新疆大东沟铅锌矿床成因研究及找矿潜力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对大东沟铅锌矿床地质特征进行详细描述的基础上,对矿床的成因及找矿潜力分析进行研究。通过流体包裹体岩相学、显微测温、激光拉曼光谱分析、H、O、S、Pb同位素、主量、稀土元素及锆石年龄等地球化学方法进行分析。成矿流体属NaCl-H2O-CO2三元流体体系,均一温度的范围为157.4~312.5℃,主成矿阶段流体包裹体的平均盐度为7.77wt%,密度为0.6~0.825g/cm3,估算成矿压力为115MPa,成矿期后流体的平均盐度为11.33wt%,密度为0.725~0.875g/cm3,估算成矿压力7~10MPa,推测成矿深度为0.7~8.9km,总体上反映了成矿流体演化从较低盐度、较低密度、较高压力向较高盐度、较高密度、较低压力的转变,表明成矿流体主要是经深部循环演化了的大气降水与岩浆水的混合流体,包裹体气相成分中以CO2为主,常见气相成分还有H2O、N2、CH4,且含有一定的H2S,表明成矿流体形成在一个较还原的环境;δ34S在-14.3‰~9.4‰之间,集中在3.0‰~6.0‰之间,变化范围不大,说明硫来自地壳深部或上地幔,Pb同位素组成显示铅主要来源于地幔,有少量地壳铅的加入;矿床成矿大地构造背景为活动陆缘。矿床经历了喷流沉积成矿作用,又有后期热液的改造,可以定为喷流沉积改造型矿床;大东沟及小东沟锆石年龄研究表明,南西方向的火山岩推覆到大东沟厚大沉积层之上,因此南东方向找矿潜力较大。
Based on detailed description of the geological features of Dadonggou Pb-Zn ore deposit, the genesis and prospecting potential of the Dagonggou’s Pb-Zn deposit are alalyzed. Petrography and homogenization temperatures of fluid inclusion, Laser Raman spectra of fluid inclusion, H, O, S, Pb isotopic elements, major elements, rare earth elements and SHRIMP U-Pb are tested. The component of the original mineralization fluid system is NaCl-H2O-CO2, the temperature of the original mineralization fluid ranges from 157.4℃to 312.5℃, the average salinity of fluids in the main mineralization stage is 7.77wt%, the density ranges from 0.6g/cm3 to 0.825g/cm3 and the estimated pressure is 115MPa. The average salinity of fluids in the post mineralization stage is 11.33wt%, the density ranges from 0.725g/cm3 to 0.875g/cm3 and the estimated pressure is 7~10MPa. On the whole, the fluid of the mineralization evolution from high pressure, low salinity and low density to low pressure, high salinity and high density, the mineralization depths are about 0.7~8.9km. Then, the ore-forming fluids may belong to a mixed solution between meteoric water and magmatic water. Gaseous phase are enriched in CO2 with minor amounts of H2O, N2, CH4 and H2S, so ore deposit is formed in the reduction environment.δ34S ranges from -14.3‰~9.4‰, concentrates in the range of 3.0‰~6.0‰, and sulfur come from the deep crust or upper mantle, Pb isotopic composition come from mantle with a few crust lead. Geotectonic setting is island arc system, deposit has experienced the sedimentary-exhalative mineralization and hydrothermal alteration which happened in late mineralization, so it can be classified as tansformed sedimentary-exhalative deposit. Through the analysis of SHRIMP U-Pb datas of Dadonggou and Xiaodonggou deposit, volcanic rocks which located in southwest were pushed over into southeast above on thick sediment layer, a great prospecting potential may locate in southeast.
引文
[1]王京彬,秦克章,吴志亮,等.阿尔泰山南缘火山喷流沉积型铅锌矿床[M].北京:地质出版社,1998.
    [2]李博泉,王京彬.中国新疆铅锌矿床[M].北京:地质出版社,2006.
    [3]肖序常,汤耀庆,高俊,等.新疆北部及其邻区大地构造[M].北京:地质出版社,1992.
    [4]秦克章,王京彬,张进红,等.阿尔泰南缘可可塔勒式大型铅锌矿床的成矿条件分析[J].有色金属矿产与勘查,1998,7(2):65-74.
    [5]王登红,陈毓川,徐志刚,等.阿尔泰成矿省的成矿系列及成矿规律[M].北京:原子能出版社,2002.
    [6]尹意求,杨有明,李嘉兴,等.新疆阿尔泰山南缘克兰盆地沉积构造演化与铅锌成矿[J].大地构造与成矿学,2005,29(4):475-481.
    [7]郭正林,郭旭吉,王书来,等.阿尔泰南缘麦兹泥盆纪火山—沉积盆地成矿特点及其铅锌、铁、金找矿潜力分析[J].矿床地质,2007,26(1):128-138.
    [8]邹长毅,李应桂,杨少平,等.新疆阿舍勒铜多金属矿床原生地球化学特征[J].物探与化探,1999,23(3):227-232.
    [9] Large R R. Chemical evolution and zonation at massive sulfide deposits; Features, Styles and Genetic Models [J]. Economic Geology, 1992(87): 479-510.
    [10] Ohmoto H. Hydrogen and oxygen isotopic compositions and fluid inclusions in the kuroro deposits [J], Japan. Econ.Geol, 1974(69): 947-953.
    [11] Solomon M. An introduction to the geolgy and metallic mineral resources of Tasmania [J]. Econ.Geol, 1981(76): 194-208.
    [12] Slanton R L. Magmatic cvolution and the ore type-lava type aggiliations of volcanic exhalative ore [J]. Australian Inst.Mining Metallurgy Mon, 1990(15): 101-107.
    [13] Urabe T. Kuroko deposist of the kosaka mine, the Miocene seafloor [J]. Econ.Geol, 1978(73): 161-197.
    [14]王少怀.阿尔泰多金属成矿带矿床地质特征及其成矿历史演化[J].地质找矿论丛,2006,21(2):80-86.
    [15] Doe B R. The Application of Lead isotopes to the Problems of ore genesis and ore prospect evaluation, A Review [J]. Econ.Geol, 1974(69): 757-776.
    [16] Richards J R. Ore lead isotope ratios in a continnsly changing earth [J]. Earth and Planetary Science Letters, 1975, 28(2): 155-171.
    [17] Stacey J S. Approximation of terrestrial lead isotope evolution by a two-stage model [J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221.
    [18] Sangster D F. World class MVT and SEDEX Pb-Zn deposits. Minerals Colloquium [J]. Geological Survey of Canada. 1984(25): 125-136.
    [19] Sato T. Behaviour of ore-forming solution in sea-water [J]. Mining Geology, 1972(22): 31-42.
    [20]万博,张连昌.新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨[J].岩石学报,2006,22(1):146-152.
    [21] Russel M. The genesis of sediment-hosted, exhalative zinc-lead deposits [J]. Mineral Deposita, 1981(16): 113-127.
    [22]芮宗瑶,李荫清,王龙生,等.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质.2003,22(1):13-23.
    [23]陈毓川,叶庆同,杨福同,等.中国新疆阿尔泰成矿带矿床地质、成矿规律与技术经济评价[M].北京:地质出版社,2003.
    [24] Sangster D F. Precambrian volcanogenic massive sulfur deposits in Canada [J]. Canada Geol. Survey Paper, 1972(72): 22-44.
    [25] Michard A. Rare earth element systematics in hydrothermal fluid [J]. Geochim.Cosmochim. Acta, 1989(53): 745-750.
    [26] Ohmoto H, Skinner B J. The Kuroko and related volcanogenic massive sulfide deposits [J]. Economic Geology Monograph 5, 1983(53): 80-89.
    [27]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998.
    [28]何国琦.中国阿尔泰造山带的构造分区和构造演化[J].新疆地质科学,l990(2):9-20.
    [29]张建中.新疆阿尔泰阿巴宫—蒙库海相火山岩与铁矿的生成系统及成矿地质特征[J].中国地质科学院西安地质矿产研究所所刊,l987(20):89-180.
    [30]秦克章,王京彬,张进,等.阿尔泰山南缘可可塔勒式大型铅锌矿床的成矿条件分析[J].有色金属矿产与勘查,1998,7(2):65-74.
    [31]秦克章,张进红,王京彬,等.阿尔泰可可塔勒多金属矿带大型矿床的找矿评价标志[J].有色金属矿产与勘查,1998,7(3):136-142.
    [32]廖启林,戴塔根,刘悟辉,等.阿尔泰南缘典型块状硫化物矿床成矿环境浅析[J].地质与勘探,2000,36(6):23-26.
    [33] Kase K M, Yamamoto T Nakamura, C Mitsuno. Ore mineralogy and sulfur isotope study of the massive sulfide deposit of Filon Norte [J]. Tharsis Mine, Spain, Mineral Deposit, 1990(25): 289-296.
    [34] Mcdougall T J. Fluid dynamic implication for massive sulfide deposits of hot saline fluid flowing into a submarine depression from below [J]. Deep-Sea Research, 1984(31): 145-170.
    [35] Michard A. The REE content of some hydrothermal fluids [J]. Chem. Geol, 1986(55): 51-60.
    [36]王书来,郭正林,王玉往,等.新疆阿尔泰山南缘产于泥盆纪火山—沉积盆地铅锌矿床地质特征—以可可塔勒铅锌矿床为例[J].地质与勘探,2005,41(6):27-33.
    [37]邹长毅,李应桂,杨少平,等.新疆阿舍勒铜多金属矿床原生地球化学特征[J].物探与化探,1999,23(3):227-232.
    [38]叶庆同,傅旭杰,张晓华,等.阿舍勒铜锌块状硫化物矿床地质特征和成因[J].矿床地质,1997,16(2):97-106.
    [39]刘悟辉,廖启林.阿尔泰山南缘典型铜、镍、铅锌矿床成矿模式初探[J].地质找矿论丛,2006,21(3):173-177.
    [40]胡霭琴,张国新,李启新,等.新疆北部地质演化及其与成矿的关系[J].新疆地质,1994,12(1):32-39.
    [41]叶庆同,傅旭杰.新疆阿尔泰造山带矿床成矿系列[J].地球学报,1998,19(1):31-39.
    [42]黄汲清.新疆及邻区板块开合构造及手风琴式运动[J].新疆地质科学,1990(1):3-16.
    [43]谭凯旋,谢焱石,王清良,等.新疆阿尔泰地区断裂构造的多重分形特征及其对热液成矿的控制[J].地学前缘,2004,11(4):443-444.
    [44]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999,112-114.
    [45]张文淮,陈紫英.流体包裹体地质学[M].北京:地质出版社,1998,72-156.
    [46] Bowers T S. Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system NaCl-H2O-CO2 on phase relation in geologic system [J]. America Mineralogist, 1983, 68(1): 1059-1075.
    [47]刘敏,张作衡,王永强,等.新疆阿尔泰大东沟铅锌矿床流体包裹体特征及成矿作用[J].矿床地质,2008,28(3):282-296.
    [48]刘敏,张作衡,王永强,等.新疆阿尔泰大东沟铅锌矿床地质特征及稳定同位素地球化学研究[J].地质学报,2008,82(11):1504-1513.
    [49]王少怀.阿尔泰多金属成矿带矿床地质特征及其成矿历史演化[J].地质找矿论丛,2006,21(2):80-86.
    [50] Russell M J. The genesis of sediment-hosted exhalation Zn-Pb deposits [J].Mineralium Deposita, 1981(16): 113-127.
    [51] Large D E.Evolution of a sedimentary basin for massive sulfide mineralization, base metal sulfide deposits in sedimentary and volcanic environments [J].Springer Berlin, 1988(8): 3-11.
    [52]尹意求,李嘉兴,郭旭吉,等.新疆阿尔泰山南缘克兰盆地红墩SEDEX型矿床[J].矿产与地质,2004,18(5):422-427.
    [53]李嘉兴,尹求意.新疆克兰盆地红墩铅锌矿床与特穆尔特铅锌矿床得对比研究[J].地质与勘探,2006,42(1):6-11.
    [54]尹求意,杨有明,李嘉兴,等.新疆阿尔泰山南缘克兰盆地沉积构造演化与铅锌成矿[J].大地构造与成矿学,2005,29(4):476-477.
    [55]卢焕章,范宏瑞,倪培,等.流体包裹体[M].科学出版社,2004:261-163.
    [56]秦克章.陆相火山-斑岩Au、Ag、Pb、Zn、Cu矿床系统与VMS矿床系统的对比研究[J].黄金科学技术,1998,6(3):6-17.
    [57] Roba P A, Scott S D A. Special issue on sea-floor hydrothermal mineralizationg [J]. New Perspectives.Econ.Gelo, 1993, 188(8): 1933-2252.
    [58] Mackenzie D. Some remarks on the development of sedimentary basins [J]. Earth Planet Sci Lett, 1978, 40(1): 25-32.
    [59]邓达文,孔华,奚小双,等.青海锡铁山热水沉积型铅锌矿床的地球化学特征[J].矿物岩石地球化学通报,2003,22(4):310-313.
    [60]杨永强,翟裕生,侯玉树,等.沉积岩型铅锌矿创的成矿系统研究[J].地学前缘,2006,13(3):200-204.
    [61]祝新友,邓吉牛,王京彬,等.锡铁山矿床两类喷流沉积成因的铅锌矿体研究[J].矿床地质,2006,25(3):253-261.
    [62]祝新友,邓吉牛,王京彬,等.锡铁山喷流沉积矿床卤水与海水的相互作用[J].地质论评,2007,53(1):52-63.
    [63]祝朝辉,张乾,朱笑青,等.中国SEDEX型矿床成矿流体硼、硅、氦-氩同位素组成评述[J].矿物岩石地球化学通报,2006,25(3),279-284.
    [64]王京彬,姜俊,康吉昌,等.可可塔勒矿带铅锌矿床找矿评价方法[J].新疆地质,2001,19(1):64-65.
    [65]赵准.兰坪金顶铅锌矿—陆相SEDEX型矿床[J].云南地质,2007,26(1):1-14.
    [66]李志国,肖振.块状硫化物矿床的宏观与微观构造[J].地质找矿论丛,2007,22(2),139-143.
    [67] Demin Y I. Transformation of stratiform ore deposit [J]. Econ.Gelo, 1989(13): 385-386.
    [68] Elderfield C S. Mineral texture and their bearing on the formation of the Kurko orebodies. [J]. Econ Geol, 1983(5): 241-281.
    [69] Elderfield H. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters [J]. Geochim.Cosmochim. Acta, 1990(54): 971-991.
    [70] Gustin M S. Stratigraphy and alteration of the host rocks, United Verde massive sulfide deposit [J]. Economic Geology, 1990(1): 29-49.
    [71] I shihara S. Magmatism of green tuff tectonic belt,northeast Japan [J]. Mining Geol, 1994(6): 235-249.
    [72]陈柏林,张招崇,闫升好,等.阿尔泰额尔齐斯构造带岩石应变特征及其构造意义[J].地质科学2008,43(1):119-120.
    [73]申茂德,安银昌,马忠美,等.新疆阿尔泰山南缘克兰盆地泥盆纪火山盆地构造演化与成矿[J].新疆有色金属,2003,4-5.
    [74]李思强,马忠美,郭旭吉,等.阿勒泰复向斜的成矿环境及其矿产[J].矿产与地质,2006,20(2),116-121.
    [75]焦学军,马忠美,郭旭吉,等.阿尔泰山南缘克朗盆地泥盆纪火山沉积与矿产[J].西北地质,2005,38(3):22-23.
    [76]王少怀.阿尔泰多金属成矿带矿床地质特征及其成矿历史演化[J].地质找矿论丛,2006,21(2):80-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700