Al-Zn-Mg-Cu合金热处理工艺及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Zn-Mg-Cu铝合金具有比强度高、价格低廉及加工性能良好等优点,被广泛用作航空航天领域的结构材料。近年来,随着航空航天事业的不断发展和国防现代化建设步伐的加快,我国对大型飞机的需求也日益紧迫,这就急需高性能的Al-Zn-Mg-Cu铝合金板材。本论文工作依托国防重点攻关项目《××××铝合金板材研制》,以航空用Al-Zn-Mg-Cu合金为研究对象,采用热加工模拟、室温拉伸、硬度、电导率、疲劳裂纹扩展、剥落腐蚀和应力腐蚀等实验方法及金相显微镜(OM)、电子显微镜(SEM、 TEM)、差热分析(DSC)、背散射电子衍射(EBSD)和X射线衍射(XRD、 Micro-XRD)等检测手段,系统研究了合金在不同热加工工艺和热处理条件下的显微组织、性能及其变化规律,并从理论上进行了分析与讨论,旨在为制定和优化合金热加工工艺、热处理工艺以及改善合金性能提供理论依据。
     试验结果表明,铸态Al-Zn-Mg-Cu合金中Zn、Mg和Cu等元素偏聚在晶界处,形成了含有η相(MgZn2)、S相(Al2CuMg)和T相(AlZnMgCu)的低熔点共晶组织,该共晶组织的熔点为475.2℃。铸态合金经过465℃/24h均匀化处理后,低熔点共晶相基本被消除,而Al7Cu2Fe相则很难溶入到基体中。Cr元素在Al-Zn-Mg-Cu合金中形成了Al18Mg3Cr2相(E相),主要分布在基体中。经过均匀化处理后,E相没有发生明显变化。Er元素在Al-Cu-Mg-Er合金凝固过程中主要偏聚在晶界处,形成了Al8Cu4Er三元相。Al8Cu4Er相在均匀化过程中不能被消除,而是在轧制过程中被轧碎,沿晶界呈条带状分布。本文发现在Al-Cu-Mg-Er合金基体中有少量的二次析出的Al3Er相存在。
     研究了Al-Zn-Mg-Cu合金的热变形行为,结果表明变形温度低于390℃时,合金组织仅发生动态回复;变形温度为420℃时,合金组织已发生了动态再结晶。合金适宜的热加工温度范围为330℃~400℃,变形速率为O.1s-1。根据热变形结果,计算出合金的热变形激活能为192.6KJ/mol,并据此构建了合金的热变形本构方程。确定了合金的最佳T761工艺为125℃/3h+170℃/10h,在此条件下,合金的抗拉强度、屈服强度、延伸率和电导率分别为498MPa、429MPa、12.1%和40.2%IACS。确定了合金的最佳回归再时效工艺为120℃/25h+190℃/10min+120℃/25h,在此条件下,合金的抗拉强度、屈服强度、延伸率和电导率分别为554MPa、507MPa、16.5%和35.4%IACS,与T6态合金性能相当。采用上述T761工艺处理的Al-Zn-Mg-Cu合金板材满足AMS-4085B对合金性能的要求,并已经成功应用于某大型飞机上。
     研究发现,在应力比为0.1、加载频率为10Hz条件下,RRA态Al-Zn-Mg-Cu合金的疲劳裂纹扩展速率要小于T761态合金。RRA态合金晶内析出了位错可切割的GP区和η’相以及在晶界附近形成了较窄的无析出带,导致在裂纹扩展的Paris区形成了大量的二次裂纹使裂纹扩展路径复杂,从而提高了疲劳裂纹的扩展抗力。而T761态合金晶内则析出了位错不可切割的粗大η’相以及在晶界附近形成了较宽的无析出带,因而在裂纹扩展的Paris区有沿晶扩展的二次裂纹存在,使疲劳裂纹扩展抗力降低。
     通过对T761态Al-Zn-Mg-Cu合金疲劳短裂纹扩展的EBSD分析发现,短裂纹扩展路径的偏折是由于相邻晶粒的取向差较大而造成的。对T761态Al-Zn-Mg-Cu合金疲劳长裂纹尖端的塑性区进行了微区XRD分析,没有发现疲劳裂纹尖端处的第二相回溶现象。EBSD观察发现,在长裂纹扩展时,裂纹的实际扩展路径倾向于沿晶界扩展。这表明,在疲劳裂纹尖端处,位于晶界的η平衡相不因位错的往复滑移而发生回溶。
     阐明了T761态Al-Zn-Mg-Cu合金疲劳裂纹的扩展方式,并提出了裂纹扩展方式转变的晶体学模型。随着疲劳裂纹长度的增加,T761态Al-Zn-Mg-Cu合金的裂纹扩展方式由短裂纹的穿晶扩展转变为长裂纹的沿晶扩展为主。短裂纹扩展受剪切机制的控制,因此在该阶段无析出带对裂纹扩展的影响可以忽略。而长裂纹扩展是受双滑移机制控制的,由于晶界处存在较宽的无析出带,是合金微观结构中的薄弱部位,诱导长裂纹沿晶界扩展。
     研究表明,RRA态、T761态和T6态Al-Zn-Mg-Cu合金的剥落腐蚀性能依次降低,剥落腐蚀等级分别为EA、EA和EB。T6态合金中连续分布的晶界η相促进了阳极溶解通道的形成,对剥落腐蚀性能不利。而T761态和RRA态合金中断续分布的晶界η相则提高了合金的剥落腐蚀性能。与T761态合金相比,RRA态合金晶界η相中较高的铜含量减缓了晶界η相的阳极溶解,导致合金的剥落腐蚀性能提高。还研究了不同RRA工艺处理合金在482MPa应力腐蚀环境下的断裂时间,结果表明经过120℃/25h+190℃/10min+120℃/25h时效处理的合金由于具有较高的屈服强度,为507MPa,而使得断裂时间较长,达到260h。
Al-Zn-Mg-Cu aluminum alloys have been widely used as the structural materials in the aerospace industry due to their high specific strength, low price and excellent processability. In recent years, with the rapid development of the aerospace industry and the national defense modernization, there is a great demand for large aircraft, which make it desirable to use Al-Zn-Mg-Cu plates with high properties. This work is based on "National Defense Key Research Project" titled as "Research of X X X X aluminum alloy plate". In order to provide conferences for the optimization of hot working and heat treatment processes and the improvement of properties, the heat treatment process, microstructure and properties of an Al-Zn-Mg-Cu alloy were systematically studied by means of hot working simulation, tension, microhardness, conductance measurement, fatigue crack propagation test, exfoliation corrosion test, stress corrosion test, optical microscopy (OM), electronic microscopy (SEM, TEM), differential scanning calorimetry (DSC), electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD, Micro-XRD). In addition, the results were analyzed and discussed theoretically.
     The experimental results indicated that the eutectic structures consisting of η phase (MgZn2), S phase (Al2CuMg) and T phase (AlZnMgCu) were found to form in the grain boundary of as cast Al-Zn-Mg-Cu alloy due to the segregation of Zn, Mg and Cu, and the melting point of the eutectic structure was475.2℃. The primary eutectic structure of the alloy homogenized at465℃for24h dissolved into the matrix and the residual particles were Al7Cu2Fe. The triangular Al18Mg3Cr2phase (E phase) which distributed mainly in matrix formed during solidification. Moreover, there were no obvious changes on the E precipitates during the homogenization. It was found that the major existing form of erbium in Al-Cu-Mg-Er alloy was Al8Cu4Er phase, which formed in grain boundary during solidification. Al8Cu4Er particles could not be eliminated during homogenization and were crushed up along with the grain boundaries after hot rolling. A few secondary Al3Er precipitates were observed in the matrix in this investigation.
     The hot deformation behavior of Al-Zn-Mg-Cu alloy was studied and the results showed that when the deformation temperature was below390℃, the dominative restoring mechanism was dynamic recovery. However, when the temperature was420℃, dynamic recrystallization has occurred. The suitable hot working temperature range of the alloy was330℃-400℃with a strain rate of0.1s-1. Based on the results, the hot deformation activation energy was calculated which was192.6KJ/mol, and the constitutive equation was also given. The optimal T761ageing treatment was125℃/3h+170℃/10h. Under this condition, the tensile strength, yield strength, elongation and conductivity were498MPa,429MPa,12.1%and40.2%IACS, respectively. The optimal RRA treatment of the alloy was120℃/25h+190℃/10min+120℃/25h, and under this condition the tensile strength, yield strength, elongation and conductivity were554MPa,507MPa,16.5%and35.4%IACS, which were closely comparable to those of T6-treated alloy. The sheet of T761-treated Al-Zn-Mg-Cu alloy could meet the needs of AMS-4085B, and was satisfactorily applied to a large aircraft.
     It was found that the fatigue crack propagation (FCP) rate of RRA-treated Al-Zn-Mg-Cu alloy was slower than that of T761-treated alloy at a stress ratio of0.1with a sine-wave loading frequency of lOHz. The formation of more secondary cracks led to a more complex crack propagation path, thereby reducing the fatigue crack driving force and enhancing the crack propagation resistance in the RRA-treated alloy with shearable precipitates. For the T761-treated alloy with coarse η'precipitates and wide PFZs, secondary cracks were found to propagate along the grain boundaries, which was associated with the higher FCP rate.
     Short crack propagation of T761-treated Al-Zn-Mg-Cu alloy was investigated by EBSD analysis and it was found that the formation of zigzag crack was ascribed to the high misorientation of adjacent grains. The plastic deformation zone surrounding the long crack tip of T761-treated Al-Zn-Mg-Cu alloy was analyzed by Micro-XRD, and the dissolution of precipitates was not observed. The results of EBSD analysis showed that long crack tended to propagate along grain boundary, therefore, the dissolution of n precipitates on grain boundary was not found on the condition of reciprocating motion of dislocations.
     The fatigue crack propagation mode of T761-treated Al-Zn-Mg-Cu alloy was revealed and a crystallographic model of the transition of crack propagation mode was given. It was showed that short crack tended to transgranularly propagate in the alloy, whereas intergranular long crack propagation was observed. Short crack propagation was predominated by single shear, and the effect of PFZs on the crack propagation could be ignored in this stage. However, long crack propagation was predominated by duplex slip mechanism. Moreover, the presence of wide PFZs accelerated the growth of long crack which propagated along the grain boundary.
     The research showed that the exfoliation corrosion resistances of RRA-treated, T761-treated and T6-treated Al-Zn-Mg-Cu alloys were decreased in turn, and the degrees of exfoliation corrosion were EA-, EA and EB, respectively. The enhanced corrosion resistance of T761-treated alloy and RRA-treated alloy was ascribed to the discontinued GBPs, whereas the continued GBPs presented in T6-treated alloy resulted in the severe corrosion. Compared with the T761-treated alloy, the anode dissolution of GBPs in RRA-treated alloy was abated due to the higher copper content of GBPs, which led to the enhanced corrosion resistance of RRA-treated alloy. The stress corrosion resistance of the alloy under various RRA treatments on the corrosion condition of482MPa was also studied and the results showed that the alloy treated at120℃/25h+190℃/10min+120℃/25h had the longest fracture time of260h due to the higher yield strength of507MPa.
引文
[1]Sander W., Meissner K.L. Influence of compound MgZn2 on the availability of aluminum alloys[J]. Journal of Inorganic and General Chemistry,1926,154(1):144-151.
    [2]Webber L.J. Aluminum alloy. US:1924729[P],1933-8-29.
    [3]弗得良捷尔.高强度变形铝合金[M].吴学译.上海:上海科技出版社,1963:6-9.
    [4]马场义雄.超硬铝(EDS)及飞机铝合金发展动向(孙本良译)[J].铝合金加工技术,1990,(4):21-31.
    [5]Lukasak D.A., Hart R.M. Aluminum alloy development efforts for compression dominated structure of aircraft[J]. Light Metal Age,1991,2(9):11-15.
    [6]Staley J.T., Liu J. Aluminum alloys for aerostructures[J]. Advanced Materials and Processes,1997,152(4):17-20.
    [7]Smith R.K. The quest for excellence[C]. Greenwood J.T. In:Milestones of Aviation. New York:Crescent Books,1991:222-296.
    [8]Starke Jr E.A., Staley J.T. Application of modern aluminum alloys to aircraft[J]. Progress in Aerospace Sciences,1996,32:131-172.
    [9]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J].轻合金加工技术,2005,33(2):1-9.
    [10]张君尧.航空结构用高纯高韧性铝合金的发展(2)[J].轻金属,1994,(8):59-63.
    [11]吴一雷,李永伟,强俊,等.超高强度铝合金的发展与应用[J].航空材料学报,1994,14(1):49-55.
    [12]谢优华,杨守杰,戴圣龙,等.含锆超高强铝合金的研究及发展概况[J].材料导报,2002,16(5):8-10.
    [13]罗兵辉,柏振海.高性能铝合金研究发展[J].兵器材料科学与工程,2002,25(3):59-62.
    [14]Mondolfo L.F. Aluminum alloy:Structure and properties[M]. Butterworths, London, 1976.
    [15]金相图谱编写组.变形铝合金金相图谱[M].北京:冶金工业出版社,1975.
    [16]邓至谦,周善初.金属材料及热处理[M].长沙:中南工业大学出版社,1989.
    [17]Polmear I.J. A trace element effect in alloys based on the aluminum-zinc-magnesium system[J]. Nature,1960,186:303-304.
    [18]Polmear I.J. The ageing characteristics of complex Al-Zn-Mg alloys, distinctive effects of copper and silver on the ageing mechanism[J]. Journal of the Japan Institute of Metals, 1960-1961,89:51-59.
    [19]Lin F.S., Starke Jr E.A. Influence of grain structure and intergranular corrosion rate on stress corrosion cracking of high strength Al-Cu-Mg alloys[J]. Materials Science and Engineering A,1980,45:153-160.
    [20]樊喜刚,蒋大鸣,单长智.Cu含量对Al-Zn-Mg-Cu合金组织性能和断裂行为的影响[J],轻合金加工技术,2006,34(2):31-35.
    [21]Hyatt M.V. Symp of Aluminum alloy in the Aircraft Industry[J]. Turin,1976:31-36.
    [22]李念奎,崔建忠.Al-Zn-Mg-Cu系合金组织对性能的影响[J].轻合金加工技术,2008,36(1):5-10.
    [23]Suarez M.A., Alvarez O., Alvarez M.A., et al. Characterization of microstructures obtained in wedge shaped Al-Zn-Mg ingots[J]. Journal of Alloys and Compounds,2010, 492(1-2):373-377.
    [24]Li X.M., Starink M.J. DSC study on phase transitions and their correlation with properties of overaged Al-Zn-Mg-Cu alloys [J]. Journal of Materials Engineering and Performance, DOI:10.1007/s11665-011-9973-5.
    [25]Liu S.D., Zhong Q.Y., Zhang Y., et al. Investigation of quench sensitivity of high strength Al-Zn-Mg-Cu alloys by time-temperature-properties diagrams [J]. Materials and Design,2010,31:3116-3120.
    [26]Li X.M., Starink M.J. Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al-Zn-Mg-Cu alloys [J]. Journal of Alloys and Compounds, 2011,509:471-476.
    [27]Li Y.T., Liu Z.Y., Xia Q.K., et al. Grain refinement of the Al-Cu-Mg-Ag alloy with Er and Sc additions[J]. Metallurgical and Materials Transactions A,2007,38(11):2853-2858.
    [28]Robson J.D., Prangnell P.B. Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys[J]. Materials Science and Engineering A,2003,352(1-2): 240-250.
    [29]Robson J.D., Prangnell P.B. Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate[J]. Materials Science and Technology,2002,18(6):607-614.
    [30]Wu L.M., Wang W.H., Hsu Y.F., et al. Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy[J], Journal of Alloys and Compounds,2008,456(1-2):163-169.
    [31]Robson J.D. Microstructural evolution in aluminium alloy 7050 during processing[J], Materials Science and Engineering A,2004,382(1-2):112-121.
    [32]Mukhopadhyay A.K., Yang Q.B., Singh S.R. The influence of zirconium on the early stages of aging of a ternary Al-Zn-Mg alloy[J]. Acta Materialia,1994,42(9):3083-3091.
    [33]Rφyset J., Ryum N. Scandium in aluminium alloys[J]. International Materials Reviews, 2005,50(1):19-44.
    [34]Wang W.T., Zhang X.M., Gao Z.G., et al. Influences of Ce addition on the micro structures and mechanical properties of 2519A aluminum alloy plate[J]. Journal of Alloys and Compounds,2010,491:366-371.
    [35]Meng G, Li B.L., Li H.M., et al. Hot deformation behavior of an Al-5.7wt.%Mg alloy with erbium[J]. Materials Science and Engineering A,2009,516:131-137.
    [36]Costello F.A., Robson J.D., Prangnell P.B. The effect of small scandium additions to AA7050 on the as-cast and homogenized micro structure [J]. Materials Science Forum,2002, 396-402:757-762.
    [37]Karnesky R.A., Dunand D.C., Seidman D.N. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er[J]. Acta Materialia,2009,57(14):4022-4031.
    [38]Lee W.S., Chen T.H., Lin C.F., et al. Impact deformation behaviour and dislocation substructure of Al-Sc alloy[J]. Journal of Alloys and Compounds,2010,493:580-589.
    [39]Poganitsch R.,张育钦.高强Al-Zn-Mg-Cu合金的金属间化合物[J].轻合金加工技术,1984,(9):40-44.
    [40]TKaheHKO E.A.,任继嘉.高强度变形铝合金[J].轻合金加工技术,1986,(2):33-36.
    [41]张录泉.7xxx系合金的双级时效[J].轻合金加工技术,1986,25(12):16-21.
    [42]Sha G, Wang Y.B., Liao X.Z., et al. Micro structural evolution of Fe-rich particles in an Al-Zn-Mg-Cu alloy during equal-channel angular pressing[J]. Materials Science and Engineering A,2010,527(18-19):4742-4749.
    [43]Gjφnnes J., Simensen Chr.J. An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy[J]. Acta Metallurgica,1970,18(8): 881-890.
    [44]Blaschko O., Ernst G, Fratzl P., et al. A neutron scattering investigation of the early stages of guinier-preston zone formation in AlZnMg(Cu)-alloys[J]. Acta Metallurgica,1982, 30(2):547-552.
    [45]Davies C.H.J., Raghunathan N., Sheppard T. Ageing kinetics of a silicon carbide reinforced Al-Zn-Mg-Cu alloy[J]. Acta Metallurgica et Materialia,1994,42(1):309-318.
    [46]Berg L.K., Gjonnes J., Hansen V., et al. GP Zone in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Materialia,2001,49(17):3443-3451.
    [47]Sha G, Cerezo A. Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)[J]. Acta Materialia,2004,52(15):4503-4516.
    [48]Barrett C.S., Massalski T.B. Structure of Metals[M], Pergamon, Oxford,1980:298.
    [49]Stiller K., Warren P.J., Hansen V., et al. Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100° and 150℃[J]. Materials Science and Engineering A,1999,270(1):55-63.
    [50]Auld J.H., Cousland S.McK. Structure of the metastable η'phase in aluminum-zinc-magnesium alloys[J]. Journal of Australian Institute of Metals,1974,19(3): 194-199.
    [51]Li X.Z., Hansen V., Gjφnnes J., et al. Hrem study and structure modeling of the phase: The hardening precipitates in commercial Al-Zn-Mg alloys[J]. Acta Materialia,1999,47(9): 2651-2659.
    [52]Park J.K., Ardell A.J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers[J]. Metallurgical and Materials Transactions A,1983,14(10):1957-1965.
    [53]Mondolfo L.S., Gjostein N.A., Lewinson D.W. Structural changes during the ageing of an Al-Zn-Mg alloy[J]. Transactions of AIME,1956,206:1378-1385.
    [54]Thevenet D., Mliha-Touati M., Zeghloul A. The effect of precipitation on the Portevin-Le Chatelier effect in an Al-Zn-Mg-Cu alloy [J]. Material Science and Engineering, 1999,266(1-2):175-182.
    [55]Loffler H., Kovacs I., Lendvai J. Decomposition processes in Al-Zn-Mg alloys[J]. Journal of Materials Science,1983,18(8):2215-2240.
    [56]Adler P.N., Delasi R. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy [J]. Metallurgical Transactions,1972, 3(9):3191-3200.
    [57]华明建,李春志,王鸿渐.微观组织对7075铝合金的屈服强度和抗应力腐蚀性能的影响[J].金属学报,1988,24(1):41-46.
    [58]DeIasi R., Adler P.N. Calorimetric studies of 7000 series aluminum alloys:I. Matrix precipitate characterization of 7075[J]. Metallurgical and Materials Transactions A,1977, 8(7):1177-1183.
    [59]Adler P.N., DeIasi R. Calorimetric studies of 7000 series aluminum alloys:II. Comparison of 7075,7050 and RX720 alloys[J]. Metallurgical and Materials Transactions A,1977,8(7):1185-1190.
    [60]Fan X.G., Jiang D.M., Meng Q.C., et al. Characterization of precipitation microstructure and properties of 7150 aluminium alloy[J]. Materials Science and Engineering A,2006,427(1-2):130-135.
    [61]Cahn R.W. Strengthening methods in crystals [J]. International Metallurgical Reviews, 1972,17(1):147.
    [62]Arzt E., R6sler J. The kinetics of dislocation climb over hard particles-II. Effects of an attractive particle-dislocation interaction[J], Acta Metallurgica,1988,36(4):1053-1060.
    [63]Ardell A.J. Precipitation hardening[J]. Metallurgical Transaction A,1985, 16(12):2131-2165.
    [64]Kelly A., Nicholson R.B. Strengthening methods in crystals[M]. Elsevier, Amsterdam, 1971.
    [65]Ardell A.J. On the coarsening of grain boundary precipitates[J]. Acta Metallurgica, 1972,20(4):601-609.
    [66]Speight M.V. Growth kinetics of grain-boundary precipitates [J]. Acta Metallurgica, 1968,16(1):133-135.
    [67]Kirchner H.O.K. Coarsening of grain-boundary precipitates [J]. Metallurgical and Materials Transactions B,1971,2(10):2861-2864.
    [68]Brailsford A.D., Aaron H.B. Growth of grain-boundary precipitates [J]. Journal of Applied Physics,1969,40(4):1702-1710.
    [69]Unwin P.N.T., Lorimer G.W., Nicholson R.B. The origin of the grain boundary precipitate free zone[J]. Acta Metallurgica,1969,17(11):1363-1377.
    [70]Ryum N. The influence of a precipitate-free zone on the mechanical properties of an Al-Mg-Zn alloy [J]. Acta Metallurgica,1968,16(3):327-332.
    [71]Kawabata T., Izumi O. Ductile fracture in the interior of precipitate free zone in an Al-6.0%Zn-2.6%Mg alloy[J]. Acta Metallurgica,1976,24(9):817-825.
    [72]Shastry C.R., Judd G. A study of grain boundary precipitate-free zone formation in an Al-Zn-Mg alloy[J]. Metallurgical and Materials Transactions B,1971,2(12):3283-3287.
    [73]Wang T., Yin Z.M., Sun Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminium alloy [J]. Transactions of Nonferrous Metals Society of China,2007,17(2)335-339.
    [74]Waldman J., Sulinski H., Markus H. The effect of ingot processing treatments on the grain size and properties of Al alloy 7075[J]. Metallurgical and Materials Transactions B, 1974,5(3):573-584.
    [75]Suh D.W., Lee S.Y., Lee K.H., et al. Microstructural evolution of Al-Zn-Mg-Cu-(Sc) alloy during hot extrusion and heat treatments [J]. Journal of Materials Processing Technology,2004,155-156(30):1330-1336.
    [76]Sanders R. E., Starke E. A. The effect of intermediate thermomechanical treatments on the fatigue properties of a 7050 aluminum alloy[J]. Metallurgical and Materials Transactions A,1978,9(8):1087-1100.
    [77]Robson J.D., Prangnell P.B. Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys[J]. Acta Materialia,2001, 49(4):599-613.
    [78]Shastry C.R., Levy M., Joshi A. The effect of solution treatment temperature on stress corrosion susceptibility of 7075 aluminium alloy[J]. Corrosion Science,1981,21(9-10): 673-688.
    [79]陈康华.强化固溶对7055合金力学性能和断裂行为的影响[J].金属学报,2001,31(6):528-531.
    [80]陈康华.升温固溶对Al-Zn-Mg-Cu合金组织与力学性能的影响[J].中南工业大学学报,2000,31(4):339-341.
    [81]刘刚,陈康华.含有不同尺度量级第二相的高强铝合金断裂韧性模型[J].中国有色金属学报,2002,12(4):706-713.
    [82]Starink M.J., Wang S.C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys[J]. Acta Materialia,2003,51(17):5131-5150.
    [83]Senkov O.N., Shagiev M.R., Senkova S.V., et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia,2008,56(15):3723-3738.
    [84]曾渝.超高强Al-Zn-Mg-Cu-Zr合金组织与性能研究[D].中南大学,博士学位论文,2004.
    [85]Doig P., Flewitt P.E.J., Edington J.W. The stress corrosion susceptibility of 7075 Al-Zn-Mg-Cu alloys tempered from T6 to an overaged T7X[J]. Corrosion,1977, 33:217-221.
    [86]Dorward R.C., Beerntsen D.J. Grain structure and quench-rate effects on strength and toughness of AA7050 Al-Zn-Mg-Cu-Zr alloy plate[J]. Metallurgical and Materials Transactions A,1995,26(9):2481-2484.
    [87]Li X.M., Starink M.J. Effect of compositional variations on characteristics of coarse intermetallic particles in overaged 7000 aluminium alloys [J]. Materials Science and Technology,2001,17(11):1324-1328.
    [88]Wloka J., Virtanen S. Microstructural effects on the corrosion behavior of high-strength Al-Zn-Mg-Cu alloys in an overaged condition[J]. Journal of the Electrochemical Society,2007,154(8):C411-C423.
    [89]Andreatta F., Terryn H., De Wit J.H.W. Corrosion behaviour of different tempers of AA7075 aluminium alloy[J]. Electrochimica Acta,2004,49(17-18):2851-2862.
    [90]Kanno M., Araki I., Cui Q. Precipitation behaviour of 7000 alloys during retrogression and reaging treatment[J]. Materials Science and Technology,1994,10(9):599-603.
    [91]Li J.F., Birbilis N., Li C.X., et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150[J]. Materials Characterization,2009,60(11):1334-1341.
    [92]Cina B. Reducing the susceptibility of alloys particularly aluminium alloys to stress corrosion cracking. US:3856584[P],1974-12-24.
    [93]Nguyen D., Rajan K., Wallace W. Discussion of "Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651"[J]. Metallurgical and Materials Transactions A,1985,16(11):2068.
    [94]Wallace W, Beddoes J. C, De Malherbe M.C. A new approach to the problem of stress corrosion cracking in 7075-T6 aluminum [J]. Canadian Aeronautics and Space Journal, 1981,27:222-229.
    [95]Islam M.U., Wallace W. Stress corrosion crack growth behavior of 7475-T6 retrogressed and reaged aluminum alloy[J]. Metals Technology,1984,11:320-322.
    [96]Wu Y.L., Froes F.H., Alvarez A., et al. Microstructure and properties of a new super-high-strength Al-Zn-Mg-Cu alloy C912[J]. Materials and Design,1997,18(4-6): 211-215.
    [97]Rendigs K.H. Metallic structures used in aerospace during 25 years and prospects[C]. Hognat J., Pinzelli R. Gillard E. In:50 years of Advanced Materials or Back to the Future, Proceedings of the 15th International European Chapter Conference of the Society for the Advance of Material and Process Engineering. Toulouse, France,1994:49-65.
    [98]Raizenne D., Wu X., Poon C. In situ retrogression and re-aging of Al 7075-T6 parts[C]. Fifth Joint FAA/DoD/NASA Conference on Aging Aircraft. Orlando.2001.
    [99]Raizenne D., Sjoblom P., Snide J., et al. Retrogression and re-aging of new and old aircraft parts[C]. Sixth Joint FAA/DoD/NASA Conference on Aging Aircraft. San Francisco, USA.2002.
    [100]Chan K.S. Roles of microstructure in fatigue crack initiation[J]. International Journal of Fatigue,2010,32(9):1428-1447.
    [101]Klesnil M., Luksa P. Fatigue of metallic materials[M]. New York (NY):Elsevier; 1980:57-80.
    [102]Morrison D.J., Chopa V. Cyclic stress-strain response of polycrystalline nickel[J]. Materials Science and Engineering A,1994,177(1-2):29-42.
    [103]Fan J., McDowell D.L., Horstemeyer M.F., et al. Cyclic plasticity at pores and inclusions in cast Al-Si alloys[J]. Engineering Fracture Mechanics,2003,70:1281-1302.
    [104]Chan K.S., Jones P., Wang Q. Fatigue crack growth and fracture paths in sand cast B319 and A356 aluminum alloys[J]. Materials Science and Engineering A,2003,341: 18-34.
    [105]Sakai T., Takeda M., Shiozawa K., et al. Experimental reconfirmation of characteristic S-N property for high carbon chromium bearing steel in wide life region in rotating bending[J]. Journal of Society Materals Science,2000,49(7):779-785.
    [106]Tanaka K., Akiniwa Y. Fatigue crack propagation behavior derived from S-N data in very high cycle regime [J]. Fatigue and Fracture of Engineering Materials and Structures, 2002,25(8-9):775-784.
    [107]Taylor D., Clancy O.M. The fatigue performance of machined surfaces[J]. Fatigue and Fracture of Engineering Materials and Structures,1991,14(2-3):329-336.
    [108]Brinckmann S., Van der Giessen E. A fatigue crack initiation model incorporating discrete dislocation plasticity and surface roughness [J]. International Journal of Fracture, 2007,148(2):155-167.
    [109]Li S.X., Chu R.Q., Hou J.Y., et al. Microcrack initiation and dislocation structures in an aluminium bicrystal under cyclic loading[J]. Philosophical Magazine A,1998,77(4): 1081-1092.
    [110]Zhai T., Martin J.W., Briggs G.A.D. Fatigue damage in aluminum single crystals-I. On the surface containing the slip burgers vector[J]. Acta Metallurgica et Materialia,1995, 43(10):3813-3825.
    [111]Harvey S.E., Marsh P.G, Gerberich W.W. Atomic force microscopy and modeling of fatigue crack initiation in metals[J]. Acta Metallurgica et Materialia,1994,42(10): 3493-502.
    [112]Man J., Obrtlik K., Blochwitz C., et al. Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel [J]. Acta Materialia,2002, 50(15):3767-3780.
    [113]Polak J., Man J., Vystavel T., et al. The shape of extrusions and intrusions and initiation of stage I fatigue cracks[J]. Materials Science and Engineering A,2009,517(1-2): 204-211.
    [114]Chan K.S., Tian J.W., Yang B., et al. Evolution of slip morphology and fatigue crack initiation in surface grains of Ni200[J]. Metallurgical and Materials Transactions A,2009, 40(11):2545-2556.
    [115]Sonsino C.M., Ziese J. Fatigue strength and applications of cast aluminum alloys with different degree of porosity [J]. International Journal of Fracture,1993,15(2):75-84.
    [116]Wang Q.G., Apelian D., Lados D.A. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects[J]. Journal of Light Metals,2001, 1(1):73-84.
    [117]Mayer H.R., Lipowsky H.J., Papakyriacou M., et al. Application of ultrasound for fatigue testing of lightweight alloys[J]. Fatigue and Fracture of Engineering Materials and Structures,1999,22:591-599.
    [118]Zhu X., Jones J.W., Allison J.E. Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy:Stress controlled fatigue life response[J]. Metallurgical and Materials Transactions A,2008,39:2681-2688.
    [119]Zheng Z.Q., Cai B., Zhai T., et al. The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy[J]. Materials Science and Engineering A,2011,528(4-5): 2017-2022.
    [120]Buckner B.D., Markov V., Lai L., et al. Laser-scanning structural health monitoring with wireless sensor motes[J]. Optical Engineering,2008,47(5):054402.
    [121]Suresh S., Ritchie R.O. Propagation of short fatigue cracks[J]. International Metals Reviews,1984,29(1):445-476.
    [122]Pearson S. Initiation of fatigue cracks in commercial aluminum alloys and the subsequent propagation of very short cracks[J]. Engineering Fracture Mechanics,1975, 7(2):241-247.
    [123]Lankford J. The growth of small fatigue cracks in 7075-T6 aluminum[J]. Fatigue and Fracture of Engineering Materials and Structures,1982,5(3):233-248.
    [124]Morris W.L. Microcrack closure phenomena for Al 2219-T851[J]. Metallurgical and Materials Transactions A,1979,10(1):5-11.
    [125]Suresh S. Fatigue of materials [M], second ed., Cambridge University Press, Cambridge,1998.
    [126]James M.R., Morris W.L. Effect of fracture surface roughness on growth of short fatigue cracks[J]. Metallurgical and Materials Transactions A,1983,14(1):153-155.
    [127]Tanaka K., Mura T. A dislocation model for fatigue crack initiation[J]. Journal of Applied Mechanics,1981,48(1):97-102.
    [128]Morris W.L. The noncontinuum crack tip deformation behavior of surface microcracks[J]. Metallurgical and Materials Transactions A,1980,11(7):1117-1123.
    [129]Suresh S. Crack deflection:Implications for the growth of long and short fatigue cracks[J]. Metallurgical and Materials Transactions A,1983,14(11):2375-2385.
    [130]Davidson D.L. Fatigue crack closure[J]. Engineering Fracture Mechanics,1991, 38(6):393-402.
    [131]Walker N., Beevers C.J. A fatigue crack closure mechanism in titanium[J]. Fatigue and fracture of engineering materials and structures,1979,1(1):135-148.
    [132]Wolf E. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics,1970,2(1):37-44.
    [133]Lados D.A., Apelian D., Donald J.K. Fatigue crack growth mechanisms at the microstructure scale in Al-Si-Mg cast alloys:Mechanisms in the near-threshold regime[J]. Acta Materialia,2006,54(6):1475-1486.
    [134]Forsyth P.J.E. A two stage process of fatigue crack growth[C]. In:Crack Propagation: Proceedings of cranfield symposium. London:Her Majesty's Stationery Office.1962: 76-94.
    [135]Zappfe C.A., Worden C.O. Fractographic registrations of fatigue[J]. Transactions of the American Society for Metals,1951,43:958-969.
    [136]Laird C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation[C]. Fatigue Crack Propagation, Special Technical Publication 415. Philadelphia:The American Society for Testing and Materials.1967:131-168.
    [137]Tomkins B. The mechanism of stage II fatigue crack growth[J]. Fatigue and Fracture of Engineering Materials and Structures,1996,19(11):1295-1300.
    [138]Sadananda K., Ramaswamy D.N.V. Role of crack tip plasticity in fatigue crack growth[J]. Philosophical Magazine A,2001,81(5):1283-1303.
    [139]Nix K.J., Flower H.M. The micromechanisms of fatigue crack growth in a commercial Al-Zn-Mg-Cu alloy[J].Acta Metallurgica, 1982,30(8):1549-1559.
    [140]Guerbuez R., Alpay S.P. The effect of coarse second phase particles on fatigue crack propagation of an Al-Zn-Mg-Cu alloy[J]. Scripta Metallurgica et Materialia,1994,30(11): 1373-1376.
    [141]Jata K.V., Sankaran K.K., Ruschau J.J. Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451[J]. Metallurgical and Materials Transactions A, 2000,31(9):2181-2192.
    [142]Yue T.M. Comparison of the fatigue behaviour of an Al-Zn-Mg-Cu alloy (7010) in the form of squeeze and chill castings and rolled plate[J]. Journal of Materials Science, 1990,25(1):175-182.
    [143]Ostermann F. Improved fatigue resistance of Al-Zn-Mg-Cu (7075) alloys through thermomechanical processing[J]. Metallurgical and Materials Transactions B,1971,2(10): 2897-2902.
    [144]Suresh S., Vasudevan A.K., Bretz P.E. Mechanisms of slow fatigue crack growth in high strength aluminum alloys:Role of microstructure and environment[J]. Metallurgical and Materials Transactions A,1984,15(2):369-379.
    [145]Lindigkeit J., Gysler A., Lutjering G. The effect of microstructure on the fatigue crack propagation behavior of an Al-Zn-Mg-Cu alloy [J]. Metallurgical and Materials Transactions A,1981,12(9):1613-1619.
    [146]Sanders T.H., Starke E.A. The relationship of microstructure to monotonic and cyclic straining of two age hardening aluminum alloys [J]. Metallurgical and Materials Transactions A,1976,7(9):1407-1418.
    [147]Hornbogen E., Gahr K.H.Z. Microstructure and fatigue crack growth in a y-Fe-Ni-Al alloy[J]. Acta Metallurgica,1976,24(6):581-592.
    [148]Desmukh M.N., Pandey R.K., Mukhopadhyay A.K. Effect of aging treatments on the kinetics of fatigue crack growth in 7010 aluminum alloy[J]. Materials Science and Engineering A,2006,435-436(5):318-326.
    [149]Desmukh M.N., Pandey R.K., Mukhopadhyay A.K. Fatigue behavior of 7010 aluminum alloy containing scandium[J]. Scripta Materialia,2005,52(7):645-650.
    [150]Coyne E.J., Starke E.A. The effect of microstructure on the fatigue crack growth behaviour of an Al-Zn-Mg-(Zr) alloy[J]. International Journal of Fracture,1979,15(5): 405-417.
    [151]Minakawa K., Levan G., McEvily A.J. The influence of load ratio on fatigue crack growth in 7090-t6 and in 9021-t4 p/m aluminum alloys[J]. Metallurgical and Materials Transactions A,1986,17(10):1787-1795.
    [152]Forsyth P.J.E., Bowen A.W. The relationship between fatigue crack behaviour and microstructure in 7178 aluminium alloy[J]. International Journal of Fatigue,1981,3(1): 17-25.
    [153]Mukhopadhyay A.K. Microstructure and properties of high strength aluminium alloys for structural applications [J]. Transactions of the Indian Institute of Metals,2009,62(2): 113-122.
    [154]Srivatsan T.S. Mechanisms governing cyclic deformation and failure during elevated temperature fatigue of aluminum alloy 7055[J]. International Journal of Fatigue,1999, 21(6):557-569.
    [155]Broom T., Mazza J.A., Whittaker V.N. Structural changes caused by plastic strain and by fatigue in aluminium-zinc-magnesium-copper alloys corresponding to DTD 683[J]. Journal of Institute Metals,1957,86:17-23.
    [156]Srivatsan T.S., Anand S., Sriram S., et al. The high-cycle fatigue and fracture behavior of aluminum alloy 7055[J]. Materials Science and Engineering A,2000, 281(1-2):292-304.
    [157]Chen J.Z., Zhen L., Yang S.J., et al. Effects of precipitates on fatigue crack growth rate of AA 7055 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2010,20:2209-2214.
    [158]Kunkler B., Duber O., Koster P., et al. Modelling of short crack propagation-Transition from stage Ⅰ to stage Ⅱ [J]. Engineering Fracture Mechanics,2008, 75(3-4):715-725.
    [159]Petit J., Kosche K., Gudladt H.J. Intrinsic stage I crack propagation in Al-Zn-Mg single crystals[J]. Scripta Metallurgica et Materialia,1992,26:1049-1054.
    [160]Henaff G, Menan F., Odemer G. Influence of corrosion and creep on intergranular fatigue crack path in 2xxx aluminium alloys [J]. Engineering Fracture Mechanics,1975, 77(11):1975-1988.
    [161]Jian H.G., Jiang F., Wei L.L., et al. Crystallographic mechanism for crack propagation in the T7451 Al-Zn-Mg-Cu alloy [J]. Materials Science and Engineering A,2010, 527(21-22):5879-5882.
    [162]李云涛.Er、Sc、Ce对Al-Cu-Mg-Ag合金组织与性能的影响[D].长沙:中南大学,2008.
    [163]Blanc C., Freulon A., Lafont M.C., et al. Modelling the corrosion behaviour of Al2CuMg coarse particles in copper-rich aluminium alloys[J]. Corrosion Science,2006, 48(11):3838-3851.
    [164]Afseth A., Nordlien J.H., Scamans GM., et al. Filiform corrosion of binary aluminium model alloys[J]. Corrosion Science,2002,44(11):2543-2559.
    [165]Lawrence J.K., David L.O., Joseph R.D., et al. Metals Handbook Corrosion, Ohio: ASM International.1987,13:213.
    [166]Wu GH., Fan Y., Gao H.T., et al. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D[J]. Materials Science and Engineering A,2005,408(1-2):255-163.
    [167]Sedriks A.J., Green J.A.S., Novak D.L. Localized corrosion[M], eds. Staehle R.W., Brown B.F., Kruger J., et al. (Houston, TX:NACE International,1971):569.
    [168]Ramgopal T., Schmutz P., Frankel GS. Electrochemical behavior of thin film analogs of Mg(Zn,Cu,Al)2[J]. Journal of the Electrochemical Society,2001,148(9):B348-B356.
    [169]Mattsson E., Gullman L.-O., Knutsson L., et al. Mechanism of exfoliation (Layer Corrosion) of Al-5%Zn-1%Mg[J]. British Corrosion Journal,1971,6(2):73-83.
    [170]Buchheit R.G. Jr., Moran J.P., Stoner G.E. Localized corrosion behavior of alloy 2090-yhe role of microstructural heterogeneity[J]. Corrosion,1990,46(8):610-617.
    [171]Buchheit R.G, Moran J.P., Stoner GE. Electrochemical behavior of the T1 (Al2CuLi) intermetallic compound and its role in localized corrosion of Al-2% Li-3% Cu alloys[J]. Corrosion,1994,50(2):610-620.
    [172]Buchheit R.G, Wall F.D., Stoner GE., et al. Anodic dissolution-based mechanism for the rapid cracking, preexposure phenomenon demonstrated by aluminum-lithium-copper alloys[J]. Corrosion,1995,51 (6):417-428.
    [173]Robinson M.J., Jackson N.C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al-Cu-Mg alloys[J]. Corrosion Science,1999,41(5):1013-1028.
    [174]Robinson M.J. The role of wedging stresses in the exfoliation corrosion of high strength aluminium alloys[J]. Corrosion Science,1983,23(8):887-899.
    [175]McNaughtan D., Worsfold M., Robinson M.J. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys[J]. Corrosion Science,2003,45:2377-2389.
    [176]Puiggali M., Zielinski A., Olive J.M., et al. Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy[J]. Corrosion Science,1998,40(4-5):805-819.
    [177]Liu X.D., Frankel G.S., Zoofan B., et al. Effect of applied tensile stress on intergranular corrosion of AA2024-T3[J]. Corrosion Science,2004,46(2):405-425.
    [178]Blanc C., Lavelle B., Mankowski G. The role of precipitates enriched with copper on the susceptibility to pitting corrosion of the 2024 aluminium alloy[J]. Corrosion Science, 1997,39(3):495-510.
    [179]Meajrs R.B., Brown R.H., Dix E.H. A generalized theory of stress corrosion of alloys[C]. In:Warwick C., Parsons A., eds. Symposium on Stress Corrosion Cracking of Metals. Philadelphia and New York:ASTM and AIME,1945:323-344.
    [180]Pathania R.S., Tromans D. Initiation of stress corrosion cracks in aluminum alloy[J]. Metallurgical Transactions A,1981,12(4):1607-1612.
    [181]Tsai T.C., Chuang T.H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys[J]. Materials Science and Engineering A,1997,225(2):135-144.
    [182]Dix E.H. Acceleration of the rate of corrosion by high constant stresses[J]. Transactions of AIME,1940.
    [183]大西忠一,原靛郎,中谷羲三.Al-8%Mg合金ヘの水素の浸透[J].轻金属,1977,27:367-369.
    [184]Gruhl W., Brungs D. Investigations of the mechanism of stress-corrosion cracking in Al-Zn-Mg alloys[J]. Metallurgica, 1969,23:1020-1026.
    [185]宋仁国,曾梅光.高强度铝合金的氢脆[J].材料科学与工程,1995,13(1):63-65.
    [186]Viswanadham R.K., Sun T.S., Green J.A.S. Grain boundary segregation in Al-Zn-Mg alloys-Implications to stress corrosion cracking[J]. Metallurgical and Materials Transactions A,1980, 11(1):85-89.
    [187]Knight S.P., Birbilis N., Muddle B.C. et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys[J]. Corrosion Science,2010,52(12):4073-4080.
    [188]Sarkar B., Marek M., Starke E.A. The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-XCu alloys[J]. Metallurgical and Materials Transactions A,1981,12(11):1939-1943.
    [189]Park J.K., Ardell A.J. Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metallurgical and Materials Transactions A,1984, 15(8):1531-1543.
    [190]Wloka J., Hack T., Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corrosion Science,2007, 49(3):1437-1449.
    [191]Song R.G., Dietzel W., Zhang B.J., et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia,2004,52(16):4727-4743.
    [192]Christodoulou L., Flower H.M. Hydrogen embrittlement and trapping in Al-6%Zn-3%Mg[J]. Acta Metallurgica,1980,28(4):481-487.
    [193]Xiao Y.P., Pan Q.L., Li W.B., et al. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy[J]. Materials and Design,2011,32(4): 2149-2156.
    [194]Peng GS., Chen K.H., Chen S.Y., et al. Influence of repetitious-RRA treatment on the strength and SCC resistance of Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A,2011,528(12):4014-4018.
    [195]Zou L., Pan Q.L., He Y.B., et al. Effect of minor Sc and Zr addition on microstructures and mechanical properties of Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China,2007,17:340-345.
    [196]Ayer R., Koo J.Y., Steeds J.W., et al. Microanalytical study of the heterogeneous phases in commercial Al-Zn-Mg-Cu alloys[J]. Metallurgica Transaction A,1985,16(11): 1925-1936.
    [197]Mao J.W., Jin T.N., Xu G.F., et al. As-cast microstructure of Al-Zn-Mg and Al-Zn-Mg-Cu alloys added erbium[J]. Transactions of Nonferrous Metals Society of China, 2005,15(6):1341-1345.
    [198]Lin S.P., Nie Z.R., Huang H., et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Materials and Design,2010,31(3):1607-1612.
    [199]Shewman P.G. Diffusion in Solids[M], New York,1963.
    [200]Liu X.Y., Pan Q.L., Fan X., et al. Microstructural evolution of Al-Cu-Mg-Ag alloy during homogenization[J]. Journal of Alloys and Compounds,2009,484 (1-2):790-794.
    [201]刘莹颖,夏长清,彭小敏,等.微量铒对Al-6.0%Zn-2.0%Mg-1.5%Cu合金组织与性能的影响[J].矿冶工程,2008,28(6):101-103.
    [202]Garofalo F. An empirical relation defining the stress dependence of minimum creep rate in metals[J]. Transactions of the metallurgical Society of AIME,1963,227:351-356.
    [203]Jonas J.J., Sellars C.M., Tegart W. J. McG Strength and structure under hot working conditions [J]. Metallurgical Reviews,1969,14(l):1-24.
    [204]Shi H., Mclaren A.J., Sellars C., et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Technology,1997,13(3):210-216.
    [205]Nes E., Marthinsen K., Brechet Y. On the mechanisms of dynamic recovery[J]. Scripta Materialia,2002,47(9):607-611.
    [206]Nes E., Mathinsen K. Modeling the evolution in micro structure and properties during processing of aluminum alloys[J]. Journal of Materials Processing Technology,2001, 117(3):333-340.
    [207]Nes E., Marthinsen K. Modeling the evolution in micro structure and properties during plastic deformation of f.c.c.-metals and alloys-an approach towards a unified model[J]. Materials Science and Engineering A,2002,322(1-2):176-193.
    [208]Yang X.Y., Miura H., Sakai T. Evolution of fine grained microstructure and superplasticity in warm worked 7075 aluminum alloy[J]. Materials Transactions,1996, 37(7):1379-1387.
    [209]Sakai T., Yang X.Y., Miura H. Dynamic evolution of fine grained structure and super-plasticity of 7075 alloy[J]. Materials Science and Engineering A,1997,234:857-860.
    [210]Zhen L., Hu H.E., Wang X.Y. Distribution characterization of boundary misorientation angle of 7050 aluminum alloy after high temperature compression[J]. Journal of Materials Processing Technology,2009,209:754-761.
    [211]诺维柯夫.金属热处理理论[M].机械工业出版社,1978:279-282.
    [212]Tsai T.C., Chuang T.H. Relationship between electrical conductivity and stress corrosion cracking susceptibility of Al 7075 and A1 7475 alloys[J]. Corrosion Science,1996, 52(6):414-416.
    [213]AMS 4085B. Aluminum alloy sheet 5.7Zn-2.2Mg-1.6Cu-0.22Cr solution heat treated and overaged[S]. Philadelphia:American Society for Testing and Materials,1986.
    [214]Park J.K. Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and Al-Zn-Mg alloys in various tempers[J]. Materials Science and Engineering A,1989,114:197-203.
    [215]Thomas G., Nutting J. The ageing characteristics of aluminum alloys[J]. Journal of the Institute of Metals,1959-1960,88:81-90.
    [216]Lorimer G.W., Nicholson R.B. The mechanism of phase transformations in crystalline solids[M]. Institute of Metals, London,1969:36-42.
    [217]Lorimer G.W., Nicholson R.B. Further results on the nucleation of precipitates in the Al-Zn-Mg system[J].Acta Metallurgica,1966,14(8):1009-1013.
    [218]Smith W.F., Grant N.J. The effect of multiple-step aging on the strength properties and precipitate-free zone widths in Al-Zn-Mg alloys[J]. Metallurgical Transactions,1970, 1:979-983.
    [219]Marlaud T., Deschamps A., Bley F., et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia,2010,58:4814-4826.
    [220]Smith W.F., Grant N.J. Effect of chromium and copper additions on precipitation in Al-Zn-Mg alloys[J]. Metallurgical Transactions,1971,2(5):1333-1340.
    [221]Cilense M., Garlipp W., Adorno A.T., et al. Influence of the heat treatment and of the chromium addition on the precipitation phenomena of Al-Zn-Mg-Cu alloy [J]. Journal of Materials Science Letters,1985,14(4):232-234.
    [222]Suresh S. Fatigue crack deflection and fracture surface contact:Micromechanical models[J]. Metallurgical Transactions A,1985,16(1):249-260.
    [223]Gupta V.K., Agnew S.R. Fatigue crack surface crystallography near crack initiating particle clusters in precipitation hardened legacy and modern Al-Zn-Mg-Cu alloys[J]. International Journal of Fatigue,2011,33(9):1159-1174.
    [224]Zhai T., Jiang X.P., Li J.X., et al. The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys[J]. International Journal of Fatigue,2005,27:1202-1209.
    [225]Suresh S., Vasudevan A.K., Tosten M., et al. Microscopic and macroscopic aspects of fracture in lithium-containing aluminum alloys[J]. Acta Metallurgica,1987,35(1):25-46.
    [226]Davidson D.L., Tryon R.G, Oja M., et al. Fatigue crack initiation in Waspaloy at 20℃[J]. Metallurgical and Materials Transactions A,2007,38:2214-2225.
    [227]Oja M., Ravi Chandran K.S., Tryon R.G Orientation imaging microscopy of fatigue crack formation in Waspaloy:crystallographic conditions for crack nucleation[J]. International Journal of Fatigue,2009,32:551-556.
    [228]Lados D.A., Apelian D., De Figueredo A.M. Fatigue performance of high integrity cast aluminum components[C]. In:Proceedings from the 2nd international aluminum casting technology symposium. Columbus, OH. Metals Park:ASM International.2002, 185-196.
    [229]Wang Q.Y., Bathias C., Kawagoishi N., et al. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength[J]. International Journal of Fatigue,2002,24: 1269-1274.
    [230]Buque C. Persistent slip bands in cyclically deformed nickel polycrystals[J]. International Journal of Fatigue,2001,23(6):459-466.
    [231]Harvey S.E., Marsh P.G., Gerberich W.W. Atomic-force microscopy and modeling of fatigue-crack initiation in metals[J]. Acta Metallurgica et Materialia,1994,42(10): 3493-3502.
    [232]Polak J., Man J., Obrtlik K. AFM evidence of surface relief formation and models of fatigue crack nucleation[J]. International Journal of Fatigue,2003,25(9-11):1027-1036.
    [233]Zhai T., Martin J.W., Briggs G.A.D., et al. Fatigue damage at room temperature in aluminum single crystals-Ⅲ. Lattice rotation[J]. Acta Materialia,1996,44(9)3477-3488.
    [234]Zhai T., Martin J.W., Briggs G.A.D. Fatigue damage at room temperature in aluminium single crystals-II. TEM[J]. Acta Materialia,1996,44(5):1729-1739.
    [235]Kwadjo R., Brown L.M. Cyclic hardening of magnesium single crystals[J]. Acta Metallurgica,1978,26(7):1117-1132.
    [236]Venkateswara Rao K.T., Ritchie R.O. Effect of prolonged high-temperature exposure on the fatigue and fracture behavior of aluminum-lithium alloy 2090[J]. Materials Science and Engineering A,1988,100:23-30.
    [237]Hanlon T., Kwon Y.N., Suresh S. Grain size effects on the fatigue response of nanocrystalline metals[J]. Scripta Materialia,2003,9:675-680.
    [238]Hanlon T., Tabachnikova E.D., Suresh S. Fatigue behaviors of nanocrystalline metals and alloys[J]. International Journal of Fatigue,2005,27:1147-1158.
    [239]Zhai T., Wilkinson A.J., Martin J.W. A crystallographic mechanism for fatigue crack propagation through grain boundaries [J]. Acta Materialia,2000,48:4917-4927.
    [240]Laird C., Smith G.C. Crack propagation in high stress fatigue[J]. Philosophical Magazine,1962,7(77):847-857.
    [241]Forsyth P.J.E, Ryder D.A. Some results of the examination of aluminum alloy specimen fracture surfaces[J]. Metallurgia,1961,63:117-124.
    [242]Park D.S., Nam S.W. Effect of precipitate free zones on low cycle fatigue life of Al-Zn-Mg alloy[J]. Materials Science and Technology,1995,11(9):921-925.
    [243]Bai S., Liu Z.Y., Zhou X.W., et al. Strain-induced dissolution of Cu-Mg co-clusters and dynamic recrystallization near a fatigue crack tip of an underaged Al-Cu-Mg alloy during cyclic loading at ambient temperature [J]. Scripta Materialia,2011,64:1133-1136.
    [244]Bowles C.Q., Broek D. On the formation of fatigue striations[J]. International Journal of Fracture Mechanics,1972,8(1):75-85.
    [245]Gingell A.D.B., King J.E. The effect of frequency and microstructure on corrosion fatigue crack propagation in high strength aluminum alloys[J]. Acta Materialia,1997, 45:3855-3870.
    [246]Neumann P. Coarse slip model of fatigue[J]. Acta Metallurgica,1969,17:1219-1225.
    [247]陈文敬.高强铝合金应力条件下的腐蚀行为及其电化学行为研究[D].长沙:中南大学,2008.
    [248]Meng C.F., Long H.W., Zheng Y. A study of the mechanism of hardness change of Al-Zn-Mg alloy during retrogression reaging treatments by small angle X-ray scattering (SAXS)[J]. Metallurgical and Materials Transactions A,1997,28:2067-2071.
    [249]Baydogann M., Cimenoglu E.H., Kayali S., et al. Improved resistance to stress-corrosion-cracking failures via optimized retrogression and reaging of 7075-T6 aluminum sheets[J]. Metallurgical and Materials Transactions A,2008,39:2470-2476.
    [250]Ramgopal T., Schmutz P., Frankel G.S. Electrochemical behaviour of thin film analogs of Mg(Zn,Cu,Al)2[J]. Journal of the Electrochemical Society,2001,148(9): B348-B356.
    [251]Ramgopal T., Gouma P.I., Frankel G.S. Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150[J]. Corrosion, 2002,58(8):687-697.
    [252]Song J., Curtin W.A. Ananoscale mechanism of hydrogen embrittlement in metals[J]. Acta Materialia,2011,59:1557-1569.
    [253]Ali N.B., Tanguy D., Estevez R. Effects of microstructure on hydrogen-induced cracking in aluminum alloys[J]. Scripta Materialia,2011,65:210-213.
    [254]Beremin F.M. Cavity formation from inclusions in ductile fracture of A508 steel[J]. Metallurgical and Materials Transactions A,1981,12(5):723-731.
    [255]Thakur A., Raman R., Malhotra S.N. Hydrogen embrittlement studies of aged and retrogressed-reaged Al-Zn-Mg alloys[J]. Materials Chemistry and Physics,2007,101: 441-447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700