Slc11a1跨膜肽段的嵌膜结构和取向
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶质转运蛋白1(Slc11a1)由12个预测跨膜区构成,它是二价金属离子传输体,具有重要的生物功能。哺乳动物的Slc11a1能够抵抗鼠伤寒沙门氏菌、分枝杆菌、杜氏利什曼原虫等病原微生物的感染。Slc11a1第四跨膜区的G169D突变会导致蛋白功能的丧失。Slc11同源体的电生理学研究发现第三跨膜区中一些保守性残基的突变会导致Slc11传输功能的降低或丧失。本论文中我们利用圆二色谱、荧光光谱和差示扫描量热方法研究了Slc11a1第二跨膜区(TM2)、第三跨膜区(TM3和E139A突变体)、第四跨膜区(TM4和G169D突变体)肽片段在模拟膜环境中的结构、取向及肽与膜的相互作用等,同时研究了残基突变带来的影响。结果表明这些跨膜肽段均插入模型膜的内部,与TM2和TM4相比,TM3在膜中的位置相对较浅并且受pH的影响较大。TM2和TM4在所有的膜模拟环境中均形成较好的α-螺旋结构,而TM3在含有阴离子头基的模型膜中形成α-螺旋结构。E139A突变增加了跨膜肽段的α-螺旋结构,同时消除了肽段在膜中取向的pH敏感性。G169D突变对跨膜肽段的拓扑结构影响不大,只影响肽段中色氨酸残基微环境极性的pH依赖性。TM2和TM4在膜中具有类似的拓扑结构。
Solute carrier family 11 member 1 is an integral membrane protein which plays an important role in the biological functions. It belongs to Slc11 family which is highly conserved from bacteria to human and is one of a few genes that demonstrated the parasitic resistance at the molecular level. Mammalian Slc11a1 is involved in defense against intracellular pathogens such as Salmonella typhimurium, Mycobacterium bovis and Leishmania donovan. For human, NRAMP1 is associated with the diseases such as tuberculosis, leprosy and rheumatoid arthritis, etc. Understanding the functional mechanism of Slc11a1 may be helpful to study the pathogenesis for these diseases. As a proton-coupled divalent metal ion transporter, Slc11a1 can transport essential metal ions for life including Fe~(2+) and Mn~(2+). People have a certain understanding for biological function of Slc11a1, but are still not clear for its functional mechanism. Some of the transmembrane segments of Slc11a1 may be closely related to the transfer activity of the protein, so the study of the peptides that are crucial for the function of the transporter is helpful to understand the structure and function of the integral protein.
     Recently, it has become a widely used method in the structural studies of membrane proteins to select function-relating peptides from protein as model peptides and characterize them in the membrane-mimetic environments. The study on the model peptides corresponding to isolated transmembrane domains have been proved to be very useful in providing qualitative information for integral proteins. Both disease-causing mutations in Slc11a1 occurring at glycine 169 (G169D) and Slc11a2 occurring at glycine 185 (G185R) locate within TM4. It has been found by some electrophysiological studies of Slc11 homolog that the replacement of the conservative residues in TM3 severely affected or abrogated the transport function. TM2 is an extremely hydrophobic transmembrane segment and close to TM3. These means that each of the three transmembrane segments may play a specific role in the proton-coupled divalent metal ion transport of the homolog. Therefore, in this thesis, we studied the membrane-inserted structures and orientation of the peptides, including TM2, TM3/TM3-E139A and TM4/TM4-G169D of Slc11a1 in various membrane-mimetic environments, such as SDS micelles, DMPC and DMPG vesicles, using CD spectroscopy, DSC and Fluorescence spectroscopy.
     First, the second structures of the peptides in model membranes and various pH values were studied using CD. The TM2 and TM4 related peptides adopt predominantlyα-helical conformations in all membrane-mimetic environments used in the study, while TM3 related peptides displayα-helical conformations in DMPG-containing vesicles and SDS micelles but basically are unstructured in DMPC. At all pH values (especially at pH 5.5 and 7) and membrane environments, TM3 is basically less structured than TM2 and TM4. The secondary structures of TM3 in various membranes show evident pH-dependence. The pH sensitivity of TM3 folding is associated to the protonation/deprotonation process of the residue Glu139. The deprotonation of Glu139 is unfavorable for theα-helical folding of TM3. The E139A substitution of TM3 increases theα-helix content and decreases the pH dependence of the helical folding. In comparison with TM3, TM2 and TM4 displays less pH sensitivity of the helical folding. The G169D mutation of TM4 enhances the pH sensitivity of the secondary structure. Moreover, TM4 may be self-associated in the model membranes containing anionic headgroups and more helicity of TM2 in the lipid mixtures at pH 5.5 could be explained for the self-association of the peptide.
     Secondly, we studied the influences of the peptides on the phase transition behaviors of the model membranes using DSC measurement. We analyzed the peptide/membrane interactions through the changes in the calorimetric parameters of the phase transition of the model membranes in the presence and absence of the peptides. The DSC results showed that TM2, TM3 and TM4 are embedded in the lipid membranes. In pure DMPG and DMPC lipid bilayers, TM4 has more extensive perturbation to the hydrophobic chains of the lipid membranes and is embedded in the lipid bilayers more deeply than TM3. Moreover, the interactions of TM4 with membranes are less affected by pH, whereas the abnormality was observed at pH 5.5. The results studied in DMPG/DMPC lipid mixture also showed that TM3 has less extensive perturbation to the hydrocarbon chains of the lipids than both TM2 and TM4. The phase transition behaviors of the lipid mixture incorporated with peptides are more similar to those of DMPC lipid bilayers in the presence of peptides. The DSC result that the perturbation of TM2 to DMPG/DMPC mixture is less extensive at pH 5.5 than at pH 4 and 7 supports the suggestion that TM2 is self-associated in the mixed membrane at pH 5.5.
     Finally, we used the quenching constants (Ksv) and the wavelengths of the maximum Trp emission (λmax) obtained by fluorescence measurements to analyze the orientation and location of the peptides in model membranes further. The results showed that TM2 and TM4 have similar topology in membranes and they are inserted more deeply than TM3, especially at pH 5.5 and 7. In addition, the locations of the two peptides are nearly not affected by pH. In contrast, the position of TM3 in membranes is adjusted by pH, more deeply at acidic solution, but less deeply at alkalescent solution. The pH dependence of TM3 is attributed to the protonation/deprotonation of Glu139 residue in the peptide. The pH sensitivity of the topological structure of TM3 in membranes was changed by the E139A substitution, implying that Glu139 plays an important role in the topological structure of TM3. The topological structure of TM4 is hardly affected by the G169D mutation which only increases the pH sensitivity of the Trp microenvironment.
     We found in the study that the property of lipid headgroups strongly influences the secondary structure, interaction between peptide and membrane and orientation of the peptides. The transmembrane peptides have more helicity in SDS micelles and DMPG-containing vesicles than in zwitterionic DMPC vesicles, implying that the anionic lipid headgroups are favorable to induce anα-helical conformation. The helical stabilization of the TM peptides incorporated with anionic lipid vesicles or SDS micelles could be attributed to the electrostatic interactions between positively charged flanking residues at the N-termini of the peptides and anionic headgroups of lipids. TM3 is embedded in DMPC vesicles less deeply than in DMPG-containing lipid membranes. The stability of the DMPG/DMPC (1:2) mixed vesicles is more similar to that of DMPC vesicles in the presence of peptide, whereas the packing of the mixed vesicles is more similar to that of DMPG vesicles.
引文
[1] E. Wallin, G. von Heijne, Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms, [J]. Protein Sci., 1998, 7, 1029-1038.
    [2] T. K. M. Nyholm, S. ?zdirekcan, J. A. Killian, How protein transmembrane segments sense the lipid environment, [J]. Biochemistry, 2007, 46, 1457-1465.
    [3]张克斌,董解菊,胡福泉,天然抵抗力相关巨噬细胞蛋白研究进展,[J].免疫学杂志,2002, 18, 78-87.
    [4] M. Cellier, G. Prive, A. Belouchi, T. Kwan, V. Rodrigues, W. Chia, P. Gros, Nramp defines a family of membrane proteins, [J]. Proc. Natl. Acad. Sci., USA, 1995, 92, 10089-10093.
    [5] B. Mackenzie, M. A. Hediger, SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1, [J]. Pflügers. Arch., 2004, 447, 571-579.
    [6] S. M. Vidal, D. Malo, K. Vogan, E. Skamene, P. Gros, Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg, [J]. Cell, 1993, 73, 469-485.
    [7] M. Cellier, G. Govoni, S. Vidal, Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression, [J]. J. Exp. Med., 1994, 180, 1741-1752.
    [8] V. Rodrigues, P. Y. Cheah, K. Ray, W. Chia, Malvolio, the drosophila homologue of mouse NRAMP-1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour, [J]. EMBO J., 1995, 14, 3007-3020.
    [9] A. H. West, D. J. Clark, J. Martin, Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein, [J]. J. Biol. Chem., 1992, 267, 24625-24633.
    [10] H. Gunshin, B. Mackenzie, U. V. Berger, Y. Gunshin, M. F. Romero, W. F. Boron, S. Nussberger, J. L. Gollan, M. A. Hediger, Cloning and characterization of a proton-coupled mammalian metal-ion transporter, [J]. Nature, 1997, 388, 482-488.
    [11] S. Thomine, R. Wang, J. M. Ward, Cadmium and iron transport by members of a plantmetal transporter family in Arabidopsis with homology to Nramp genes, [J]. Proc. Natl. Acad. Sci., USA, 2000, 25, 4991-4996.
    [12] A. Belouchi, M. Cellier, T. Kwan, H. S. Saini, G. Leroux, P. Gros, The macrophage-specific membrane protein Nramp controlling natural resistance to infections in mice has homologues expressed in the root system of plants, [J]. Plant Mol. Biol., 1995, 29, 1181-1196.
    [13] P. Maser, S. Thomine, J. I. Schroeder, Phylogenetic relationships within cation transporter families of Arabidopsis, [J]. Plant Physiol., 2001, 126, 1646-1667.
    [14] A. Bairoch, The PROSITE dictionary of sites and patterns in proteins, its current status, [J]. Nucleic Acids Res., 1993, 21, 3097-3103.
    [15] S. Gruenheid, M. Cellier, S. Vidal, P. Gros, Identification and characterization of a second mouse Nramp gene, [J]. Genomics, 1995, 25, 514-525.
    [16] S. Vidal, A. M. Belouchi, M. Cellier, B. Beatty, P. Gros, Cloning and characterization of a second human NRAMP gene on chromosome 12q13, [J]. Mamm. Genome, 1995, 6, 224-230.
    [17] K. G. Chandy, G. A. Gutman, in Handbook of Receptors and Channels, Ligand and Voltage-gated Ion Channels, [M]. 1995, p. 1-58.
    [18] L. Y. Jan, Y. N. Jan, Potassium channels and their evolving gates, [J]. Nature, 1994, 371, 119-122.
    [19] P. T. Ellinor, J-F. Zhang, W. A. Home, R. W. Tsien, Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin, [J]. Nature, 2002, 372, 272-275.
    [20] G. Von Heijne, Membrane proteins: from sequence to structure, [J]. Annu. Rev. Biophys. Biomol. Struct., 1994, 23, 167-192.
    [21] W. N. Green, O. S. Andersen, Surface charge and ion channel function, [J]. Annu. Rev. Physiol., 1991, 53, 341-359.
    [22] M. D. Fleming, M. A. Romano, M. A. Su, L. M. Garrick, M. D. Garrick, N. C. Andrews, Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport, [J]. Proc. Natl. Acad. Sci. USA, 1998, 95, 1148-1153.
    [23] T. Herrmann, M. Muckenthaler, F. van der Hoeven, K. Brennan, S. G. Gehrke, N. Hubert, C. Sergi, H. J. Grone, I. Kaiser, I. Gosch, M. Volkmann, H. D. Riedel, M. W. Hentze, A. F. Stewart, W. Stremmel, Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin, [J]. J. Mol. Med., 2004, 82, 39-48.
    [24] M. Muckenthaler, C. N. Roy, A. O. Custodio, B. Minana, J. deGraaf, L. K. Montross, N. C. Andrews, M. W. Hentze, Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis, [J]. Nat. Genet., 2003, 34, 102-107.
    [25] P. Fergelot, M. Orhant, A. Thenie, P. Loyer, M. Ropert-Bouchet, S. Lohyer, J. Y. Le Gall, J. Mosser, Over-expression of wild-type and mutant HFE in a human melanocytic cell line reveals an intracellular bridge between MHC class I pathway and transferrin iron uptake, [J]. Biol. Cell, 2003, 95 (5), 243-255.
    [26] W. Li, A. Hellsten, J. D. Nyhalah, X. M. Yuan, Enhanced expression of natural resistance-associated macrophage protein 1 in atherosclerotic lesions may be associated with oxidized lipid-induced apoptosis, [J]. Ann. N. Y. Acad. Sci., 2004, 1030, 202-207.
    [27] M. Babcock, D. de Silva, R. Oaks, S. Davis-Kaplan, S. Jiralerspong, L. Montermini, M. Pandolfo, J. Kaplan, Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin, [J]. Science, 1997, 276, 1709-1712.
    [28] N. C. Andrews, J. E. Levy, Iron is hot: an update on the pathophysiology of hemochromatosis, [J]. Blood, 1998, 92, 1845-1851.
    [29] C. Askwith, J. Kaplan, Iron copper transport in yeast and its relevance to human disease, [J]. Trends Biochem. Sci., 1998, 23, 135-138.
    [30] T. Moos, E. H. Morgan, The metabolism of neuronal iron and its pathogenic role in neurological disease: review, [J]. Ann. NY. Acad. Sci., 2004, 1012, 14-26.
    [31] M. A. Hediger, Membrane permeability the diversity of transmembrane transport processes, [J]. Curr. Opin. Cell Biol., 1997, 9 (4), 543-546.
    [32] D. J. Eide, The molecular biology of metal ion transport in Saccharomyces cerevisiae, [J]. Annu. Rev. Nutr., 1998, 18, 441-469.
    [33] N. Nelson, Metal ion transporters and homeostasis, [J]. EMBO J., 1999, 18 (16), 4361-4371.
    [34] S. R. Davis-Kaplan, D. M. Ward, S. L. Shiflett, J. Kaplan, Genome-wide analysis of iron-dependent growth reveals a novel yeast gene required for vacuolar acidification, [J]. J. Biol. Chem., 2004, 279, 4322-4329.
    [35] J. R. Forbes, P. Gros, Divalent-metal transport by NRAMP proteins at the interface of host–pathogen interactions, [J]. Trends Microbiol., 2001, 9, 397-403.
    [36] A. Van Ho, D. M. Ward, J. Kaplan, Transition metal transport in yeast, [J]. Annu. Rev. Microbiol., 2002, 56, 237-261.
    [37] T. Goswami, A. Rolfs, M. A. Hediger, Iron transport: emerging roles in health and disease, [J]. Biochem. Cell Biol., 2002, 80, 679-689.
    [38] D. Agranoff, L. Collins, D. Kehres, T. Harrison, M. Maguire, S. Krishna, The Nramp orthologue of Cryptococcus neoformans is a pH-dependent transporter of manganese, iron, cobalt and nickel, [J]. Biochem. J., 2005, 385, 225-232.
    [39] F. Supek, L. Supekova, H. Nelson, N. Nelson, A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria, [J]. Proc. Natl. Acad. Sci. USA, 1996, 93, 5105-5110.
    [40] F. Supek, L. Supekova, H. Nelson, N. Nelson, Function of metal-ion homeostasis in the cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain function, [J]. J. Exp. Biol. 1997, 200, 321-330.
    [41] X. F. Liu, F. Supek, N. Nelson, V. C. Culotta, Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene, [J]. J. Biol. Chem., 1997, 272, 11763-11769.
    [42] X. Z. Chen, J. B. Peng, A. Cohen, H. Nelson, N. Nelson, M. A. Hediger, Yeast SMF1 mediates H+-coupled iron uptake with concomitant uncoupled cation currents, [J]. J. Biol. Chem., 1999, 274, 35089-35094.
    [43] Y. Nevo, N. Nelson, The mutation F227I increases the coupling of metal ion transport in DCT1, [J]. J. Biol. Chem., 2004, 27951, 53056-53061.
    [44] L. J. DeFelice, Transporter Structure and Mechanism, [J]. Trends Neurosci., 2004, 27, 352-359.
    [45] K. Wüthrich, NMR of Proteins Nucleic Acids, [M]. John Wiley, New York, 1986.
    [46] T. Banerjee, N. Kishore, Does the anesthetic 2,2,2-trifluoroethanol interact with bovine serum albumin by direct binding or by solvent-mediated effects? A calorimetric and spectroscopic investigation, [J]. Biopolymers, 2005, 78, 78-86.
    [47] R. Walgers, T. C. Lee, A. Cammers-Goodwin, An Indirect Chaotropic Mechanism for the Stabilization of Helix Conformation of Peptides in Aqueous Trifluoroethanol and Hexafluoro-2-propanol, [J]. J. Am. Chem. Soc., 1998, 120, 5073-5079.
    [48] H. Li, F. Li, Z. M. Qian, H. Sun, Structure and topology of the transmembrane domain 4 of the divalent metal transporter in membrane-mimetic environments, [J]. Eur. J. Biochem., 2004, 271, 1938-1951.
    [49] F. Li, H. Li, L. Hu, M. Kwan, G. Chen, Q.-Y. He, H. Sun, Structure, assembly and topology of the G185R mutant of the fourth transmembrane domain of divalent metal transporter, [J]. J. Am. Chem. Soc., 2005, 127, 1414-1423.
    [50] C. H. M. Papavoine, R. N. H. Konings, C. W. Hilbers, F. J. M. van de Ven, Location of M13 Coat Protein in Sodium Dodecyl Sulfate Micelles As Determined by NMR, [J]. Biochemistry, 1994, 33, 12990-12997.
    [51] M. Lindberg, J. Jarvet,ü. Langel, A. Gr?slund, Secondary Structure and Position of the Cell-Penetrating Peptide Transportan in SDS Micelles As Determined by NMR, [J]. Biochemistry, 2001, 40, 3141-3149.
    [52] M. Lindberg, A. Gr?slund, The position of the cell penetrating peptide penetratin in SDS micelles determined by NMR, [J]. FEBS Lett., 2001, 497, 39-44.
    [53] F. Canonne-Hergaux, M. D. Fleming, J. E. Levy, S. Gauthier, T. Ralph, V. Picard, N. C. Andrews, P. Gros, The Nramp2/DMT1 iron transporter is induced in the duodenum of microcytic anemia mk mice but is not properly targeted to the intestinal brush border, [J]. Blood, 2000, 96, 3964-3970.
    [54] F. Canonne-Hergaux, A. S. Zhang, P. Ponka, P. Gros, Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice, [J]. Blood, 2001, 98, 3823-3830.
    [55] A. Sacher, A. Cohen, N. Nelson, Properties of the mammalian and yeast metal-iontransporters DCT1 and Smf1p expressed in Xenopus laevis oocytes, [J]. J. Exp. Biol., 2001, 2046, 1053-1061.
    [56] P. Marciani, D. Trotti, M. A. Hediger, G. Monticelli, Modulation of DMT1 activity by redox compounds, [J]. J. Membr. Biol., 2004, 197 (2), 91-99.
    [57] M. Okubo, K. Yamada, M. Hosoyamada, T. Shibasaki, H. Endou, Cadmium transport by human Nramp2 expressed in Xenopus laevis oocytes, [J]. Toxicol. Appl. Pharmacol., 2003, 187 (3), 162-167.
    [58] S. Orgad, H. Nelson, D. Segal, N. Nelson, Metal ions suppress the abnormal taste behavior of the Drosophila mutant malvolio, [J]. J. Exp. Biol., 1998, 201, 115-120.
    [59] J. D’Souza, P. Y. Cheah, P. Gros, W. Chia, V. Rodrigues, Functional complementation of the malvolio mutation in the taste pathway of Drosophila melanogaster by the human natural resistance associated macrophage protein 1 (Nramp-1), [J]. J. Exp. Biol., 1999, 202, 1909-1915.
    [60] D. Agranoff, I. M. Monahan, J. A. Mangan, P. D. Butcher, S. Krishna, Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family, [J]. J. Exp. Med., 1999, 190, 717-724.
    [61] S. Gruenheid, P. Gros, Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport, [J]. Curr. Opin. Microbiol., 2000, 3, 43-48.
    [62] M. D. Fleming, C. C. 3rd Trenor, M. A. Su, D. Foernzler, D. R. Beier, W. F. Dietrich, N. C. Andrews, Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene, [J]. Nat. Genet., 1997, 16, 383-386.
    [63] F. Kishi, T. Yoshida, S. Aiso, Location of NRAMP1 molecule on the plasma membrane and its association with microtubules, [J]. Mol. Immunol., 1996, 33, 1241-1246.
    [64] S. Gruenheid, F. Cannone-Hergaux, S. Gauthier, D. J. Hackam, S. Grinstein, P. Gros, The iron transport protein Nramp2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes, [J]. J. Exp. Med., 1999, 189, 831-841.
    [65] M. Tabuchi, T. Yoshimori, K. Tamagushi, T. Yoshida, F. Kishi, Human NRAMP2/DMT1, Which Mediates Iron Transport across Endosomal Membranes, IsLocalized to Late Endosomes and Lysosomes in HEp-2 Cells, [J]. J. Biol. Chem., 2000, 275, 22220-22228.
    [66] F. Cannone-Hergaux, S. Gruenheid, P. Ponka, P. Gros, Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron, [J]. Blood, 1999, 93, 4406-4417.
    [67] J. C. Fleet, Identification of Nramp2 as an iron transport protein: another piece of the intestinal iron absorption puzzle, [J]. Nutr. Rev., 1998, 56, 88-89.
    [68] M. A. Su, C. C. Trenor, J. C. Fleming, M. D. Fleming, N. C. Andrews, The G185R mutation disrupts function of the iron transporter Nramp2, [J]. Blood, 1998, 92, 2157-2163.
    [69] A. C. Chua, E. H. Morgan, Effects of iron deficiency and iron overload on manganese uptake and deposition in the brain and other organs of the rat, [J]. Biol. Trace Elem. Res., 1996, 55, 39-54.
    [70] A. Forget, E. Skamene, P. Gros, A. C. Miailhe, R. Turcotte, Differences in response among inbred mouse strains to infection with small doses of Mycobacterium bovis BCG, [J]. Infect Immun., 1981, 32, 42-47.
    [71] J. Plant, A. A. Glynn, Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice, [J]. Nature, 1974, 248, 345-347.
    [72] D. J. Bradley, Letter: Genetic control of natural resistance to Leishmania donovani, [J]. Nature, 1974, 250, 353-354.
    [73] J. E. Plant, J. M. Blackwell, A. D. O'Brien, D. J. Bradley, A. A. Glynn, Are the Lsh and Ity disease resistance genes at one locus on mouse chromosome 1?, [J]. Nature, 1982, 297, 510-511.
    [74] J. M. Blackwell, T. I. A. Roach, S. E. Atkinson, Genetic regulation of macrophage priming/activation: the Lsh gene story, [J]. Immunol. Lett., 1991, 30, 241-248.
    [75] C. H. Barton, J. K. White, T. I. A. Roach, J. M. Blackwell, NH2-terminal sequence of macrophage-expressed natural resistance-associated macrophage protein (Nramp) encodes a proline/serine-rich putative Src homology 3-binding domain, [J]. J. Exp. Med., 1994, 179, 1683-1687.
    [76] S. M. Vidal, M. L. Tremblay, G. Govoni, S. Gauthier, G. Sebastiani, D. Malo, The Ity/Lsh/Bcg locus: Natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene, [J] J. Exp. Med., 1995, 182, 655-666.
    [77] D. Malo, K. Vogan, S. M. Vidal, J. Hu, M. Cellier, E. Schurr, Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites, [J]. Genomics, 1994, 23, 51-61.
    [78] S. Gruenheid, E. Piner, M. Desjardins, Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome, [J]. J. Exp. Med., 1997, 185, 717-730.
    [79] P. G. P. Atkinson, J. M. Blackwell, C. H. Barton, Nramp1 locus encodes a 65 kDa interferon-g-inducible protein in murine macrophages, [J]. Biochem. J., 1997, 325, 779-786.
    [80] N. Jabado, S. Lam-Yuk-Tseung, J. Forbes, P. Gros, The Nramp family, [M]. Edited by M. Mathieu and P. Gros. Landes Bioscience/Kluwer Academic, New York, NY, 2004, pp. 1-15.
    [81] P. Gros, E. Skamene, A. Forget, Cellular mechanisms of genetically controlled host resistance to Mycobacterium bovis (BCG), [J]. J. Immunol., 1983, 131, 1966-1973.
    [82] P. R. Crocker, J. M. Blackwell, D. J. Bradley, Expression of the natural resistance gene Lsh in resident liver macrophages, [J]. Infect. Immun., 1984, 43, 1033-1040.
    [83] J. Hu, N. Bumstead, P. Barrow, G. Sebastiani, L. Olien, K. Morgan, Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC, [J]. Genome Res., 1997, 7, 693-704.
    [84] T. Lang, E. Prina, D. Sibtorpe, J. M. Blackwell, Nramp1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation, [J]. Infect. Immun., 1997, 65, 380-386.
    [85] J. M. Blackwell, S. Searle, Genetic regulation of macrophage activation: understanding the function of Nramp1 (=Ity/Lsh/Bcg), [J]. Immunol. Lett., 1999, 65, 73-80.
    [86] M. Cellier, A. Belouchi, P. Gros, Resistance to intracellular infections: comparative genomic analysis of Nramp, [J]. Trends Genet., 1996, 12, 201-204.
    [87] P. Courville, R. Chaloupka, M. F. M. Cellier, Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters, [J]. Biochem. Cell Biol., 2006, 84, 960-978.
    [88] Y. Nevo, N. Nelson, The NRAMP family of metal-ion transporters, [J]. Biochim. Biophys. Acta, 2006, 1763, 609-620.
    [89] M. Jenefer, T. G. Blackwell, A. W. Carlton Evans, S. Dean, P. Natalie, J. K. White, S. Susan, E. N. Miller, C. S. Peacock, H. Mohammed, M. Ibrahim, SLC11A1 (formerly NRAMP1) and disease resistance, [J]. Cell Microbiol., 2001, 3, 773-784.
    [90] B. S. Zwilling, D. E. Kuhn, L. Wikoff, D. Brown, W. LaFuse, The role of iron in Nramp1 mediated inhibition of mycobacterial growth, [J]. Infect Immun., 1999, 67, 1386-1392.
    [91] N. Jabado, A. Jankowski, S. Dougaparsad, V. Picard, S. Grinstein, P. Gros, Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nrampl) functions as a pH-dependent manganese transporter at the phagosomal membrane, [J]. J. Exp. Med., 2000, 192, 1237-1347.
    [92] G. Govoni, P. Gros, Macrophage NRAMP1 and its role in resistance to microbial infections, [J]. Inflamm. Res., 1998, 47, 277-284.
    [93] R. Chaloupka, P. Courville, F. Veyrier, B. Knudsen, T. A. Tompkins, M. F. Cellier, Identification of functional amino acids in the Nramp family by a combination of evolutionary analysis and biophysical studies of metal and proton cotransport in vivo, [J]. Biochemistry, 2005, 44, 726-733.
    [94] H. A. Haemig, R. J. Brooker, Importance of conserved acidic residues in mntH, the Nramp homolog of Escherichia coli, [J]. J. Membr. Biol., 2004, 201, 97-107.
    [95] S. Lam-Yuk-Tseung, G. Govoni, J. Forbes, P. Gros, Iron transport by Nramp2/DMT1: pH regulation of transport by 2 histidines in transmembrane domain 6, [J]. Blood, 2003, 101, 3699-3707.
    [96] A. Cohen, Y. Nevo, N. Nelson, The first external loop of the metal ion transporter DCT1 is involved in metal ion binding and specificity, [J]. Proc. Natl. Acad. Sci. USA, 2003, 100, 10694-10699.
    [97] S. M. Vidal, E. Pinner, P. Lepage, S. Gauthier, P. Gros, Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1D169) mouse strains, [J]. J. Immunol., 1996, 157, 3559-3568.
    [98] D. E. Kuhn, B. D. Baker, W. P. Lafuse, B. S. Zwilling, Differential iron transport into phagosomes isolated from the RAW264.7 macrophage cell lines transfected with Nramp1Gly169 or Nramp1Asp169, [J]. J. Leukoc. Biol., 1999, 66, 113-119.
    [99] B. Mackenzie, M. L. Ujwal, M. H. Chang, M. F. Romero, M. A. Hediger, Divalent metal-ion transporter DMT1 mediates both H+-coupled Fe2+ transport and uncoupled fluxes, [J]. Pflugers. Arch., 2006, 451, 544-558.
    [100] B. Mackenzie, M. L. Ujwal, M-H. Chang, M. F. Romero, M. A. Hediger, Resolving the mechanisms of the iron transporter DCT1 from its kinetic properties and the impact of mutating two critical histidyl residues within transmembrane regions (abstract), [J]. FASEB J., 2003, 17, A911.
    [101] M. T. Lamy-Freund, K. A. Riske, The peculiar thermo-structural behavior of the anionic lipid DMPG, [J]. Chem. Phys. Lipids, 2003, 122, 19-32.
    [102] Y. P. Zhang, R. N. Lewis, R. N. McElhaney, Calorimetric and Spectroscopic Studies of the Thermotropic Phase Behavior of the n-Saturated 1,2-Diacylphosphatidylglycerols, [J]. Biophys. J., 1997, 72, 779-793.
    [103] V. V. Andrushchenko, H. J. Vogel, E. J. Prenner, Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry, [J]. Biochim. Biophys. Acta, 2007, 1768, 2447-2458.
    [104] P. Garidel, C. Johann, L. Mennicke, The mixing behavior of pseudobinary phosphatidylcholine-phopsphatidylglycerol mixtures as a function of pH and chain length, [J]. Eur. Biophys. J., 1997, 26, 447-459.
    [105] R. N. A. H. Lewis, Y. P. Zhang, R. N. McElhaney, Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, Biochim. Biophys. Acta, [J]. 2005, 1668, 203-214.
    [106] J. H. Chill, J. M. Louis, C. Miller, A. Bax, NMR study of the tetrameric KcsApotassium channel in detergent micelles, [J]. Protein Sci., 2006, 15, 684-698.
    [107] H. Stahlberga, D. Fotiadisa, S. Schcuringa, Two dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane protein, [J]. FEBS Lett., 2001, 504, 166-172.
    [108] B. Bechinger, Solid-state NMR investigations of interaction contributions that determine the alignment of Helical polypeptides in biological membranes, [J]. FEBS Lett., 2001, 504, 161-165.
    [109] H. M. Al-Hashimi, H. Valafar, M. Terrell, Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings, [J]. J. Magn. Reson., 2000, 2, 402-406.
    [110] M. Ottiger, A. Bax, Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules, [J]. J. Biomol. NMR, 1998, 3, 361-372.
    [111] L. K. Nicholson, F. Moll , T. E. Mixon, Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A’, [J]. Biochemistry, 1987, 21, 6621-6626.
    [112] R. Ketchem, B. Roux, T. Cross, High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints, [J]. Structure, 1997, 12, 1655-1669.
    [113] Y. Li, A. Z. Kijac, S. G. Sligar, Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy, [J]. Biophys. J, 2006, 10, 3819-3828.
    [114] J. R. Quine, M. T. Brenneman, T. A. Cross, Protein structural analysis from solid-state NMR-derived orientational constraints, [J]. Biophys. J., 1997, 5, 2342-2348.
    [115] D. A. Doylu, C. J. Moral, R. A. Pfuetzncr, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, [J]. Science, 1998, 280, 69-77.
    [116] R. Dutzler, E. B. Campbell, M. Cadcne, X-ray structure of a CIC chloride channel at 3.0 ? reveals the molecular basis of anion selectivity, [J]. Nature, 2002, 415, 287-294.
    [117] C. Toyoshinna, H. Nonnura, Structural changes in the calcium pump accompanying the dissociation of calcium, [J]. Nature, 2002, 418, 605-611.
    [118] A. Engel, Microscopic assessment of membrane protein structure and function, [J]. Histochem. Cell Biol., 2003, 120, 93-102.
    [119] D. J. Müller, D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscopy, [J]. Biophys. J., 1999, 76, 1101-1111.
    [120] F. A. Schabert, C. Henn, A. Engel, Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy, [J]. Science, 1995, 268, 92-94.
    [121] H. Seelert, A. Poetsch, N. A. Dencher, A. Engel, H. Stahlberg, D. J. Müller, Proton powered turbine of a plant motor, [J]. Nature, 2000, 405, 418-419.
    [122] N. Buzhynskyy, R. K. Hite, T. Walz, S. Scheuring, The supramolecular architecture of junctional microdomains in native lens membranes, [J]. EMBO Rep., 2007, 8, 51-55.
    [123] J. Szymon, Z. Brittany, A. Frances, V-B. Catherine, S. Simon, Direct Visualization of KirBac3.1 Potassium Channel Gating by Atomic Force Microscopy, [J]. J. Mol. Biol., 2007, 374, 500-505.
    [124] S. D. Zakharov, W. A. Cramer, Insertion intermediates of pore-forming colicins in membrane two-dimensional space, [J]. Biochimie, 2002, 84, 465-475.
    [125]张志鸿等,膜生物物理,[M].高等教育出版社,1987, 49.
    [126] C. Cantor, S. N. Timasheff, in The Proteins (ed. H. Neurath), [M]. Academic Press, New York, 1982, Vol. V, p.145.
    [127] C. Cantor, P. R. Schimmel, in Biophysical Chemistry, [M]. Freeman, San Francisco, 1980, Vol. II.
    [128] W. C. Johnson, in Methods of Biochemical analysis (ed. D. Glick), [M]. J.Wiley, New York, 1985, Vol. 31, p.61.
    [129] P. M. Bayley, in An Introduction to Spectroscopy for Biochemists (ed. S. B. Brown), [M]. Academic Press, London, 1980, p.148.
    [130]沈兴灿,梁宏,何锡文,王新省,圆二色光谱分析蛋白质构象的方法及研究进展,[J].分析化学评述与进展,2004, 32, 388-394.
    [131] W. C. Johnson, Analyzing Protein CD for Accurate secondary Structures, Proteins: Str. Func. Genet., [M]. 1999, 35, 307-312.
    [132]许金纳,王尊本,荧光分析法,[M].科学出版社.
    [133] M. R. Eftink, in Methods of Biochemical Analysis (ed. C. H. Suelter), [M]. Jonhn Wiley, New York, 1991, Vol. 35, p.127.
    [134] G. R. Penzer, in An Introduction to Spectroscopy for Biochemists (ed. S. B. Brown), [M]. Academic Press, London, 1980, p.70.
    [135] L. Brand, B. Witholt, in Methods in Enzymology (ed. C. H. W. Hirs and S. N. Timasheff), [M]. Academic Press, New York, 1967, Vol. 11, p748.
    [136] A. Skoog, T. A. Hooler, Nieman in Principles of Instrumental Analysis (5th Ed.), [M]. Saunders College Publishing, 1996.
    [137] B. L. V. Duuren, Solvent Effects in the Fluorescence of Indole and Substituted Indoles, [J]. J. Org. Chem., 1961, 26, 2954-2960.
    [138] T. L. Bushueva, E. P. Busel, E. A. Burstein, Relationship of thermal quenching of protein fluorescence to intramolecular structural mobility, [J]. Biochim. Biophys. Acta, 1978, 534, 141-152.
    [139] W. J. Colucci, L. Telstra, M. C. Sattler, F. R. Fronczek, M. D. Barkley, Deuterium isotope effects in constrained tryptophan derivatives: implications for tryptophan photophysics, [J]. J. Am. Chem. Soc., 1990, 112, 9182-9190.
    [140] Y. Cegn, M. D. Barkley, Toward understanding tryptophan fluorescence in proteins, [J]. Biochemistry, 1998, 37, 9976-9982.
    [141] A. M. Tamburro, A. Pepe, B. Bochicchio, Localizing alpha-Helices in Human Tropoelastin: Assembly of the Elastin "Puzzle", [J]. Biochemistry, 2006, 45, 9518-9530.
    [1] R. I. MacDonald, R. C. MacDonald, Assembly of phospholipid vesicles bearing sialoglycoprotein from erythrocyte membrane, [J]. J. Biol. Chem., 1975, 250, 9206-9214.
    [2] L. P. Liu, S. C. Li, N. K. Goto, C. M. Deber, Threshold hydrophobicity dictates helical conformations of peptides in membrane environments, [J]. Biopolymer, 1996, 39, 465-470.
    [3] M. Sangita, C. Abhijit, Membrane Interaction of an Antitumor Antibiotic, Mithramycin, with Anionic Phospholipid Vesicles, [J]. Biochem. Pharmacol., 1999, 57, 981-987.
    [4] J. Killian, T. P. Trouard, D. V. Greathouse, V. Chupin, G. Lindblom, A general method for the preparation of mixed micelles of hydrophobic peptides and sodium dodecyl sulphate, [J]. FEBS Lett., 1994, 348, 161-165.
    [5] E. A. G. Aniansson, S. N. Wall, M. Almgren, H. Hoffman, I. Kielmann, W. Ulbricht, R. Zana, J. Lang, C. Tondre, Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants, [J]. J. Phys. Chem., 1976, 80, 905-922.
    [6] J. R. Lakowicz, Principles of fluorescence spectroscopy, [M]. Kluwer Academic, New York, 1999.
    [1] S. Gruenheid, E. Pinner, M. Desjardins, P. Gros, Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome, [J]. J. Exp. Med., 1997, 185, 717-730.
    [2] S. M. Vidal, D. Malo, K. Vogan, E. Skamene, P. Gros, Natural resistance to infection with intracellular parasites:Isolation of a candidate for Bcg, [J]. Cell, 1993, 73, 469-485.
    [3] M. Cellier, G. Prive, A. Belouchi, T. Kwan, V. Rodrigues, W. Chia, P. Gros, Nramp defines a family of membrane proteins, [J]. Proc. Natl. Acad. Sci. USA, 1995, 92, 10089-10093.
    [4] M. Cellier, A. Belouchi, P. Gros, Resistance to intracellular infections: comparative genomic analysis of Nramp, [J]. Trends Genet., 1996, 12, 201-204.
    [5] S. Vidal, M. L. Tremblay, G. Govoni, S. Gauthier, G. Sebastiani, D. Malo, E. Skamene, M. Olivier, S. Jothy, P. Gros, The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene, [J]. J. Exp. Med., 1995, 182, 655-666.
    [6] J. R. Forbes, P. Gros, Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane, [J]. Blood, 2003, 102, 1884-1892.
    [7] N. Jabado, F. Canonne-Hergaux, S. Gruenheid, V. Picard, P. Gros, Iron transporter Nramp2/DMT-1 is associated with the membrane of phagosomes in macrophages and Sertoli cells, [J]. Blood, 2002, 100, 2617-2622.
    [8] T. Goswami, A. Bhattacharjee, P. Babal, S. Searle, E. Moore, M. Li, J. M. Blackwell, Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter, [J]. Biochem. J., 2001, 354, 511-519.
    [9] J. M. Blackwell, S. Searle, H. Mohamed, J. K. White, Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/ Slc11a1 gene story, [J]. Immunol. Lett., 2003, 85, 197-203.
    [10] H. Qi, L. Yang, R. Xue, Y. Song, S. Wang, F. Li, The third and fourth transmembranedomains of Slc11a1: comparison of their structures and positioning in phospholipid model membranes, [J]. Biopolymers, 2009, 92, 52-64.
    [11] J. A. Killian, Hydrophobic mismatch between proteins and lipids in membranes, [J]. Biochim. Biophys. Acta, 1998, 1376, 401-416.
    [12] R. Xue, S. Wang, H. Qi, Y. Song, C. Wang, F. Li, Structure analysis of the fourth transmembrane domain of Nramp1 in model membranes, [J]. Biochim. Biophys. Acta, 2008, 1778, 1444-1452.
    [13] R. Xue, S. Wang, H. Qi, Y. Song, S. Xiao, C. Wang, F. Li, Structure and topology of Slc11a1(164–191) with G169D mutation in membrane-mimetic environments, [J]. J. Struct. Biol., 2009, 165, 27-36.
    [14] J. R. Brender, K. Hartman, K. R. Reid, R. T. Kennedy, A. Ramamoorthy, A Single Mutation in the Nonamyloidogenic Region of Islet Amyloid Polypeptide Greatly Reduces Toxicity, [J]. Biochemistry, 2008, 47, 12680-12688.
    [15] N. E. Zhou, C. M. Kay, R. S. Hodges, The two-stranded alpha-helical coiled-coil is an ideal model for studying protein stability and subunit interactions, [J]. J. Biol. Chem., 1992, 267, 2664-2670.
    [16] N. Choy, V. Raussens, V. Narayanaswami, Inter molecular coiled-coil formation in human apolipoprotein E C-terminal domain, [J]. J. Mol. Biol., 2003, 334, 527-539.
    [17] K. Dutta, A. Alexandrov, H. Huang, S. M. Pascal, pH-induced folding of an apoptotic coiled coil, [J]. Protein Sci., 2001, 10, 2531-2540.
    [18] I. Jelesarov, E. Durr, R. M. Thomas, H. R. Bosshard, Salt Effects on Hydrophobic Interaction and Charge Screening in the Folding of a Negatively Charged Peptide to a Coiled Coil(Leucine Zipper), [J]. Biochemistry, 1998, 37, 7539-7550.
    [19] D. Krylov, J. Barchi, C. Vinson, Inter-helical interactions in the leucine zipper coiled coil dimer: pH and salt dependence of coupling energy between charged amino acids, [J]. J. Mol. Biol., 1998, 279, 959-972.
    [20] E. Durr, I. Jelesarov, H. R. Bosshard, Energetics of Coiled Coil Folding: The Nature of the Transition States, [J]. Biochemistry, 1999, 38, 870-880.
    [21] M. Oliveberg, V. L. Arcus, A. R. Fersht, pKA values of carboxyl groups in the native anddenatured states of barnase: the pKA values of the denatured state are on average 0.4 units lower than those of model compounds, [J]. Biochemistry, 1995, 34, 9424-9433.
    [22] A. Senes, D. E. Engel, W. F. DeGrado, Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs, [J]. Curr. Opin. Struct. Biol., 2004, 14, 465-479.
    [1] P. Vitovi?, S. Kresák, R. Naumann, S. M. Schiller, R. N. A. H. Lewis, R. N. McElhaney, T. Hianik, The study of the interaction of a model a-helical peptide with lipid bilayers and monolayers, [J]. Bioelectrochemistry, 2004, 63, 169-176.
    [2]周哲,丛蓉娟,刘毓谷,国外医学分子生物学分册,[M].第13卷第4期,1991年.
    [3] P. Rybar, R. Krivanek, T. Samuely, R. N. A. H. Lewis, R. N. McElhaney, T. Hianik, Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry, [J]. Biochim. Biophys. Acta, 2007, 1768, 1466-1478.
    [4] M. Torrent, E. Cuyás, E. Carreras, S. Navarro, O. López, A. Maza, M. V. Nogués, Y. K. Reshetnyak, E. Boix, Topography Studies on the Membrane Interaction Mechanism of the Eosinophil Cationic Protein, [J]. Biochemistry, 2007, 46, 720-733.
    [5] E. Andersson, F. Schain, M. Svedling, H-E. Claesson, P. K. A. Forsell, Interaction of human 15-lipoxygenase-1 with phosphatidylinositol bisphosphates results in increased enzyme activity, [J]. Biochim. Biophys. Acta, 2006, 1761, 1498-1505.
    [6] H. Zhao, R. Sood, A. Jutila, S. Bose, G. Fimland, J. Nissen-Meyer, P. K. J. Kinnunen, Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: Implications for a novel mechanism of action, [J]. Biochim. Biophys. Acta, 2006, 1758, 1461-1474.
    [7] F. Abrunhosa, S. Faria, P. Gomes, I. Tomaz, J. C. Pessoa, D. Andreu, M. Bastos, Interaction and Lipid-Induced Conformation of Two Cecropin-Melittin Hybrid Peptides Depend on Peptide and Membrane Composition, [J]. J. Phys. Chem. B, 2005, 109, 17311-17319.
    [8] C. Schwieger, A. Blume, Interaction of poly(L-lysines) with negatively charged membranes: an FT-IR and DSC study, [J]. Eur. Biophys. J., 2007, 36, 437-450.
    [9] Y. P. Zhang, R. N. Lewis, R. N. McElhaney, Calorimetric and Spectroscopic Studies of the Thermotropic Phase Behavior of the n-Saturated 1,2-Diacylphosphatidylglycerols, [J].Biophys. J., 1997, 72, 779-793.
    [10] R. M. Epand, B. Gabel, R. F. Epand, A. Sen, S. W. Hui, A. Muga, W. K. Surewicz, Formation of a new stable phase of phosphatidylglycerols, [J]. Biophys. J., 1992, 63, 327-332.
    [11] T. Heimburg, R. L. Biltonen, Thermotropic behavior of dimyristoylphosphatidylglycerol and its interaction with cytochrome c, [J]. Biochemistry, 1994, 33, 9477-9488.
    [12] M. T. Lamy-Freund, K. A. Riske, The peculiar thermo-structural behavior of the anionic lipid DMPG, [J]. Chem. Phys. Lipids, 2003, 122, 19-32.
    [13] R. N. A. H. Lewis, Y.-P Zhang,. R. N. McElhaney, Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol, [J]. Biophys. Acta, 2005, 1668, 203-214.
    [14] V. V. Andrushchenko, H. J. Vogel, E. J. Prenner, Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry, [J]. Biochim. Biophys. Acta, 2007, 1768, 2447-2458.
    [15] S. D. Zakharov, W. A. Cramer, The insertion intermediates of pore-forming colicins in two-dimensional space, [J]. Biochimie., 2002, 84, 465-475.
    [16] S.-Y. Lee, A. Lee, J. Chen, R. MacKinnon, Structure of the kvap voltage-dependent K+ channel and its dependence on the lipid membrane, [J]. Proc. Nat. Acad. Sci. USA, 2005, 102, 15441-15446.
    [17] D. Grasso, D. Miliardi, C. La Rosa, E. Rizzarelli, The different role of Cu++ and Zn++ ions in affecting the interaction of prion peptide PrP106-126 with model membranes, [J]. Chem. Commun., 2004, 2, 246-247.
    [18] D. Grasso, G. Grasso, V. Guantieri, G. Impellizzeri, C. Rosa, D. Milardi, G. Micera, K. ?sz, G. Pappalardo, E. Rizzarelli, D. Sanna, I. Sóvágó, Environmental Effects on a Prion's Helix II Domain: Copper(II) and Membrane Interactions with PrP180-193 and Its Analogues, [J]. Chem. Eur. J., 2006, 12, 537-547.
    [19] B. Klajnert, J. Janiszewska, Z. Urbanczyk-Lipkowska, M. Bryszewska, R. M. Epand, DSC studies on interactions between low molecular mass peptide dendrimers and modellipid membranes, [J]. Int. J. Pharm., 2006, 327, 145-152.
    [20] G. W. J. Seto, S. Marwaha, D. M. Kobewka, R. N. A. H. Lewis, F. Separovic, R. N. McElhaney, Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: Differential scanning calorimetric and Fourier transform infrared spectroscopic studies, [J]. Biochim. Biophys. Acta, 2007, 1768, 2787-2800.
    [21] P. Garidela, M. Rappoltb, A. B. Schrommc, J. Howec, K. Lohnerd, J. Andr?, M. H. J. Koche, K. Brandenburg, Divalent cations affect chain mobility and aggregate structure of lipopolysaccharide from Salmonella minnesota reflected in a decrease of its biological activity, [J]. Biochim. Biophys. Acta, 2005, 1715, 122-131.
    [22] D. Agranoff, I. M. Monahan, J. A. Mangan, P. D. Butcher, S. Krishna, Mycobacterium tuberculosis Expresses a Novel pH-dependent Divalent Cation Transporter Belonging to the Nramp Family, [J]. J. Exp. Med., 1999, 190, 717-724.
    [23] J. R. Brender, K. Hartman, K. R. Reid, R. T. Kennedy, A. Ramamoorthy, A Single Mutation in the Nonamyloidogenic Region of Islet Amyloid Polypeptide Greatly Reduces Toxicity, [J]. Biochemistry, 2008, 47, 12680-12688.
    [24] C. Hirak, S. Munna, Interaction of piroxicam and meloxicam with DMPG/DMPC mixed vesicles: Anomalous partitioning behavior, [J]. Biophysical Chemistry, 2007, 125, 306-313.
    [25] H. Qi, L. Yang, R. Xue, Y. Song, S. Wang, F. Li, The third and fourth transmembrane domains of Slc11a1: comparison of their structures and positioning in phospholipid model membranes, [J]. Biopolymers, 2009, 92, 52-64.
    [1] B. L. V. Duuren, Fluorescence of Indole and Substituted Indoles, [J]. J. Org. Chem. 1960, 26, 2954-2960.
    [2] E. J. Bolen, P. W. Holloway, Quenching of tryptophan fluorescence by brominated phospholipids, [J]. Biochemistry, 1990, 29, 9638-9643.
    [3] M. R. Eftink, C. A. Ghiron, Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies, [J]. Biochemistry, 1976, 15, 672-680.
    [4] R. Xue, S. Wang, H. Qi, Y. Song, S. Xiao, C. Wang; F. Li, Structure and topology of Slc11a1 (164-191) with G169D mutation in membrane-mimetic environments, [J]. J. Struct. Biol., 2009, 165, 27-36.
    [5] J. K. White, A. S. Stewart, J. F. Popoff, S. Wilson, J. M. Blackwell, Incomplete glycosylation and defective intracellular targeting of mutant solute carrier family 11 member 1 (Slc11a1), [J]. Biochem. J., 2004, 382, 811-819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700