Mg-Gd(-Mn-Sc)合金拉伸变形时的塑性失稳行为及变形机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg-Gd系合金因其优良的高温力学性能,成为高温耐热镁合金中最具潜力的合金系之一,引起了越来越多国内外的重视。近年来,德国的Mordike等开发了一类新型抗蠕变Mg-Gd-Mn-Sc系列镁合金,该系列合金在300℃的抗蠕变性能要优于现有的最成功的耐热商用WE系列镁合金。国内外对Mg-Gd系合金的时效硬化效应、时效析出序列、高温拉伸强度以及高温抗蠕变性能开展了大量的研究。Mg-Gd-Mn-Sc合金系仅有德国的Mordike等进行过研究,研究内容主要集中在该合金的抗蠕变性能及其组织方面。为了能再进一步提高Mg-Gd(-Mn-Sc)合金的机械性能、塑性变形能力以及发展应用潜力,对Mg-Gd(-Mn-Sc)合金塑性变形过程中的组织及性能的相关性、合金的塑性失稳行为以及塑性变形机制的研究相当重要。然而,目前国内外几乎没有这些方面的报道,很有必要对此进行深入系统的研究。
     本文以Mg-5wt.%Gd合金以及Mg-5wt.%Gd-1wt.%Mn-0.7wt.%Sc合金为对象,采用光学显微镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射分析技术(EBSD).透射电镜(TEM)、三维原子探针(3DAP)等分析手段,通过硬度、室温高温拉伸试验,研究了Mn、Sc添加元素对Mg-5wt.%Gd铸造合金组织及时效硬化性能的影响;重点研究了Mg-5wt.%Gd(-1wt.%Mn-0.7wt.Sc)合金在室温、150-300℃中温以及350-400℃高温下拉伸时出现的几种不同类型的塑性变形失稳现象;并系统研究了Mg-5wt.%Gd合金在不同温度和应变速率下拉伸时的显微组织演变和塑性变形机制。研究结果表明:
     (1)Mg-5Gd-1 Mn-0.7Sc合金在460-580℃保温的过程中有大量弥散的Mn-Sc金属间化合物析出,该相对合金硬度的提高没有明显作用。经过固溶工艺制度的优化,610℃/24h被选定为该四元合金理想的固溶处理制度,在该制度下升温过程中析出的Mn-Sc金属间化合物几乎完全重新溶入基体,大幅度增加了基体中的Mn、Sc元素固溶度。Mg-5Gd合金和Mg-5Gd-1Mn-0.7Sc合金经过520℃/24h固溶处理后,在后续的200℃以上温度时效时,不具有硬化效果。在经过610℃/24h固溶处理后,在后续的200℃以上温度时效,二元合金仍然不具有硬化效应;而四元合金的硬化效果却得到显著增强,在200、250和300℃下时效的峰值硬度比固溶处理淬火态的硬度值分别提高了63%、44%和33%,这归因于沿基面密集析出的含Mn和Gd的薄片状亚稳相以及圆片状Mn2Sc相的强化作用。
     (2)Mg-5Gd(-1Mn-0.7Sc)挤压态样品在室温拉伸时,出现了两种类型的屈服应力下降(Yield drop)现象。第一种是起始屈服点现象(Initial yield point),它的产生是由于挤压态样品在拉伸前的热处理过程中,样品内部的位错密度得到大幅度减小,在塑性变形之初,样品内可动位错密度大量增加所至。第二种是应变时效屈服点现象,它的产生是由于卸载后的热处理过程中,固溶原子气团将可动位错钉扎,重新加载后位错挣脱固溶原子团的钉扎作用所至。虽然引起这两种室温屈服应力下降的直接原因不同,然而它们的产生都基于一个相同的物理本质:即拉伸前样品内部的可动位错密度都很小,当拉伸进入塑性变形阶段时,样品内的可动位错密度突然增加引起样品的塑性变形速率突然增大至超过外界设定的变形速率,从而导致了屈服应力下降现象的发生。
     (3)Mg-5Gd(-1Mn-0.7Sc)挤压态样品在150-300℃的温度和1.67×10-4s-1-1.67×10-2s-1的应变速率范围内拉伸时,应力-应变曲线呈现出锯齿状的特征-PLC效应。低温时效处理可析出大量β’相,减小基体中固溶原子的含量,从而显著地减弱了PLC效应,甚至导致了PLC效应的完全消失。本研究合金的PLC效应归因于固溶原子和位错间的交互作用,即动态应变时效效应。
     (4)与Mg-5Gd二元合金相比,Mg-5Gd-1Mn-0.7Sc合金的室温应变时效屈服应力下降的幅度更大,高温PLC效应的临界应变更小、应力上下波动的幅度更大,这是由于应变时效效应与固溶原子团和位错之间的相互作用是密切相关的。虽然Gd原子对应变时效效应起了主要的作用,但四元合金中,Mn原子很可能与Gd原子一起,共同形成Cottrell气团。四元合金中Gd与Mn原子共同形成的原子团对位错的钉扎作用,或者说应变时效作用就要强于二元合金中由Gd原子单独形成的固溶原子团对位错的钉扎作用。
     (5)Mg-5Gd挤压态合金在350-400℃、不同应变速率下进行拉伸变形,当应变速率低于4.4×10-4s-1时,应力-应变曲线上呈现出锯齿状特征。随着应变速率的下降,锯齿状应力上下波动的幅度更加明显。当应变速率达到或高于8.8x10-4s-1时,锯齿状现象消失,得到光滑的应力-应变曲线。该锯齿状曲线不属于PLC现象。
     (6)在400℃、8.8×10-3s-1的较高应变速率下拉伸变形时,动态再结晶现象发生,合金的晶粒得到很大程度的细化;动态再结晶是高应变速率下变形时的主要软化机制,同时动态再结晶带来的晶粒细化作用进一步加速了软化进程。在400℃、8.8×10-5s-1的较低应变速率下拉伸时,没有发生动态再结晶,而是出现了晶粒的正常长大现象。TEM观察显示,高应变速率下变形后的样品中位错密度高、位错堆积和缠结的现象明显;而低应变速率下变形后的样品中位错密度很低,不能给动态再结晶提供足够的驱动力。动态回复是400℃、低应变速率下变形时的主要软化机制,同时晶粒尺寸的增大会导致合金的强度增加,带来强化效果。动态回复产生的软化作用和晶粒粗化带来的强化作用之间相互竞争,从而导致了400℃、低应变速率下锯齿状拉伸曲线的产生。
     (7)在350-400℃、低应变速率下拉伸至一定变形量后缓慢卸载继而重新加载时,会产生屈服应力增大的现象;且卸载速度越慢,屈服应力提高的幅度越大。高应变速率下该现象不存在。这归因于低应变速率拉伸时,应力作用下晶粒长大的程度远大于无应力作用时的情况。缓慢卸载后样品的晶粒尺寸要大于快速卸载继而在无载荷条件下保温的样品的晶粒尺寸。正是由于晶粒增长带来的强化作用,从而导致了应力作用下缓慢卸载的样品的屈服应力提高的幅度更大。
     (8)Mg-5Gd挤压态合金室温拉伸时主要的变形模式是基面滑移和孪生,其次为非基面a滑移,a+c锥面滑移只在少数晶粒中参与变形。200℃拉伸时主要的变形模式也是基面滑移和孪生,同时非基面a滑移和锥面a+c滑移在大部分晶粒中启动,协调变形。室温和200℃下,晶粒沿着拉伸方向被逐渐拉长。400℃拉伸时,除了基面滑移以外,非基面a滑移、交滑移、锥面a+c滑移、位错攀移也大量参与了变形,但基面滑移仍然是最主要的滑移系,对拉伸过程中织构的演变起了最重要的作用;同时,400℃下晶界滑移和转动也发挥了重要的作用,致使拉伸过程中晶粒的形貌一直保持着等轴状。
Mg-Gd system is one of the most promising candidates for developing precipitation hardenable magnesium alloys and becomes more and more attractive materials for aerospace and automotive applications due to its high specific strength and excellent mechanical properties at elevated temperatures. In recent years, Mordike et al. developed a new group of creep-resistant Mg-Gd materials microalloyed with Mn and Sc. These newly developed Mg-Gd-Mn-Sc alloys have superior creep resistance at 300℃that are better than those of commercial WE54 or WE43 alloys. The previous investigations on Mg-Gd alloy focused on the age-hardening response, precipitation during ageing, tensile properties at elevated temperatures and creep resistance. The reports on Mg-Gd-Mn-Sc alloy were mainly about the creep resistance and the corresponding microstructures. An improved understanding of the correlation of microstructures and deformation behaviors, the plastic deformability and the plastic instabilities of the Mg-Gd(-Mn-Sc) alloys is of critical importance for any further enhancement in mechanical properties at ambient and elevated temperatures and exploiting application prospect.
     In this study a Mg-5wt.%Gd alloy and a Mg-5wt.%Gd-1wt.%Mn-0.7wt.%Sc alloy have been selected as model alloys. The effects of Mn and Sc elements on the microstructure and age-hardening response of Mg-Gd alloy, different kinds of plastic instabilities occurred in the Mg-Gd(-Mn-Sc) alloys at temperatures ranging from room temperature (RT) to 400℃and the microstructure evolution and plastic deformation mechanisms during tensile tests under different temperatures and strain rates have been systematically investigated. Optical microscope (OM), scanning electron microscope (SEM), electron backscatter diffraction (EBSD) equipment, transmission electron microscope (TEM) and three-dimensional atom probe (3DAP) were used to examine the microstructures. The results show that:
     (1) With the additions of Mn and Sc elements, a large number of Mn-Sc intermetallic dispersoids precipitate in the quaternary alloy after heat treated at 460~580℃. However, when the quaternary alloy is solution treated at 610℃for 24h, these Mn-Sc dispersoids almost fully dissolve intoα-Mg matrix, which leads to the significant increase of the amount of Mn and Sc atoms in the matrix. The binary alloy exhibite almost no age-hardening response above 200℃, no matter the alloy is solution treated at 520℃or 610℃for 24h before ageing. For the quaternary alloy, no obvious age-hardening above 200℃occurs in the sample suffered from 520℃/24h heat treatment before ageing. However, when the quaternary alloy is solution treated at 610℃for 24h then aged at 200~300℃, a substantial increase in hardness is observed. The peak hardnesses obtained during ageing at 200,250 and 300℃are increased by 63%,44% and 33% respectively. The dense precipitation of very thin Mn-Gd plates and tiny Mn2Sc discs is considered to be mainly responsible for the greatly improved age-hardening response.
     (2) Initial yield point and strain ageing yield point are observed during the tensile tests at RT. The initial yield point is associated with the significant decrease in the dislocation density during the proper heat treatment before tensile tests. The strain ageing yield point is ascribed to the interaction between solute atoms and the dislocations. When a proper heat treatment is applied to the unloaded sample, the solute atoms can diffuse to and pin the dislocations. After reloading the sample, the strain ageing yield drop happens when the dislocations unpin the solute atoms atmosphere to move. These two yield points are caused by different phenomena, however, they can be ascribed to the same physical principle. In either case, the result of ageing is to reduce the mobile dislocation density below that value needed to sustain the imposed strain rate. When the tensile test is resumed, an increase in stress initially manifests the mobile dislocation deficiency, but when the dislocations multiply quickly and the plastic strain rate exceeds the imposed strain rate, the yield drop is observed.
     (3) Serrated flow is observed when the as-extruded samples of Mg-5Gd(-1Mn-0.7Sc) alloys are tensile tested at temperatures ranging from 150 to 300℃and at strain rates of 1.67×10-4s-1 to 1.67×10-2s-1. The serrated flow phenomenon is significantly influenced by the heat treatment conditions.β' phase precipitates densely and the content of solute atoms decreases greatly during the ageing treatment at low temperatures, which weakens the PLC effect or even leads to the disappearance of the PLC effect. The serrated flow is attributed to dynamic interactions between solute atoms and gliding dislocations, i.e. dynamic strain ageing.
     (4) The Mg-Gd-Mn-Sc alloy has a smaller critical strain for serrated flow and larger stress drops for both strain ageing yield point at RT and serrated flow at elevated temperatures than those in the Mg-Gd alloy. This phenomenon may be ascribed to the contribution of Mn atoms. The Mn atoms have a smaller atomic radius than Mg atoms, and when combined with larger atoms of Gd, can provide more effective pinning of dislocations than a single type of solute atoms in the Mg-Gd alloy.
     (5) When the Mg-Gd extruded samples tensile tested at 350~400℃under different strain rates, serrated flow is observed at the strain rates lower than 4.4×10-4s-1, and absent at strain rates higher than 8.8×10-4s-1.This serrated flow is not ascribed to the PLC effect.
     (6) Dynamic recrystallization (DRX) occurs in the specimen tested at 400℃at higher strain rate of 8.8×10-3s-1, and leads to the grain refinement. DRX is the main softening mechanism for the samples deformed at higher strain rates, and the grain refinement caused by DRX further leads to the softening effect. During the tensile at lower strain rate of 8.8×10-5s-1, no sign for the operation of DRX can be detected but normal grain growth is observed. TEM microstructure observation shows that the dislocation density is large in the samples tested at high strain rate, but the dislocation density in the samples tested at low strain rate is too small to stimulate DRX. Dynamic recovery is the main softening mechanism for the samples deformed at low strain rates. Meanwhile, the grain growth brings the hardening effect. Because of the competition between continuous dynamic recovery (softening factor) and continuous grain growth (hardening factor), the serrated flow is observed.
     (7) When the specimens are loaded at 350~400℃, at low strain rates to 1-2% total strain, unloaded slowly, and then reloaded again, an increased yield strength is observed. The magnitude of the increase in the yield strength is larger when a slower unloading speed is applied. The phenomenon is absent at the higher strain rates. This is due to the normal grain growth under stress during slow unloading process, which leads to a strengthen effect when tensile temperature is as high as 350~400℃.
     (8) At room temperature basal slip and mechanical twinning are predominant in Mg-5Gd extruded samples to accommodate the plastic strain; Non-basal a slip and a+c pyramidal slip can only operate in the minority of the grains. At 200℃basal slip and mechanical twinning are also mainly deformation mechanisms; Non-basal a slip and a+c pyramidal slip are initiated in most of the grains. The grains are stretched gradually along the tensile direction with increasing strain at RT and 200℃. Basal slip, non-basal a slip, cross slip, a+c pyramidal slip, dislocation climbing are all very active at 400℃, but basal slip is still the most active slip system and plays an important role in the texture evolution. Grain boundary slip and grain rotation also operate at 400℃, which leads to the grains remaining equiaxial shape during the whole tensile process.
引文
[1]R. F. Decker. The Renaissance in Magnesium [J]. Advanced Materials and Processing,1998,9:31-35
    [2]丁文江.高性能结构材料技术从书:镁合金科学与技术[M].北京:科学出版社,2007
    [3]A. A. Luo, A. K. Sachdev. Wrought Magnesium Research for Automotive Applications [C], in:A. A. Luo, N. R. Neelameggham, R. S. Beals, eds. Proceedings of Magnesium Technology 2006,333-339
    [4]F. H. Froes, D. Eliezer, E. Aghion. The science, Technology and Application of Magnesium [J], Journal of the Minerals Metals & Materials Society,1998,50(9): 30-34
    [5]陈振华.镁合金[M].北京:化学工业出版社,2004
    [6]I. J. Polmear. Recent Development in Light Alloys [J]. Materials Transactions Jim,1996,37(1):12-31
    [7]R. Brown. Magnesium Alloys and Their Applications Materials:Materials Week-Munich [C], Germany, Light Metal Age,2001,59:54-56
    [8]姚素娟,张英,褚丙武等.镁及镁合金的应用与研究[J].世界有色金属,2005,1:26-30
    [9]K.H.马图哈,丁道云等译.材料科学与技术丛书-非铁合金的结构与性能[M].北京:科学出版社,1999
    [10]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002
    [11]刘文辉,刘海峰,侯骏等.高强度耐高温压铸镁合金的开发[J].汽车工艺与材料,2003,4:12-15
    [12]D. Magers, J. Willekens. Global Outlook on the Use of Magnesium Diecastings in Automotive Applications [C]. Proceedings of Magnesium Alloys and Their Applications,1998,105-112
    [13]F. V. Buch, S. Schumann. New High Temperature Die Casting Magnesium Alloys for Power-train Applications [C]. Sinomag Die Casting Magnesium Seminar. Beijing.2002
    [14]G. S. Cole. Use of Magnesium Components in the Automotive Industry [C]. Proceedings of International Symposium on Light Metals. Canada.1997,51-67
    [15]G. LeBeau, L. Stephen, F. Walukas et al. Thixomolding of Magnesium Components for Electronic Applications [C]. Proceedings of the Conference on Plastic for Portable and Wireless Electronics,1999,49-58
    [16]M. Regev, E. Aghion, S. Berger. Dislocation Analysis of Crept AZ91D Ingot Castings [J]. Materials Science and Engineering,1998,257(2):349-352
    [17]D. Hull, D. J. Bacon. Introduction to Dislocations [M],3rd ed., Oxford, New York:Pergamon Press,1984
    [18]付彭怀.Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究[D].上海交通大学,2009.
    [19]M. H. Yoo. Slip, Twinning and Fracture in Hexagongal Close-Packed Metals [J]. Metallurgical and Materials Transactions A,1981,12:409-418
    [20]M. H. Yoo, J. R. Morris, K. M. Ho. Nonbasal Deformation Modes of HCP Metals and Alloys:Role of Dislocation Source and Mobility [J]. Metallurgical and Materials Transactions A,2002,33:813-822
    [21]F. F. Lavrentev, J. A. Pokhil. Deformation Mechanisms in Hexagongal Close-Packed Metals [J]. Physicas Status Solidi A,1975,32:227-231
    [22]S. R. Agnew, J. A. Horton, M.H. Yoo. Transmission Electron Microscopy Investigation of (c+a) Dislocations in Mg and α-Solid Solution Mg-Li Alloys [J]. Metallurgical and Materials Transactions A,2002,33:851-858
    [23]S. R. Agnew, M. H. Yoo, C. N. Tome. Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y [J]. Acta Materialia,2001,49(20):4277-4289
    [24]A. Couret, D. Caillard. Prismatic Slip in Beryllium I:The Controlling Mechanism at the Peak Temperature [J], Philosophical Magazine A,1989,59, 783-800
    [25]陈进化.位错与强化[M].沈阳:辽宁教育出版社,1991
    [26]P. Lukac, Plastic Deformation of Hexagonal Metals [J].Czechoslovak Journal of Physics,1981,31:135-141
    [27]唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997
    [28]K. Ku. Magnesium Alloys and Their Applications [M].Oberursel, FRG:DGM Information Sgesellschaft,1992
    [29]T. Al-Samman, G. Gottstein. Room Temperature Formability of a Magnesium AZ31 Alloy:Examining the Role of Texture on the Deformation Mechanisms [J]. Materials Science and Engineering A,2008,488:406-414
    [30]S. L. Couling, J.F. Pasnak. Study of High Strength Magnesium-Based Sheet Alloy [J].Trans. ASM,1959,51:45-48
    [31]B. Reh, G.Hotzsch. Zur Gleitung und Zwillingsbildung von Magnesium- und Magnesium-Kadmium-Vielkristallen bei Raumtemperatur und 77 K [J]. Physics Status Solidi A 1971,8:423-432
    [32]B. C. Wonsiewicz, W. A. Backofen. Plasticity of Magnesium Crystals [J]. Trans Metall Soc AIME:1967,239:1422-1431
    [33]T. Ernst, F. Lanes. Z. Metall,1949,40:1-9
    [34]M. J. May, W. K. Honeycombe. The Effect of Temperature on the Fatigue Behavir of Magnesium and Sone Magnesium Alloy [J]. Ibid,1963,92:41-49
    [35]J. C. Tan, M. J. Tan. Superplasticility and Grain Boundary Sliding Characteristics in Two Stage Deformation of Mg-3A1-Zn Alloy Sheet [J]. Materials Science and Engineering A,2003,339:81-89
    [36]H. Watanabe, T. Mukai, K. Ishikawa. High-Strain-Rate Superplasticity in an AZ91 Magnesium Alloy Processed by Ingot Metallurgy Route [J]. Materials Transactions,2002,43(1):78-80
    [37]C. J. Lee, J. C. Huang. Cavitation Characteristics in AZ31 Mg Alloys during LTSP or HSRSP [J]. Acta Materialia,2004,52(10):3111-3122
    [38]顾威.zK60镁合金热变形行为的实验研究和数值模拟[D].湖南:中南大学,2006
    [39]I. J. Polmear. Magnesium Alloys and Applications [J]. Materials Science and Technology,1994,10:1-16
    [40]A. Staroselsky, L. Anand. A Constitutive Model for HCP Materials Deforming by Slip and Twinning:Application to Magnesium Alloy AZ31B [J]. International Journal of Plasticity,2003,19:1843-1864
    [41]K. Yu, W. X. Li. The Research and Development of Mg-Rare Earth Alloy [J]. Spec. Casting & Nonf. Alloys,2001,1:41-43
    [42]#12
    [43]A. Galiyev, R. Kaibyshev. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60 [J]. Acta Materialia,2001,49: 1199-1207
    [44]J. Koike. New Deformation Mechanisms in Fine Grain Mg Alloy [C]. Materials Science Forum,2003(420):189-194
    [45]K. Mathis, K Nyilas, A Axt. The Evolution of Non-basal Dislocations as a Function of Deformation Temperature in Pure Magnesium Determined by X-ray Diffraction [J]. Acta Materialia,2004,52:2889-2894
    [46]H.米格兰比,材料的塑性变形与断裂[M].北京:科学出版社,1998
    [47]白以龙,材料的不稳定性,固体力学发展趋势[M],北京理工大学出版社,1995
    [48]W. Luders. U ber die Ausserung der Elasticita tan stahlartigen Eisenstaben und Stahlstaben, unduber einebeim Biegen solcher Stabe beobachtete Molecularbewegung [J]. Dingler's Polytechnisches J. (fourth series).1860,5, 18-22
    [49]A. Nadai, Plasticity, A Mechanics of the Plastic State of Mater [M].McGraw-Hill Book ComPany, Inc., New york and London,1931
    [50]K. H. Subramanian, A. J. Duncan. Tensile Properties for Application to Type I and Type II Waste Tank Flaw Stability Analysis. WSRC-TR-2000-00232,2000
    [51]冯端,丘第荣.金属物理学第三卷金属力学性质[M].北京:科学出版社,1999
    [52]M. Wagenhofer, M.A. Erickson-Natishan, R.W. Armstrong et al. Influence of Strain Rate and Grain Size on Yield and serrated flow in commercial Al-Mg alloy 5086[J]. Scripta Materialia,1999,5:1177-1184
    [53]P. J. Wray. Yield-point Phenomenon at 850 to 1100 Degree C in Plain Carbon Steels [J]. Scripta Metallurgica,1981,15:45-50
    [54]R. Mahmudi. Yield Point Phenomenon in Ultrafine-Grained Aluminium Sheets [J] MaterialsLetters,1994,19:243-246.
    [55]L. M. Barker, B. M. Butcher and C. H. Karnes. Yield-Point Phenomenon in Impact-Loaded 1060 Aluminum [J]. Journal of Applied Physics,1966, 37:1989-1991.
    [56]H. Kayano, Y. Higashiguchi, S. Yajima. J. Nucl. Sci. Technol.,1978,15:868-871
    [57]A. W. Mcreynolds. Plastic Waves in Aluminum [J]. Trans. Am. Inst. Min. Metall. Eng,1949,185:32-45.
    [58]C. Briquet, D.G. Morros. Unloading Yield Point Effects in Iron Aluminides [J]. Acta Materialia,1998,46:5053-5061
    [59]M. L. Weaver, R. D. Noebe, J. J. Lewandowski et al. Observations of DynamicStrain Aging in Polycrystalline NiAl [J]. Intermetallics,1996,4(8): 533-542.
    [60]E. O. Hall. Yield Point Phenomena in Metals and Alloys [C].Plenum Press, New York 1970.
    [61]J. W. Christian and S. Mahajan. Deformation Twinning [J]. Progress in Materials Science,1995,39:1-157.
    [62]J. Koike, T. Kobayashi, T. Mukai, et al. The Activity of Non-basal Slip Systems and Dynamic Recocery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys [J]. Acta Materialia,2003,51:2055-2065.
    [63]A. H. Cottrell and R. J. Stokes. Effects of Temperature on the Plastic Properties of Aluminium Crystals [J]. Mathematical and Physical Science,1955,233: 17-34.
    [64]A. T. Thomas. Unloading Effects in Aluminium and Aluminium-Zinc Single Crystals[J]. Philosophical Magazine,1960,5(57):947-966.
    [65]H. C. Gonzalez and C. J. Iriart. The Mechanical Properties of Magnesium Irradiated by Fast Neutrons at 77K [J]. Philosophical Magazine A,1985, 52:243-253.
    [66]S. R. Agnew, J. A. Horton, T. M. Lillo, et al. Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing [J]. Scripta Materialia.,2004,50:377-381
    [67]S. L. Couling. Yield Points in A Dilute Magnesium-thorium Alloy[J]. Acta Metallurgica,1959,7:133-34
    [68]K. G. Kent and A. Kelly. Yielding Effects in a Magnesium-0.5% Thorium Alloy [J]. Journal of the Japan Institute of Metals,1965,93:536-542.
    [69]D. Geiselman, A. G. Guy. Yield Phenimena in Magnesium Single Crystals Containing Nitrogen[J]. Transactions of the Metallurgical Society of AIME,1959, 215:814-820
    [70]D. A. Koss, R. B. Gordon. Changes of Dislocation Damping Observed During Yielding of Magnesium, Molybdenum, and LiF [J]. Transactions of the Metallurgical Society of AIME,1966,236:1185-1193
    [71]W. F. Chiao, R. B. Gordon. The Yielding of Magnesium Studied with Ultrasonics [J]. Transactions of the Metallurgical Society of AIME,1966,236:658-663
    [72]I. C. Huseby, S. E. Hsu, T. R. Mcnelley, et al. Yield Points and Strain Aging in Hexagonal-Based particulate Composites [J]. Metallurgical and Materials Transactions A,1975,6(11):2005-2008
    [73]E. Mora, G. Garces, E. Onorbe, et al. High-Strength Mg-Zn-Y Alloys Produced by Powder Metallurgy [J]. Scripta Materialia.,2009,60(9):776-782
    [74]G. F. Xiang, Q. C. Zhang, H. W. Liu, et al. Deformation Measurements of Three Types of Portevin-Le Chatelier Bands [J]. Chinese Physics.2006, (15): 2378-2384
    [75]江慧丰.A1合金中塑性失稳现象(Portevin-Le Chatelier)的实验和机理研究[D].中国科学技术大学,2006
    [75]A. Portevin, P. L.Chatelier, Sur un phenomene observe lors de lessai de traction d'alliages en cours de transformation [J]. Comptes Rendus de l'Acade'mie des Sciences,Paris,1923,176:507-510,
    [76]A. Portevin, P. L. Chatelier. Heat Treatment of Aluminium-Copper Alloys [J]. Transactions of the American Society of Steel Treating,1924,5:457-478
    [77]A. H. Cottrell. A Note on the Portevin-Le Chatelier Effect [J]. Philosophical Magazine,1953,44:829-832
    [78]钱匡武,李效琦,萧林钢.金属和合金中的动态应变时效现象[J].福州大学学报(自然科学版),2001,29(6),8-23
    [79]A. H. Cotrell, B. A. Bilby. Dislocation Theory of Yielding and Strain Aging of Iron [J]. Proc. Phys. Soc. London Sect A,1949,62:49-62
    [80]P. G. McCormick. A Model for the Portevin-le Chatelier Effect in Substitutional Alloys [J]. Acta Metalluraica,1972,20:351-354
    [81]R. C. Picu, D. Zhang. Atomistic Study of Pipe Diffusion in Al-Mg Alloys [J]. Acta. Materialia,2004,52:161-171
    [82]R. C. Picu. A Mechanism for the Negative Strain-Rate Sensitivity of Dilute Solid Solutions [J]. Acta Materialia.2004,52:3447-3458
    [83]F. Chmelik, E. Pink, J. Krol, J. et al. Mechanisms of Serrated Flow in Aluminium Alloys with Precipitates Investigated by Acousitic Emission [J]. Acta Materialia, 1998,46:4435-4442.
    [84]E. Pink, A. Grinberg. Serrated Flow in a Ferritic Stainless Steel [J]. Material Science and Enginerring.1981,51:1-8.
    [85]L. P. Kubin, A. Styczynski, Y. Estrin. Discontinuous Yielding in an Al-Li-Zr Alloy [J]. Scripta MetallurgicaMaterialia,1992,26:1423-1428
    [86]R. W. Hayes, W. C. Hayes. A Proposed Model for the Disappearance of Serrated Flow in Two Fe-Alloys [J]. Acta Metallurgica,1984,32:259-267.
    [87]R. W. Hayes, W. C. Hayes. On the Mechanism of Delayed Discontinuous Plastic Flow in an Age-hardened Nickel Alloy [J]. Acta Metallurgica,1982,30: 1295-1301
    [88]E. Pink, W. M. Weberning. Precipitation During Serrated Flow in AlZn5Mg1 [J]. Acta Metallurgica,1987,35:127-132
    [89]H. X. Li and J. K. Park. The Serrated Flow Behaviour of a Binary Al-Li Alloy Temperated to Conditions with and without Precipitates [J]. Mater. Sci. Eng. A, 2000,280:156-160
    [90]S. Kumar, R. Shabadi and M. M. Patel. Influence of Precipitation on Serrated Flow in Al-5Zn-1 Mg Alloy [J]. Materials Science and Technology,2003,19: 1344-1348
    [91]Y. Brechet and Y. Estrin, On the Influence of Precipitation on the Portevin-_Le Chatelier Effect [J]. Acta MetallurgicaMaterialia,1995,43:955-963
    [92]R. Onodera, T. Ishibashi, M. Koga, et al. The Relation Between the Portevin-Le Chatelier Effect and the Solid Solubility in Some Binary Alloys [J]. Acta Metallurgica.,1983,31:535-540
    [93]E. Pink, S. Kumar, B. Tian. Serrated Flow of Aluminium Alloys Influenced by Precipitates [J]. Materials Science and Engineering A,2000,280(1):17-24
    [94]D. Thevenetd, M. Milha-touatim, A. Zeghloula. The Effect of Precipitation on the Portevin-Le Chatelier Effect in An Al-Zn-Mg-Cu Alloy [J]. Materials Science and Engineering A,1999,266(1-2):175-182
    [95]S. Kumar and E. Pink. Serrated Flow in Aluminium Alloys Containing Lithium [J]. Acta Materialia 1997,45:5295-5301
    [96]M. Chaturvedi, D. J. Lloyd, K. Tangri. Serrated Flow of Mg-10 wt% Ag Alloy [J]. Journal of Metal Science.1972,6:16-19
    [97]M.C. Chaturvedi, D. J. Lloyd. Onset of Serrated Yielding in Mg-10Ag Alloy [J]. Philosophical Magazine,1974,30:1199-1207
    [98]S. M. Zhu and J. F. Nie. Serrated Flow and Tensile Properties of a Mg-Y-Nd Alloy [J]. Scripta Materialia.2004,50:51-55
    [99]S. M. Zhu, J. F. Nie. Strain Bursts in Creep of Mg-1Ca-0.5Zn-0.6Zr Alloy [J]. Material Science andEngineering A,2004,384:270-274.
    [100]C. Corby, C. H. Caceres, P. Lukac. Serrated Flow in Magnesium Alloy AZ91 [C]. Materials Science and Engineering A,2004; 387-389:22-24
    [101]V. Gartnerova, Z. Trojanova, A. Jager, et al. Deformation Behaviour of Mg-0.7 wt% Nd [J].Alloy Journal of Alloys and Compounds 2004,378:180-83.
    [102]C. Wang, Y. B. Xu, E. H. Han. Serrated Flow and Abnormal Strain Rate Sensitivity of A Magnesium-lithium Alloy [J]. Materials Letters,2006,60: 2941-2944
    [103]C. Y. Wang, X. N. Zhang, N. Z. Cao. Serrated Flow in Cast ZE43 Alloy [J]. Journal of MaterIals Science,2007,42:2630-2632
    [104]L. Gao, R.S. Chen, E.H. Han. Effects of Rare-Earth Elements GD and Y on the Solid Solution Strengthening of Mg Alloys [J]. Journal of Alloys and Compounds,2009,472:234-240
    [105]徐光宪,稀土(上册)[M].,第2版,北京,冶金工业出版社,1995
    [106]L. L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals:Structure and Properties [M], London, Taylor & Francis,2003
    [107]刘光华,稀土材料与应用技术[M].北京:化学工业出版社,2005
    [108]张洪杰,孟健,唐定骧,高性能镁-稀土结构材料的研制、开发与应用[J].中国稀土学报,2004,22(1),40-47
    [109]罗治平张少卿,汤亚力等,稀土在镁合金溶液中作用的热力学分析[J].中国稀土学报,1995,13(2),119-122
    [110]徐光宪,稀土(下册)[M]第2版,北京:冶金工业出版社,1995
    [111]何上明,Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D].上海交通大学,2007
    [112]T. E. Leontis, The Properties of Sand Cast Magnesium-Rare Earth Alloys [J], Journal of Metals,1949,1(12):968-983
    [113]P. N. Kotru, K.K. Raina. Growth of the Mixed Rare-earth (didymium) Tartrate Crystals in Gels [J]. Journal of Materials Science Letters,1986,5(8):760-762
    [114]T. E. Leontis, Effect of Rare-Earth Metals on the Properties of Extruded Magnesium [J]. Journal of Metals,1951,3(12):987-993
    [115]R. Ferro, A. Saccone, G. Borzone, Rare Earth Metals in Light Alloys [J]. Journal of Rare Earths,1997,15(1):45-61
    [116]A. Saccone, S. Delfino, G. Borzone, et al., The Samarium-Magnesium System: a Phase Diagram, Journal of the Less-Common Metals [J],1989,154:47-60
    [117]L. L. Rokhlin, Magnesium Alloys with Rare Earth Metals [C], Moscow, Nauka, 1980
    [118]郭旭涛,李培杰,刘树勋等,稀土耐热镁合金发展现状及展望,铸造,2002,51(2),68-71
    [119]R. V. London, R. E. Edelman, H. Markus, Development of a Wrought High-Strength Magnesium-Yttrium Alloy [J], Trans. ASM,1966,59(2):250-261
    [120]R. E. Edelman, R.V. London. Magneium Yttrium Alloy [J]. Utility Patent Grant, US3391034,1968,2
    [121]章桢彦,Mg-(Gd)-Sm-Zr合金的微观组织、力学性能和析出相变研究[D].上海交通大学,2009
    [122]L. L. Rokhlin, N. I. Nikitina. Magnesium Gadolinium and Magnesium Gadolinium Yttrium Alloys [J]. Zeitschrift Metallkunde,1994,85(12):819-823
    [123]B. L. Mordike, Development of Highly Creep-Resistant Magnesium Alloys [J]. Journal of Materials Processing Technology,2001,117:391-394
    [124]I. Stulikova, B. Smola, F. von Buch et al. Development of Creep Resistant Mg-Gd-Sc Alloys with Low Sc Content[J]. Matwissu. Werkstofftech.,2001, 32:20-24
    [125]S. Kamado, S. Iwasawa, K. Ohuchi et al. Aging Hardening Characteristics and High Temperature Strength of Mg-Gd and Mg-Tb alloys [J]. Journal of Japan Institute of Light Metals,1992,42(12):727-733
    [126]S. Kamado, Y. Kojima, R. Ninomiya et al. Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth elements [C]. In:G.W. Lorimer eds. Proceedings of the 3rd International Magnesium Conference. Manchester, UK, Institute of Materials,1996,327-342
    [127]I.A. Anyanwu, S.Kamado, Y. Kojima, Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys [J], Materials Transactions, 2001,42(7):1206-1211
    [128]I. A. Anyanwu, S. Kamado, Y. Kojima, Creep Properties of Mg-Gd-Y-Zr Alloys [J], Materials Transactions,2001,42(7):1212-1218
    [129]M. Yamasaki, T. Anan, S. Yoshimoto, et al. Mechanical Properties of Warm-Extruded Mg-Zn-Gd Alloy with Coherent 14H Long Periodic Stacking Ordered Structure Precipitate [J] Scripta Materialia,2005,53(7):799-803
    [130]Y. Okubo, M. Shiono, S. Kamado,et al. Improvement of Tensile Properties Mg-Gd-Y-Zn-Zr Alloys Containing Long Period Staching Order Strcture by Optimizing Alloy Composotions [C], in:B. S. You, K. S. Shin, S. Kamado, W. Ding (Ed.), Proceeding of the 1st Asian Symposium on Magnesium Alloys, Jeju, Korea, October 11-14,2005,43-46
    [131]J. F. Nie, X. Gao, S. M. Zhu, Enhanced Age Hardening Response and Creep Resistance of Mg-Gd alloys Containing Zn [J]. Scripta Materialia,2005,53(9): 1049-1053
    [132]G. W. Lorimer, P. J. Apps, H. Karimzadeh, et al. Improving the Performance of Mg-Rare Earth Alloys by the Use of Gd or Dy Additions [C]. Materials Science Forum,2003,419-422:279-284
    [133]B. Smola, I. Stulikova, J. Pelcova et al. Phase Transformations due to Isochronal Annealing of Mg-Rare earth-Sc-Mn Squeeze Cast Alloys [J]. Zeitschrift fuer Metallkunde,2003,94(5):553-558
    [134]S. M. He, X. Q. Zeng, L. M. Peng, et al., Microstructure and Strengthening Mechanism ofHigh Strength Mg-10Gd-2Y-0.5Zr Alloy [J]. Journal of Alloys and Compounds,2007,427:316-323
    [135]K.Y. Zheng, J. Dong, X.Q. Zeng, et al., Effect of Pre-deformation on Aging Characteristics and Mechanical Properties of a Mg-Gd-Nd-Zr Alloy [J]. Materials Science and Engineering A,2008,491:103-109
    [136]K.Y. Zheng, J. Dong, X.Q. Zeng, et al., Effect of Precipitation Aging on the Fracture Behavior of Mg-11-Gd-2Nd-0.4Zr Cast Alloy [J]. Materials Characterization,2008,59:857-862
    [137]D. Li, J. Dong, X. Zeng, et al., Characterization of Precipitate Phases in a Mg-DyGd-Nd Alloy [J]. Journal of Alloys and Compounds,2007,439:254-25
    [138]X. Q. Zeng, D. H. Li, J. Dong, et al., Effect of Solution Treatment and Extrusion on Evolution of Microstructure in a Mg-12Dy-3Nd-0.4Zr Alloy [J]. Journal of Alloys and Compounds,2008,456:419-424
    [139]彭卓凯,张新明,陈健美等,Mn,Zr对Mg-Gd-Y合金组织与力学性能的影响[J].中国有色金属学报,2005,15(6):917-922
    [140]张新明,陈健美,邓运来等,Mg-Gd-Y-Zr耐热镁合金的压缩变形行为[J].中国有色金属学报,2005,15(12):1925-1932
    [141]张新明,肖阳,陈健美等,挤压温度对Mg-9Gd-4Y-0.6Zr合金组织与力学性能的影响[J].中国有色金属学报,2006,16(3):518-523
    [142]J. F. Nie, B. C. Muddle, Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃ [J]. Scripta Materialia,1999,40:1089-1094
    [143]S. M. He, X. Q. Zeng, L. M. Peng, et al., Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) Alloy during Isothermal Ageing at 250℃ [J]. Journal of Alloys and Compounds,2006,421:309-313
    [144]F. V. Buch, J. Lietzau, B. L. Mordike et al. Development of Mg-Sc-Mn alloys [J]. Materials Science and Engineering,1999, (A263):1-7
    [145]B. L Mordike. Creep-resistant Magnesium Alloys [J]. Materials Science and Engineering,2002, A324:103~112
    [146]B. Smola, I. Stulikova, F. V. Buch et al. Structural Aspects of High Performance Mg Alloys Design [J]. Materials Science and Engineering,2002, A324:113~117
    [147]B. Smola, I. Stulikova, B. L. Mordike et al. Significance of Stable and Metastable Phases in High Temperature Creep Resistant Magnesium-Rare Earth Base Alloys [J]. Journal of Alloys and Compounds.2004,378:196-199.
    [148]J. Grobner, R. Schmid-Fetzer. Selection of Promising Quaternary Candidates From Mg-Mn-(Sc, Gd, Y, Zr) for Development of Creep-resistant Magnesium Alloys[J]. Journal of Alloys and Compounds,2001, A320:296-301
    [149]I. Stulikova, B. Smola, B. L.Mordike et al. Mechanical Properties and Creep of Mg-rare Earth-Sc-Mn Squeeze Cast Alloys [J]. Matwiss u. Werkstofftech.2003, 34:102.
    [150]李久林,梁新邦,殷建军,GB/T 4340.1-1999,金属维氏硬度试验第1部分:试验方法[M],北京:中国标准出版社,1999
    [151]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版,2007
    [152]曹文全.超大塑性变形铝材显微组织结构及力学性能的定量研究[D].北京:清华大学,2003
    [153]周邦新.三维原子探针-从探测逐个原子来研究材料的分析仪器[J].自然杂志,2007,3:125-129
    [154]周邦新,刘文庆.三维原子探针及其在材料科学研究中的应用[J].材料科学与工艺,2007,15(3):406-408
    [155]K. Hono. Nanoscale Microstructural Analysis of Metallic Materials by Atom Probe Field Ion Microscopy [J]. Progress in Materials Science,2002,47: 621-729
    [156]沙维.三维原子探针研制新进展[J].材料科学与工程,1995,13(4):63-64
    [157]Y. C. Lee, A. K. Dahle, D. H. St John, The Role of Solute in Grain Refinement of Magnesium [C]. TMS Annual Meeting,2000,211.
    [158]X. Gao and J.F. Nie:Enhanced Precipitation Hardening in Mg-Gd-Zn Alloys Containing Ag and Zn [J]. Scripta Materialia.,2008,58:619-22.
    [159]T. Honma, T. Ohkubo, K. Hono, S. Kamado. Chemistry of Nanoscale Precipitates in Mg-2.1 Gd-0.6Y-0.2Zr (at.%) Alloy Investigated by the Atom Probe Technique [J]. Materials Science and Engineering.2005, A 395:301-306
    [160]X. Gao, S. M. He, X. Q. Zeng et al. Microstructure Evolution in a Mg-15Gd-0.5Zr Alloy during Isothermal Ageing at 250℃ [J]. Materials Science and Engineering.2006, A 431:322-327
    [161]J. Cizek, I. Prochazka, B. Smola. et al. Influence of Deformation on Precipitation Process in Mg-15wt% Gd Alloy [J]. Journal of Alloys and Compounds 2007,430:92.
    [162]J.F. Nie, B.C. Muddle. Characterisation of Strengthening Precipitate Phases in a Mg-Y-Nd Alloy [J]. Acta Materialia.2000,48:1961-1703
    [163]M. Evers. Z. Metal.,1959,50:638-649
    [164]F. Seitz. On the Generation of Vacancies by Moving Dislocations [J]. Advances in Physics,1952,1:43-90.
    [165]J. F. Nie, K. Oh-ishi, X. Gao et al. Solute Segregation and Precipitation in a Creep Resistant Mg-Gd-Zn Alloy [J]. Acta Materialia,2008,56:6061-6076
    [166]D. Blavette, E. Cadel, A. Fraczkiewicz et al. Three-Dimensional Atomic-Scale Imaging of Imputity Segregation to Line Defects [J]. Science,1999,286(17): 2317-2319
    [167]K. Thompson, P.L. Flaitz, P. Ronsheim et al. Imaging of Arsenic Cottrell Atmosphere around Silicon Defects by Three-Dimensional Atom Probe Tomography [J]. Science,2007,317(7):1370-1374
    [168]J. Wilde, A. Cerezo, G. D. W. Smith. Three-Dimensional Atomic-Scale Mapping of a Cottrell Atmosphere around a Dislocation in Iron [J]. Scripta Materialia, 2000,43:39-48
    [169]D. Blavette, E. Cadel, C. Pareige. Phase Transformation and Segregation to Lattice Defects in Ni-based Superalloys [J]. Microscopy and Microanalysis, 2007,13:464-483
    [170]J. C. Oh, T. Ohkubo, T. Mukai, et al. TEM and 3DAP Characterization of an Age-Hardened Mg-Ca-Zn Alloy [J]. Scripta Materialia,2005,53:675-679
    [171]T. Honma, T. Ohkubo, K. Hono, et al. Chemistry of Nanoscale Precipitates in Mg-2.1 Gd-0.6Y-0.2Zr (at.%) Alloy Investigated by the Atom Probe Technique [J]. Materials Science and Engineering,2005,395:301-306
    [172]T. Honma, T. Ohkubo, S. Kamado, et al. Effect of Zn Additions on the Age-Hardening of Mg-2.0Gd-1.2Y-0.2Zr Alloys [J]. Acta Materialia,2007,55: 4137-4150
    [173]B. J. Brindley and P. J. Worthington, Serrated Yielding in Aluminium-3% Magnesium [J]. Acta Metallurgica.1969,17:1357-1361
    [174]E. Pink. The Effect of Precipitates on Characteristics of Serrated Flow in Al Zn 5 Mg 1 [J].Acta Metallurgica. 1989,37:1773-1781
    [175]J. F. Nie. Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys [J]. Scripta Materialia,2003,48:1009-1015
    [176]P. Hahner. On the Critical Conditions of the Portecin-Le Chatelier Effect [J]. Acta Materialia,1997,45(9):3695-3707
    [177]P. Hahner, E. Rizzi. On the Kinematiocs of Portecin-Le Chatelier Bands: Theoretical and Numerical Modeling [J]. Acta Materialia,2003,51:3385-3397
    [178]J. Schlipf. On the Kinetics of Static and Dynamic Strain Aging [J]. Scripta Metallurgica et Materialia,1994,31(7):909-914
    [179]J. D. Baird. Dynamic Strain Aging [M]. In:R. E. ReedHill eds. The Inhomogeneities of Plastic Deformation, ASM, Ohio,1973, p191.
    [180]R. Panicker, A. H. Chokshi, R. K. Mishra. Microstructural Evolution and Grain Boundary Sliding in a Superplastic Magnesium AZ31 Alloy [J]. Acta Materialia, 2009,57(13):3683-3693
    [181]W. J. Kim, S. W. Chung, C. S. Chung, et al. Superplasticity in Thin Magnesium Alloy Sheets and Deformation Mechanism Maps for Magnesium Alloys at Elevated Temperature [J]. Acta Materialia,2001,49:3337-3345
    [182]S. B. Yi, S. Zaefferer, H. G. Brokmeier. Mechanical Behaviour and Microstructural Evolution of Magnesium Alloy AZ31 in Tension at Different Temperatures [J] Materials Science and Engineering A,2006,424:275-281
    [183]H. Watanabe, K. Ishikawa, T. Mukai. High Strain Rate Deformation Behavior of Mg-Al-Zn Alloys at Elevated Temperatures [J]. Key Engineering Materials, 2007,340-341:107-112
    [184]J. A. Del Valle, M. T. Perez-prado, O. A. Ruano. Deformation Mechanisms Responsible for the High Ductility in a Mg alloy Analyzed by Electron Backscattered Diffraction[J]. Metallurgical and Materials Transactions A,2005, 36:1427-1438
    [185]G.F. Bolling, R.H. Richman. Continual Mechanical Twinning:Part 1:Formal Description [J]. Acta Metallurgica,1965,13:709-722
    [186]S. L. Mannan, P. Rodriguez. Strain-Aging in Disordered CuAu [J]. Philosophical Magazine.1972,25:673
    [187]V. Seetharaman. Deformation and Martensitic Transformation [J]. Bulletin of MaterIals Science.1984,6:703-716
    [188]V. Ramachandran, D. H. Baldwin, R. E. Reed-Hill. Tensile Behaviour of Polycrystalline Zirconium at 4.2°K [J]. MetallUrgical and Materials Transactions B.1970,1:3011-3018
    [189]L. P. Kubin, P. Spiesser, Y. Estrin. Computer Simulation of the Low Temperature Instability of Plastic Flow [J]. Acta Metallurgica. 1982,30: 385-394
    [190]H. T. Zhou, Q. D. Wang, Y. H. Wei, et al. Flow Stress and Microstructural Evolution in as Rolled AZ91 Alloy during Hot Deformation [J]. Transactions of Nonferrous Metals Society of China,2003,13(6):1265-1269
    [191]汪凌云,范永革,黄光杰等.镁合金AZ31B的高温塑性变形及加工图[J].中国有色金属学报,2004,14(7):1068-1072
    [192]G. Glover, C.M. Sellars. Recovery and Recrystallization During High Temperature Deformation of a-iron[J]. Metallurgical and Materials Transactions B,1973,4(3):765-775
    [193]X. N. Jing, J. H. Zhao, G. Subhash. Anisotropic Grain Growth with Pore Drag under Applied Loads [J]. Materials Science and Engineering A,2005,412: 271-278
    [194]A. P. Zhilyaev, J. M. Garcia-Infanta, F. Carreno. Particle and Grain Growth in an Al-Si Alloy during High-Pressure Torsion [J]. Scripta Materialia,2007,57: 763-765
    [195]M. Y. Gutkin, K. N. Mikaelyan, I. A. Ovid'ko. Grain Growth and Collective Migration of Grain Boundaries during Plastic Deformation of Nanocrystalline Materials [J]. Physics of the Solid State,2008,50(7):1266-1279
    [196]L. Jiang, J.J. Joans, A.A. Luo et al. Influence of{10-12} Extension Twinning on the Flow Behavior of AZ31 Mg Alloy[J]. Materials Science and Engineering A, 2007,445-446:302-309
    [197]L. Jiang, J.J. Jonas, R.K. Mishra et al. Twinning and Texture Development in Two Mg Alloys Subjected to Loading Along Three Different Strain Paths[J]. Acta Materialia,2007,55:3899-3910
    [198]J. Jiang, A. Godfrey, W. Liu et al. Identification and Analysis of Twinning Variants During Compression of a Mg-Al-Zn Alloy[J]. Scripta Materialia,2008, 58:122-125
    [199]P.G. Partridge. Metall. Rev.,1967,12:169-194
    [200]D. J. Bacon, V. Vitek. Atomic-scale Modeling of dislocations and Related Properties in the Hexagonal-close-packed Metals [J]. Metallurgical and Materials Transactions A,2002,33:721-733
    [201]R.E. Smallman, R.J. Bishop. Metals and Materials-Science, Process Applications [M]. Butterworth-Heinemann, London,1995
    [202]C.S. Roberts. Magnesium and Its Alloys[M]. John Wiley, New York, NY,1960
    [203]M. Suzuki, H. Sato, K. Maruyama et al. Creep Deformation Behavior and Dislocation Substructures of Mg-Y Binary Alloys[J]. Materials Science and Engineering A,2001,319-321:751-755

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700