoshida S, Ohba K, et al. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus. Virology.2006,354:48-57.
    151.WongJ SB, Buck CB, Shen X, et al. An evaluation of enforced rapid proteasomal degradation as a means of enhancing vaccine-induced CTL responses. J. Immunol. 2004,173:3073-3083.
    152.Altstein AD, Gitelman AK, Smirnov YA, et al. Immunization with influenza A NP-expressing vaccinia virus recombinant protects mice against experimental infection with human and avian influenza viruses. Arch. Virol.2006,151:921-931.
    153-Ilyinskii PO, Meriin AB, Gabai VL, et al. Prime-boost vaccination with a combination of proteosome-degradable and wildtype forms of two influenza proteins leads to augmented CTL response. Vaccine 2008,26:2177-2185.
    154.Brett IC and Johansson BE. Immunization against influenza A virus:comparison of conventional inactivated, live-attenuated and recombinant baculovirus produced purified hemagglutinin and neuraminidase vaccines in a murine model system. Virology 2005.339:273-280.
    155.Chen Z, Sahashi Y, Matsuo K, et al. Comparison of the ability of viral proteinexpressing plasmid DNAs to protect against influenza. Vaccine 1998.16: 1544-1549.
    156.Doherty PC, Turner SJ, Webby RG. et al. Influenza and the challenge for immunology. Nat Immunol 2006,7:449-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700