江陵凹陷构造特征形成演化及其与油气聚集的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“江陵凹陷构造特征、形成演化及其与油气聚集的关系”是在中国石化股份有限公司科技重点项目“江陵凹陷油气田形成条件与勘探方向研究”(P01027)的基础上进行深入研究完成的。
     本文在盆地构造分析、含油气系统理论和方法指导下,综合应用大量的地质、地球物理和钻井等实际资料,系统分析了江陵凹陷的构造几何学特征、运动学特征、动力学特征及其与油气聚集的关系,并对构造控油、含油气系统进行了综合研究,揭示了江陵凹陷构造特征与形成演化及其控油作用,系统分析并总结了油气成藏的主控因素及聚集规律,最后对油气勘探有利区块进行了评价。
     运用构造几何学,构造运动学及平衡剖面方法,对江陵凹陷进行了整体和动态分析,认为江陵凹陷的原型是受公安—松滋断层和丫角—新沟嘴断层控制的伸展型断陷盆地,发育江口断凹、万城—采穴断凸、江陵断凹三个次级构造单元及十一个四级构造单元。
     分析认为江陵凹陷发育四期、三个期次的断层系统:第一期为K_(2y)—E_x时期形成,以张性为主,走向以NE或NEE向为主,近EW向为辅,控制凹陷的构造格局;第二期为Ei—Ejh时期形成,整体表现为张性、平面上以NE向为主:第三期为Ejh末期与末期形成,整体为压扭性,平面上为近SN向或NW向,部分为早期张性断层反转。
     江陵凹陷发育106个圈闭,主要受断层控制。主要类型有挤压背斜(包括盐隆)、断背斜、断鼻、断块等,其形成与断层差异升降作用、水平挤压作用和盐隆作用有关。
     通过江陵凹陷构造运动学研究认为江陵凹陷演化经历了晚侏罗—早白垩世的盆地形成阶段;晚白垩—始新世新沟嘴组的第一期断陷阶段、荆沙组—荆河镇组的第二期强烈断陷阶段和早第三世末期与晚第三世的隆升剥蚀阶段。晚白垩—早第三纪断陷事件具有分期次、幕式发育特征。其形成与演化过程具有穹隆作用—断陷伸展作用—火山作用—热沉降作用的构造事件序列特点。
     运用构造解析法对凹陷的构造变形及其控油作用进行了分析。(1)通过对江陵凹陷变形演化分析,提出江陵凹陷具有三个主要变形期:燕山晚期、喜山早期和喜山中晚期,对应发育三个主要不整合面。(2)通过对火山岩成份及活动期次等分析认为,江陵凹陷火山岩发育有四期:沙市组、新沟嘴组、荆沙组和潜江组时期,主要岩性为基性玄武岩,可作为油气的储集层,同时形成与火山活动有关的圈闭是油气聚集的有利场所。(3)江陵凹陷盐构造主要形成于荆沙组—荆河镇组时期,至广华寺组末期最终定型,盐构造主要发育在荆州背斜带和南部断洼带两侧,盐构造形成有助于油气运移,同时控制江陵凹陷的油气聚集。
     运用含油气系统理论和方法深入研究新生古储型油气成藏条件和油气成藏主控因素。
     1)、提出新生古储型油气藏成藏模式与今后的勘探方向。指出深大断裂的活动(断距大)
The sub-project of Relations between Structural Features, Evolution And Accumulation of Oil & Gas is carried out basing on project of Studies on Conditions for Oil & Gas Formation of Jiangling Depression And Its Exploration Direction (P01027) , which is an important scientific research project of SINOPEC.Under the guidance of method of Analysis on Basin Structure and theory of Petroleum System, the article synthesizes a number of practical data such as geological, geophysical and drilling data etc. and analyzes the relations between structural geometric features, kinematical features, dynamic features and accumulations of oil & gas and then perform synthetic studies on structure controlling petroleum and hydrocarbon-bearing system and then opens out the features of structures, its evolution and the functions to control petroleum and at the same time analyzes the favorable areas for oil & gas exploration in Jianghan basin.By using the method of structural geometry, structural kinematics as well as balance profile, the article considers that the original one of Jiangling Depression is an tensile faulted basin, which is controlled by Gongan-Songzi Fault and Yajiao-Xirigouzui Fault, developing three sub-structural units as Jiangkou Faulted Depression, Wancheng-Caixue Faulted Heave and Jiangling Faulted Depression and eleven forth level structural units.There develop four groups fault systems with three episodes: the first one is the time when K2y-Ex are formed, which is dominated by extension and the strike is dominated by NE or NEE, supplemented with nearly EW, controlling the structural framework of depression; the second one is the time when Ej-Ejh are formed. The whole is represented as tensile movement and the strike is dominated by NE on plane; the third one is the end of Ejh and the time when Ejh is formed. The whole is compression-shearing structure and some parts are early tensile reversed faults, the strike is dominated by nearly SN or NW on plane.There develop 106 traps in Jiangling Depression, which are controlled by faults. The main type of faults are compression anticline (including salt swell), faulted anticline, faulted nose, faulted block etc. and their formation are related with the differential upthrown and downthrown movement of faults, horizontal compression and salt swelling.According to the structural kinematics studies on Jiangling Depression, the article considers that the evolution of Jiangling Depression has undertaken the stage of formation of late
    Jurassic;-early Cretaceous basins, the first faulting-depressing stage of Xingouzui Formation of upper Cretaceous-Eocene, the second strong faulting-depressing stage of Jingsha Formation-Jinhezhen Formation and the uplifting-eroding stage at the end of early Palaeogene and late Neogence. The faulting-depressing events during late Cretaceous-early Palaeogene are characterized by multiple times and episodes.The formation of salt structures is characterized by serial structural events such as doming-extension of faulted depression-volcanism-thermal subsidence.Analytic Structure is used to analyze the structural formation of depression and its mechanism of controlling on petroleum. (1) According to analysis on deformational evolution of Jiangling Depression, the article considers Jiangling Depression has three main deformational stages: late Yanshanian Movement, early Himalayan Orogeny and mid-late Himalayan Orogeny, corresponding to three main unconformities. (2) According to the analyses on ingredients of volcanic rocks and times of volcanic activities, the development of volcanic rocks can be divided into four stages: stage to deposit Shashi Formation, Xingouzui Formation, Jingsha Formation and Qianjiang Formation. The lithology is dominated by basic basalts, which can be considered as the reservoirs of oil & gas. The traps formed synchronously, which are related with volcanic movement, becoming the favorable sites for oil & gas accumulation.(3) Salt structures in Jiangling Depression are formed during the course of Jingsha Formation-Jinghezhen Formation deposited and be finalized lastly at the end of age of Guanghuasi Formation. The salt structures mainly develop at the two sides of Jingzhou Anticline Belts and southern faulted depression, which are favorable for migration of oil & gas, controlling the accumulations of oil & gas of Jiangling Depression at the same time.The article studies conditions to form New-Generation-Old-Storage oil & gas accumulations and puts forward the pattern of formation of New-Generation-Old-Storage oil & gas accumulations as well as the exploration direction in the future. The author considers that activities of large deep faults (with large separation) make young hydrocarbon source rocks juxtapose with old reservoirs and form the space matches of source rocks and reservoirs of pattern of New-Generation-Old-Storage oil & gas accumulations, being the key factor for forming New-Generation-Old-Storage oil & gas accumulations. The article probes profoundly the conditions to form New-Generation-Old-Storage oil & gas accumulations of Cretaceous of Wancheng Faulted Convex Belt and point out that the intensive activities of Wancheng Fault happened during the term of deposition of Jingsha Formation-forth member of Qianjiang
    Formation make fault separate more than one thousand meters, which makes hydrocarbon source strata of Es1*11"—Ex10*" of Meihui Sag of downthrown side juxtapose with reservoir of Cretaceous of upthrown side, thus fairly favorable space match of hydrocarbon source rocks and reservoirs come into being and communications between main hydrocarbon source area in Jiangling Depression and qualified developed reservoirs and developed area are realized and finally New-Generation-Old-Storage oil & gas accumulations come into being. Wancheng Faulted Convex Belt is an important area for exploring New-Generation-Old-Storage oil & gas accumulations and also one of the second large area collecting oil & gas. New-Generation-Old-Storage oil & gas accumulation is the important exploration field and direction for next exploration step in Jiangling Depression.The article summarizes main factors controlling reservoir formation in Jiangling Depression: 1) The distributions of effective hydrocarbon source rocks control the ranges of oil & gas accumulation. Such features that reservoirs are controlled strictly by hydrocarbon sources implies that Jiangling Depression has features of close hydrocarbon sources and short distance;(2)Early framework of basin controls the distributions of hydrocarbons and reservoirs. Jiangling Depression was a dish-like basin which was controlled by two faults in the south and north when Shashi Formation and Xingouzui Formation were deposited. It was affected by faults in NE direction (such as Wangcheng Fault, Huduhe Fault etc.) and dustpan-like faulted depressions were formed regionally, having the embryo of blocks divided in east-western direction. Subsiding center of the depression leaned to the south and further more it was affected by northern sedimentary system, thus the appearance of southern-source-northern-reservoirs came into being. Xingouzui Formation is the interval where the main hydrocarbon source rocks and reservoirs develop. Due to the influences by paleao-terrain(The north is high and south low), Mashan Sedimentary System and Hougang Sedimentary System advance from the north to the south and no materials sources develop in other directions, therefore structural features of strata that are dominated by sandy clastic sediments in the north part of Jiangling Depression and by muddy clastic sediments in the south part. Hydrocarbon source rocks develop mainly in southern sag belt and reservoirs in the gentle slope in the north. The distributions of hydrocarbon source rocks and reservoirs take the appearances of planar facies changes and the structural features of strata of interlays of source rocks and reservoirs are absent. Such kind of space matching feature of source rocks-reservoirs plays an important role in controlling the distribution of oil & gas. At the transition belt of hydrocarbon source rocks and reservoirs, there exits the phenomena of finger-like intersection of source-reservoirs in present Jingzhou Anticline Structural Belt, being the important areas forming oil & gas accumulation; (3) Mid-late structural framework of basin controls the
    enrichments of oil & gas. Wangcheng fault was active when Jingsha Formation—the forth member of Qiangjiang Formation deposited, leading to the formation of Wangcheng Faulted Uplift Belt in south-north direction, therefore it made the structural framework of blocks divided in east-west direction of Jiangling Basin come into being; When Jingsha Formation deposited, a series of salt structures came into being, leading to the embryo of Jingzhou Anticline Structural Belt, finally the structural framework of belt divided in south-north direction of Jiangling Depression was formed regionally and preliminarily. II episode of Himalaya Movement at the end of sedimentary term of Jinghezhen Formation deformed the strata of Jiangling Depression strongly, leading to the formation of present Jingzhou Anticline Structural Belt, Wangcheng-Caixue Faulted Uplifted Belt. The structural framework of Jingling Depression with the characteristics of blocks divided in east-west direction and belts in south-north direction was formed at the end of Jingsha Formation, which is earlier than the times of generation, migration, accumulation of oil & gas. Its shape was fixed at the end of the stage when Jinghezhen Formation deposited and the shape-fixed stage is at the same time when reservoirs were formed. Late structural framework controls the distribution of oil & gas;(4) Communication of faults play an important role in controlling the formation of oil & gas accumulation and it is the key factor for formation of New-Generation-Old-Storage Reservoirs. The faults in east-north direction control the areas where oil & gas accumulate, which play an important role in communication for formation of oil & gas accumulations. Late faults control the formation of secondary oil & gas accumulations directly; (5)Salt structures play important role in controlling the oil & gas accumulations, a. Salt structures develop mainly in the range of effective hydrocarbon source rocks, being the important sites for forming oil & gas accumulations, b. The stage when salt structures came into being is earlier than the stage when oil & gas were generated and migrated, being favorable traps for oil & gas accumulating, c. Oil & gas accumulation of Salt structure is an important kind of reservoirs in Jiangling Depression. Presently, among five oil fields founded three ones belong to salt structural reservoirs, they are Shashi Oil Field, Jingxi Oil Field, Huayuan Oil Field, additionally Nangang is also an important salt structure, d. Jingzhou Anticline Belt, which developed on the base of a series of salt structures, is the secondary most important areas for accumulating oil & gas. e. The formation of salt structures change the visage of structural traps in important reservoir-forming areas in Jiangling Depression and provide the sites for accumulating oil & gas; (6) The development of reservoirs is the key factor for formation of oil & gas accumulations. At the stage of deposition of the lower member of Xingouzui Formation, as the expansion of basin, Mashan Sedimentary System, Hougang Sedimentary System regressed gradually from the south to north and the location of reservoirs developed raised also gradually
    from the south to north, taking shape the distributing features of main petroleum strata in Jiangling Depression. From north to south, the oil set distributes as following: oil sets I —>oil sets II —?oil sets m, that is the northern part is dominated by oil sets I, the central part by oil sets II and the southern part by oil sets HI. Division of reservoirs controls the division of strata accumulating oil & gas; (7) Match of stage of trap formation and the stage of oil & gas generation, migration and accumulation is also an important factor for formation of oil & gas accumulations.The article summarizes the rules of oil & gas enrichment in Jiangling Depression: ?The positive structural belt in main hydrocarbon source areas near southern sag belt and the central uplift of the depression are favorable belts for oil & gas enrichment. Jingzhou Anticline Belt not only has the ability of supporting hydrocarbons by itself but also has Meihuiqiao—Zifusi Sag Belt which is close to its southern part and develops hydrocarbon source rocks having strong ability to support hydrocarbons, being the main areas of hydrocarbon source rocks in Jingling Depression. Jingzhou Anticline Belt is the guiding areas to oil & gas migration and also a important belt enriching oil & gas in Jiangling Depresion; (D The two sides of fairly great faults with early growth times and multiple activities are the favorable sites to enrich oil & gas. Wangcheng fault controls the formation of Wangcheng Faulted Convex Belt. Wangcheng Fault is a great deep fault with early growth time, multiple activities, its eastern side is close to Meihuiqiao sag with hydrocarbon generation. Oil & gas migrated via Wangcheng Fault and entered into Cretaceous and accumulated, therefore it has fairly favorable conditions for forming oil & gas accumulation. Wangcheng—Caixue Faulted Convex Belt formed due to Wangcheng faulting activity is an important belt enriching oil & gas in Jingling Depression; ?Interweaved belt of hydrocarbon source rocks and reservoirs in the lower member of Xingouzui Formation is favorable for enrichment of oil & gas and the distribution of hydrocarbon source rocks and reservoirs in the lower member of Xingouzui Formation in Jiangling Depression has the relation of planar facies changes and vertical interlays of source rocks and reservoirs are absent, therefore the space matches of source rocks and reservoirs are not so good. Jingzhou Anticline Structural Belt is a interweaved belt of hydrocarbon source rocks and reservoirs, it not only has the planar finger-like interlays but spaciously has the interlay structure of source rocks and reservoirs, being the favorable belt to enrich oil & gas; ?Salt structures are favorable sites for forming oil & gas accumulations. The salt structures of Jiangling Depression are mainly located in the range of effective hydrocarbons source rocks. The stage at which the salt structures came into being is earlier than the stage when oil & gas were generated and migrated, being the favorable sites to form reservoirs as well as the sites to enrich oil & gas.Jiangling Depression has three petroleum systems, among which petroleum system
引文
1 江汉石油管理局勘探开发研究院 江陵凹陷第三—白垩系微体化石组特征,江汉油田(内部资料),1971
    2 江汉石油管理局勘探开发研究院 江汉盆地地层对比和沉积类型的划分,江汉油田(内部资料),1971
    3 江汉石油管理局勘探开发研究院 江汉盆地下第三系沉积特征,江汉油田(内部资料),1975
    4 江汉石油管理局勘探开发研究院 江汉盆地白垩系生油条件研究小结,江汉油田(内部资料),1977
    5 江汉石油管理局勘探开发研究院 江汉盆地边缘与井下白垩系地层对比,江汉油田(内部资料),1977
    6 江汉石油管理局勘探开发研究院 江汉盆地下第三系地层划分及对比,江汉油田(内部资料),1979
    7 江汉石油管理局勘探开发研究院 江汉盆地江陵凹陷新沟嘴下段三角洲沉积特征,江汉油田(内部资料),1980
    8 江汉石油管理局勘探开发研究院 江汉盆地新沟嘴下段生油条件的初步认识与评价,江汉油田(内部资料),1980
    9 江汉石油管理局勘探开发研究院 江汉盆地古新统划分及对比,江汉油田(内部资料),1980
    10 江汉石油管理局勘探开发研究院 江陵凹陷荆沙背斜带油气聚集条件,江汉油田(内部资料),1981
    11 江汉石油管理局勘探开发研究院 江汉盆地新沟组嘴下段石油演化阶段的划分,江汉油田(内部资料),1982
    12 江汉石油管理局勘探开发研究院 江汉盆地始新统一渐新统的划分与对比江汉油田,(内部资料)1982
    13 江汉石油管理局勘探开发研究院 江汉盆地下第三系潜江组、新沟嘴下段砂岩储集层研究小结,江汉油田(内部资料),1983
    14 江汉石油管理局勘探开发研究院 江汉盆地生油层恃征及评价(沙市组上段—新沟嘴下段),江汉油田(内部资料),1983
    15 江汉石油管理局勘探开发研究院江汉盆地白垩—第三系孢颜色有机质类型与油气生成,江汉油田(内部资料),1983
    16 江汉石油管理局勘探开发研究院 江陵凹陷区域构造特点及今后勘探方向,江汉油田(内部资料),1983
    17 江汉石油管理局勘探开发研究院 江汉盆地新沟嘴石油资源评价,江汉油田(内部资料),1983
    18 江汉石油管理局勘探开发研究院 江陵凹陷新沟嘴组油源研究,江汉油田(内部资料),1987
    19 江汉石油管理局勘探开发研究院 江汉盆地新沟嘴组油气运移、聚集研究,江汉油田(内部资料),1987
    20 江汉石油管理局勘探开发研究院 江汉盆地盐类矿床概况与卤水资源源利用的意见,江汉油田(内部资料),1988
    21 江汉石油管理局勘探开发研究院 江陵、枝江凹陷白垩系—第三系石油地质条件及勘探远景,江汉油田(内部资料),1988
    22 江汉石油管理局勘探开发研究院 江陵凹陷新沟嘴下段砂岩隼层研究报告,江汉油田(内部资料),1988
    23 江汉石油管理局勘探开发研究院 江陵凹陷荆沙背斜带滚动勘探开发规划,江汉油田(内部资料),1989
    24 江陵凹陷江陵—沙市地区新沟嘴组下段油层特征及低产原因分析,江汉油田(内部资料),1990
    25 江汉石油管理局勘探开发研究院江陵凹陷构造研究及评价,江汉油田(内部资料),1991
    26 江汉石油管理局勘探开发研究院 江陵凹陷下第三系新沟嘴下段储层评价研究,江汉油田(内部资料),1991
    27 江汉石油管理局勘探开发研究院 江汉盆地江陵凹陷新沟嘴下段砂岩储层成岩作用及储层主要研究,江汉油田(内部资料).1991
    28 江汉石油管理局勘探开发研究院 江汉盆地勘探成果图,江汉油田(内部资料),1992
    29 江汉石油管理局勘探开发研究院 江陵凹陷新沟嘴下段物源研究,江汉油田(内部资料),1992
    30 江汉石油管理局勘探开发研究院 江陵凹陷下第三系油气资源预测(盆地模拟法),江汉油田(内部资料),1992
    31 江汉石油管理局勘探开发研究院 江陵凹陷油藏形成及开发的水方地质条件综合研究,江汉油田(内部资料),1992
    32 江汉石油管理局勘探开发研究院 江陵凹陷陵北地区花园油田综合治理研究,江汉油田(内部资料),1993
    33 江汉石油管理局勘探开发研究院 江陵凹陷陵北地区储层地质特征,江汉油田(内部资料),1993
    34 江汉石油管理局勘探开发研究院 江陵凹陷陵北地区烃源岩评价及油源对比研究,江汉油田(内部资料),1983
    35 江汉石油管理局勘探开发研究院 江汉盆地下第三系新沟嘴组下段储层评价研究,江汉油田(内部资料),1993
    36 江汉石油管理局勘探开发研究院 江陵凹陷荆沙背斜带油源研究,江汉油田(内部资料),1994
    37 江汉石油管理局勘探开发研究院 江陵凹陷陵72井、沙27井生油条件及油源研究,江汉油田(内部资料),1995
    38 江汉石油管理局勘探开发研究院 江陵凹陷测井生油岩评价方法探讨及初步应用,江汉油田(内部资料),1995
    39 江汉石油管理局勘探开发研究院 江陵凹陷荆沙背斜带油气聚集条件及富集规律研究,江汉油田(内部资料),1995
    40 江汉石油管理局勘探开发研究院 江汉盆地新沟嘴原油和烃源岩的地化特点及评价研究,江汉油田(内部资料),1995
    41 江汉石油管理局勘探开发研究院 江陵凹陷次生油藏成藏条件分析,江汉油田(内部资料),1996
    42 江汉石油管理局勘探开发研究院 江汉盆地油气聚集条件及部署研究,江汉油田(内部资料),1997
    43 江汉石油管理局勘探开发研究院 江汉盆地新沟嘴组下段成油气系统评价及油气资源预测,江汉油田(内部资料),1998
    44 江汉石油管理局勘探开发研究院 江汉盆地盐湖相未熟—低熟石油判别标志、成烃特征、成藏条件和资源预测,江汉油田(内部资料),1999
    45 江汉油田石油地质志编写组,中国石油地质志(卷九)江汉油田 石油工业出版1971;10
    46 汪仕忠等,江汉探区油气资源评价研究,中国石油化工股份有限公司江汉油田分公司,2000;11
    47 江汉石油管理局勘探开发研究院,江汉盆地钻井地层数据手册;(内部资料)1988;12
    48 中国石化股份有限公司江汉油田分公司勘探开发处 江陵凹陷荆沙组 沙市组构造特征研究(内部资料)1999;12
    49 中国石化新星公司中南石油局;江汉盆地西南缘油气评价勘探项目“九五”段总结报告(内部资料)2001.12
    50 陈长江、卢明国等江陵凹陷勘探潜力评价及部署,中国石化股份有限公司江汉油田分公司(内部资料)2003.4
    51 王典敷 汪仕忠等著 盐湖油田地质 石油工业出版社1998.2
    52 邓四新 韩定坤等 江汉盆地西南部油气成藏条件分析 中国新星石油公司中南石油局(内部资料)1999.10
    53 杨长清 陈孔全等 江陵凹陷形成演化与油气潜力分析 天然气工业2003.12(6)
    54 卢明国 林畅松等 江陵浅水坳陷湖盆层序地层充填模式 地球学报2003.23(2)
    55 冯年忠等 江汉盆地江陵凹陷荆沙剥蚀面研究 江汉石油科技2003.13(1)
    56 严叔澜等,1995,江汉盆地下第三系油气形成历史及资源潜力,江汉石油科技,第5卷第1期P7-13
    57 江继纲 江荣沛,1995,江陵凹陷荆沙背斜带油源及其勘探前景,江汉石油科技,第5卷,第3期P1-3
    58 叶德平,胡晓玲,1995,江陵凹陷新沟嘴组油气控制因素及勘探方向,江汉石油科技,第5卷第3期P10—16
    59 杨长清 陈孔全 喜马拉雅运动对江陵凹陷油气成藏的影响 石油实验地质Vol.26 No.2 2004.6 P176—179
    60 杨长清 江陵凹陷盐构造特征及与油气聚集的关系 断块油气田 Vol.11 No.3 2004.6 P4-6
    61 冯年忠等,1995,江汉盆地江陵凹陷沙市盐构造形成机理及含油气性,江汉石油科技,第5卷第3期P24-30
    62 夏胜梅等,1995,沙市油田新沟嘴组下段Ⅰ油组砂岩微相分析及应用,江汉石油科技,第5卷第3期P31-37.
    63 万盛辉 侯路,1995江陵凹陷新沟嘴组下段油气运聚模式探讨 江汉石油科技 第5卷第3期P44-47
    64 余芳,1989,江陵凹陷白垩—第三系石油地质特征和勘探有利地区述评,江汉石油勘探开发研究院刊 第1期P1-12
    65 冯年忠等,1996,江陵凹陷荆沙背斜带油气聚集条件及富集规律,江汉石油科技,第6卷,第4期,P10—17
    66 严叔澜、江继纲,1989,江陵凹陷潜江组末成熟生油岩特征及生油潜力,江汉石油勘探开发研究院院刊,第2期P1-11
    67 江继纲,1996,江汉盆地新沟嘴组原油类型、成因及其在勘探中的意义,江汉石油科技,第6卷,第3期,P6-11.
    68 余芳权 1990江陵凹陷新沟嘴组下段砂岩储层研究,江汉石油勘探开发研究院院刊,第二卷第1期P1-11
    69 夏胜梅、李争 江陵凹陷次生油气藏成藏条件及勘探有利地区,江汉盆地及中扬子海相油气勘探论文集,P25-26。
    70 张建华,2001,安家岔地区成藏模式探讨,江汉石油科技,第11卷,第3期P10-12
    71 唐平、申立春,2001,江汉盆地西南部沙市组—新沟嘴组下段沉积结构特征与有利勘探方向,中扬子油气勘查,2001年No43P1-11.
    72 朱玲,2001,谢凤桥油田储层特征及分析,中扬子油气勘查,2001,No43P24-30
    73 闫春德等,1996,江汉盆地火山岩气孔发育规律及其储集性能,江汉石油学院学报,第18卷,第2期,P1-6
    74 余芳权,1988江陵凹陷金家场构造的火山岩储集层,江汉石油勘探开发研究院院刊,第2期,P1-8.
    75 张世保,1992,江陵凹陷盐丘构造特征及其对油气的控制作用,江汉石油科技,第2卷,第3期,P1-6
    76 余芳权,1994,金家场火山岩油气藏地质特征及其形成条件,江汉石油科技第4卷,第1期,P1-9。
    77 卢明国,1994,江汉盆地新沟嘴组砂岩储层孔隙结构特征,江汉石油科技,第4卷,第1期P10—15
    78 陈荷立、江继纲,1988,江汉盆地泥岩压实研究及新沟嘴组油气运移与聚集条件分析,江汉石油勘探开发研究院院刊,1998年第1期P1-7。
    79 段金钟,叶靖,1990,江汉盆地白垩系石油地质条件及评价,江汉石油勘探开发研究院院刊,1990年第2期,P18—29.
    80 梅番惠等,1996,湖北省荆沙市沙市盐矿区丁家台矿段勘查地质报告(未刊)
    81 余叔芳,1987,江陵凹陷沙市组下段时代归属的探讨,江汉石油勘探开发研究院院刊,1987年第1期,P25—28.
    82 王燮培、费琪等 石油勘探构造分析 中国地质大学出版社1990.5
    83 费琪等编著 成油体系分析与模拟 石油工业出版社1997.10
    84 丁贵明 张一伟等 油气勘探工程 石油工业出版社1997.10
    85 Allen P.A, Allen J.R. Basin Analysis, Principles and Applications[A]. Black well scientific publications, Oxford, London: 1990.
    86 Allen,P.A.,Allen,J.R..盆地分析[M],北京:石油工业出版社,1995.
    87 陆克政主编.含油气盆地分析[M].山东东营:石油大学出版社,2003.
    88 陈发景.盆地分析-伸展盆地[M].北京:中国地质大学(北京),1992.(内部教材).
    89 朱夏编.论中国含油气盆地构造[M].北京:石油工业出版址,1986.
    90 朱夏,徐旺主编.中国中、新生代沉积盆地[M].北京:石油工业出版社,1990.
    91 马杏垣.论伸展构造[J].地球科学,1982,(30):15—22.
    92 马杏垣等.中国东部中、新生代裂陷作用和伸展构造[J].地质学报,1983,57(1).
    93 陈发景.盆地构造分析在我国油气普查勘探中的作用[J].石油与天然气地质,1989,10(3).
    94 陈发景,汪新文,张光亚等.中国中、新生代含油气盆地构造和动力学背景[J].现代地质,1992,6(3):317—327.
    95 陈发景,赵海玲,陈昭年等.中国东部中、新生代伸展盆地构造特征汲地球动力学背景[J].地球科学——中国地质大学学报,1996,21(4):357—365.
    96 陈发景,汪新文,张光亚等.中国中、新生代前陆盆地的构造特征和地球动力学[J].地球科学, 1996,21(4):366—372.
    97 陈发景,汪新文.含油气盆地地球动力学模式[J].地质论评,1992,42(4):304—310.
    98 Chen F. J.,Zhang S.L.,Tectonic evolution and hydrocavbon migration in the Huanghua basin, NE China, Journal of Petroleum Geology, 1991, V. 14, No. 2: P. 197—210.
    99 刘和甫.沉积盆地地球动力学分类及构造样式分析[J].地球科学,1993,18(6):699—724.
    100 刘和甫.中国沉积盆地演化与联合古陆的形成和裂解[J].现代地质,1994,6(3):480—493.
    101 刘和甫.伸展构造及其反转作用[J].地学前缘,1995,2(1-2):113—124.
    102 李丕龙等 陆相断陷盆地油气地质与勘探 卷一 陆相断陷盆地构造演化与构造样式2003.12石油工业出版社152—179
    103 康玉柱著 中国主要构造体系与油气分布1999.6新疆科技卫生出版社118~122
    104 张家声.造山带后伸展构造研究的最新进展地[J].地学前缘,1995,2(1—2):67—83.
    105 漆家福,张一伟,陆克政等.渤海湾新生代裂陷盆地的伸展模式及其动力学过程[J].石油实验地质,戴金星等,1992,中国天然气地质学,石油工业出版社
    106. Dahlstorm C D A. Balanced cross sections. Can J Earth Sci, 1969, 6: 743-757
    107. Rosendahl B R. Architecture of continental rifts with special reference to East African. Annual Review of Earth and Planetary Sciences, 1987, 15: 31-43
    108. Gibbs A. Structural styles in basin formation. AAPG Mem, 1989, 46: 81-93
    109. Delvaux D, Moeys R, Stapel G et al.. Palaeostress reconstructions and geodynamics of the Baikal region, Central Asia, Part1, Palaeozioc and Mesozoic pro-rift evolution. Tectonophysics, 1995, 252: 61-101
    110 陈发景,田世澄主编.压实与流体运移.武汉:中国地质大学出版社,1989
    111 马瑾,1987.构造物理学概论.北京:地震出版社
    112 格佐夫斯基,1975.构造物理学基础.刘鼎文等译,1983.北京:地震出版社
    113 韩玉英,1984.有限应变几何学及其在地质学中的应用.北京:地质出版社
    114 马杏垣等,1987.中国及邻近海域岩石圈动力学图.北京:地质出版社
    115 Braun, J., Att, G. E., Scott, D. L., MeQueen, H., Beasley, A. R., 1994. A simple kinematic model for crustal deformation along two- and three-demensional listric normal faults derived from scaled laboratory experiments. Jour. Struct. Geol., 16(10): 1477-1490.
    116. Ellis, P. G., McClay, K. R., 1988. Listric extensional fault systems; results of analogue model experiments. Basin Research, 1(1): 55-70.
    117. Hubbert, M. K., 1951. Mechanical basis for certain familiar geologic structures. Geological Society of America Bulletin, 62(4): 355-372.
    118. Keep, M, McClay, K R. 1997. Anologue modelling of multiphase rift systems. Tectonophysics. 273: 239-270.
    119. McClay, K. R., Dooley, T., 1995a. Analogue models of pull-apart basins. Geology, 23(8): 711-714.
    120. McClay, K. R., 1990. Extensional fault systems in sedimentary basins: a reviewer analogue model studies. Marine and Petroleum Geology, 7: 206-233.
    121. McClay, K. R., Ellis, P. G., 1987a. Analogue models of extensional fault geometries. Geological Society Special Publications, 28: 109-125.
    122 McClay, K. R., Ellis, P. G., 1957b. Geometries of extensional faults systems developed in model experiments. Geology, 15: 341-344.
    123. McClay, K R. 1989. Physical models of structural styles during extension, in: Tankard A J and Balkwill H R. Extensional Tectonics of the North Atlantic Margins. AAPG Memoir 46. 95-110
    124. McClay, K R. 1990. Extensional fault systems in sedimentary basins: a review of analogue model studies. Marine and Petroleum Geology. 7: 206-233.
    125. Tron, V, Brun, J P. 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics. 188: 71-84.
    126. Alsop. G. I.,1996 Physical modeling of fold and facture geometries associated with salt diapirism, in G. I Alsop, D. J. Blundell, and I. Davison, eds, Salt tectonics: Geological Society(London)Special Publish 100, 227-241
    127 Davison. I, G. I. Alsop, N. G. Evans, and M. Safaricz, 2000a Overburden deformation patterns and mechanisms of salt diaper penetration in the central Grabell, North Sea: Marine and Petroleum Geology V17. 601-618
    128 Albert Ballgw, 1992, 《Seismic expression of structural styles》, Rice university, Houston
    129 张恺,中国大陆板块构造与含油气盆地评价,1995年,石油工业出版社,北京。
    130 王定一,论含油气盆地类型及其在勘探中的应用,1990年,西北大学出版社,西安。
    131 任战利,中国北方沉积盆地构造热演化史研究,石油工业出版社,1999.10.
    132 吴奇之等,中国含油气盆地构造演化与油气聚集,石油工业出版社,1997.
    133 胡见义等,中国陆相石油地质理论基础,石油工业出版社,1991.
    134 N·B·伍德华特等,平衡地质剖面,中国地质大学出版社。
    135 朱夏主编,试论中国中、新生代油气盆地的地球动力学背景北京,科学出版社。
    136 王同和,1988,“中国东部含油气盆地的构造迁移”,中国科学(13),(12).
    137 田在艺等,1992,“中国东北地区中、新生代沉积盆地构造形成演化及油气展望”,石油地震地质。
    138 刘和甫,1993,“沉积盆地地球动力学分类与构造样式”,地球科学(6)。
    139 宋鸿林,1986,“平衡剖面及其地质意义”,地质科技情报。
    140 赵越等,1994,“东亚大地构造发展的重要转折”,地质科学,9(2)
    141 杨克绳,“中国中新生代盆地箕状断陷类型、形成机理及含油气性”1990,石油与天然气地质。
    142 茹克,1990,“裂陷盆地的半地堑分析”,中国海上油气,4(6)。
    143 Withjack M O Islam Q T La Points P R 1995 Normal faults and their hanging-waall deformation: an experimental study. AAPG Bulletin, 79:1-18
    144 Artyushkov E. V., Rifts and grabens. Tectonophsics, 1987, V. 133: P. 321—331.
    145 Hardin T. P., Graben hydrocarbon occurrences and structural style. AAPG., 1984, V. 68: No. 3: P. 333 -362.
    146 Knott S.D., Fault seal analysis in the North Sea. AAPG., 1993, V. 77, No. 5: P. 788—792.
    147 Larsen P. H.,Relay structures in a lower Permian basement involved extensional sgstem,east Greenland. Journal of Structural Geology , 1988, V. 102, P. 3—8.
    148 Morley C.L.Extension .detachment and sedimentation in continental rifts(with particular reference to East Africa). Tectonics, 1989, V. 8, No. 6: P. 1175—1192.
    149 Russell W. L., Structural geology for petroleum geologists.McGraw-Hi 11 Book Company, Inc. New York Toronto London, 1995, 朱夏,徐曼译,科学出版社, 1964:452.
    150 Dahlstrom, CD.A. Structural geology in the eastern margin of the Canadian Rocky Mountains: Bulletin Petroleum Geology [A]. 1970. v. 187, p. 332—406.
    151 Faulds J E, Varga R J. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes [A].Faulds J E, Stewart J H. Accommodation zones and transfer zones: Segmentation of the Basin and Range Province[C]. Boulder, Colorado: Geological Society of American Special, 1998. 323.
    152 Gibbs, A.D., Structural evolution of extensional basin margins: Journal of the Geological Society of London. 1984. v. 141: P. 609—620.
    153 Gibbs A. D., Balanced cross - section constructions from seismic section in areas of extensional tectonics. Structure Gelolgy, 1983, V. 5: P. 152—160.
    154 Smith D.A., Sealing and non-sealing faults in Lousiana gulf coast salt basin. AAPG, 1980, v. 64, No. 2: P. 145-172.
    155 Gregory J. W., Contribution to the physical geography of British East Africa. Geogr.J., 1894, V. 4: P. 290-315.
    156 Learche, I.,Yarzab,R.F.,Kendall C.G.St.C,Determination Palaeoheat flux vitrinite reflectance. AAPG, 1984,68:1704—1717.
    157 White N. J. .Jackson J. A. .Mckenzie D. P., The relationship between the geometry of normal faults and that of sedimentary layers in their hanging walls. J. Struct. Geol. 1986, v. 8, P. 897—910.
    158 Peacock d. C. P., Sanderson D. J., Geometry and development of relay ramps in normal fault systems. AAPG., 1994, v. 78: P. 147—165.
    159 Rosendahl B.R., Reynolds D.J., Lorber P.M.,et.al.,Structure expressions of rifting In :Frostick L. E. (editor),,Geological Society of London Special Publications, 1986, V. 25: P. 29—43.
    160 Rosendahl B. R., Architecture of continental rifts with special reference to East Africa. Annual Review of Earth and Planetary Sciences, 1987, V. 15: P. 31—43.
    161 Scholz C. A., Deltas of the Lake Malawi rift, East Africa: seismic expression and exploration implications, AAPG, 1995, v. 79, No. 11: P. 1679—1697.
    162 Shelton J. W., Listuic normal faults: an illustred summary. AAPG, 1984, v. 68, No. 7: P. 801—815.
    163 Stewart J. H., Regional tilt patterns of late Cenozoic absin-range fault blocks, Western United Stabes. Ged. Soc. Am., 1980, v. 91, P. 460—464.
    164 Weber K. J., DanKoru E., Petroleum geology of the Niger delta. In: proceedings of the ninth world petroleum congress, 1975, v. 2, P. 209—221.
    165 William, G., Vann I.,The geometry of listric normal faults and deformation in their hanging walls. J. Struct. Geol. 1987, v. 9, P. 789—795.
    166 Schlische. R. W.,Geometry and Origin of Fault-related folds in extensional settings. AAPG, Bulletin, V. 79, No. 11(November 1995), P. 1161-1678.
    167 冯福阊等,1995,中国天然气地质,地质出版社
    168 李丕龙等 陆相断陷盆地油气地质与勘探 卷四 陆相断陷盆地油气成藏组合2003.12石油工业出版社
    169 田世澄等,论成藏动力学系统,勘探家,1996年,1卷2期。
    170 陈发景、田世澄,压实与油气运移,中国地质大学(武汉)出版社,1989.
    171 田世澄、李纯菊,泌阳凹陷孔隙流体压力及油气运移特征,地球科学,1986,11(3)。
    172 田世澄、朱绍壁,南阳凹陷油气运移特征,第四届全国有机地化会议论文集,武汉中国地质大学出版社,1992.
    173 L.B.Magoon主编,杨瑞召译,含油气系统及其研究方法,地质出版社,1994.
    174 吴无燕、吕修样,利用含油气系统认识油气分布,石油学报,1995年。
    175 费琪,”成油体系”分析,地学前缘,1995年,第2卷第4期。
    176 赵文智、何登发,含油气系统理论在油气勘探中的应用,勘探家,1996年,1卷2期。
    177 L.B.Magoon,W.G.Dow主编,张刚、蔡希源、高泳生等译,含油气系统——从烃源岩到圈闭,石油工业出版社,1998.
    178 赵文智、何登发、李伟等,含油气系统的内涵与描述方法,中国含油气系统的应用与进展,石油工业出版社,1997
    179 宋建国、张光亚,中国油气系统分类与勘探方向,中国含油气系统的应用与进展,石油工业出版社,1997。
    180 陈建渝、朱芒征,含油气系统与有机地球化学的关系,石油与天然气地质,1999;20/3,P246~249。
    181 李贤庆、潘继平、许晓宏,含油气系统基本理论与实践,断块油气田,2000;7/1总37,p1~5。
    182 殷德智,国内外含油气系统的研究进展及发展趋势,世界石油工业,1997;4/6总42,p11~15。
    183 胡秋平,近期国外石油地质勘探理论技术新进展,世界石油工业,1997;4/4总40;p11~16。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700