Mg-6Zn-xCu-0.6Zr(x=0-2.0)铸造镁合金的时效行为、显微组织及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对Mg-Zn二元合金铸造性能差、时效析出相粗大,因而时效强化效果不佳的缺点,本研究采用Cu、Zr微合金化以改善Mg-Zn系合金的铸造性能、时效组织和综合力学性能。设计了名义成分为Mg-6Zn-xCu-0.6Zr (x = 0, 0.5, 1.0, 2.0, wt.%)的系列铸造镁合金,并采用金相显微技术、X射线衍射仪技术、扫描电子显微镜技术、透射电子显微镜技术、扫描透射电子显微镜技术、显微硬度计和拉伸试验机等全面研究了合金的时效行为、显微组织及力学性能。重点探讨了微合金化元素Cu、Zr及热处理工艺对合金时效行为、显微组织及力学性能的影响;表征了各种时效析出相的形态和晶体学特征,阐明了其生成机制,并揭示了时效过程中组织的演变进程。
     铸态Mg-Zn-Zr三元合金添加Cu后,其铸态组织由(α-Mg基体+MgZn2)组成变为由(α-Mg基体+MgZn2+MgZnCu)组成;立方结构的MgZnCu作为共晶相分布于晶界。当Cu添加量大于1 %时对合金铸态组织有一定的细化晶粒的作用。峰时效态时,Cu不仅可提高合金主要强化相细长杆状[0001]_αβ_1′-MgZn_2的析出密度和组织均匀性,还可抑制导致过时效的(0001)_αβ_2′-MgZn_2相的析出,但随着Cu含量的继续增加,[0001]_αβ_1′-MgZn_2的长/径比降低。
     Cu的添加对合金的力学性能有明显的影响。当Cu含量为0.5%时综合力学性能最佳,峰时效态合金的抗拉强度σ_b、屈服强度σ_(0.2)和延伸率分别达到266.3 MPa、185.6 MPa和16.7%,特别是塑性指标延伸率增加明显;添加1.0%Cu时的综合力学性能次之;当Cu含量为2%时,因大量MgZnCu颗粒在晶界上呈连续网络状分布,使合金的力学性能明显下降,同时因为大量MgZnCu颗粒的形成而消耗了部分溶质Zn,致使合金的时效硬化效果恶化。同时,微量(0.5%~1.0%)Cu的加入还能延缓合金的过时效进程。Cu的加入使组织均匀化及镁基c/a比的降低是含Cu合金具有较大延伸率的主要原因。Mg-Zn-Zr三元合金主要以沿晶断裂方式为主,Mg-Zn-Cu-Zr四元合金主要以(准)解理断裂和韧窝的混合型方式断裂。
     铸态合金因组织粗大且不均匀,力学性能较差。经固溶+时效处理后,基体中析出大量弥散、共格的强化相,合金的强度和塑性都显著提高,时效强化效果明显。
     研究发现,Zr不仅能细化晶粒,而且能促使合金在430°C固溶处理过程中形成四方结构的富Zr相(δ-Zn_2Zr_3)。根据形态和晶体学特征,这些富Zr相分为四类。第1类为细长杆状相,其轴线平行于[0001]_α方向;第2类呈短四棱柱状,以其轴线平行于(0001)_α基面和< 1120 > _α;第3类同样是细杆长状相,其轴线平行于(0001)_α基面和< 1100 > _α;第4类也是细长杆状相,但其轴线与(0001)_α基面斜交,并与[0001]_α方向夹25~35°角。这些δ-Zn_2Zr_3相的形态和晶体学特征具有明显的关联性,其轴线方向都是δ/α间最小或较小晶向错配度的方向。这些固溶处理中形成的δ-Zn_2Zr_3,在后续180°C时效过程中作为前驱体相为β1′-MgZn_2提供有效的异质形核中心。δ-Zn_2Zr_3在β_1′-MgZn_2长大过程中逐渐分解,分解释放出的Zr原子或局部地溶入Mg基体中,或形成新的含Zr化合物,同时为富Zn相的继续长大提供了较好的成份环境。
     在峰时效之前,合金中先后析出三类杆状的、并且都与(0001)_α基面垂直的[0001] _αβ_1′相。第一、二类都是六方β_1′-MgZn_2,只是与基体的位向关系略有不同;第三类是单斜β1′-Mg_4Zn_7,在靠近峰时效态及后期出现。在过时效合金中还出现另两类析出相,一是盘状的六方β_2′-MgZn_2,盘面平行于(0001)_α基面;二是杆状的棱方平衡相β-MgZn,也与(0001)_α基面垂直。在时效初期还形成了两类GP区,分别平行于{0001}_α和{1120}_α。表征了各析出相的晶体学特征,并讨论了其生成机制。
     在固溶态合金中的富Zr区(即固溶时析出δ相的区域)可能的析出序列为:δ-Zn2Zr_3→β_1′-MgZn_2→β_2′-MgZn_2→β-MgZn,或者δ-Zn_2Zr_3→β_1′-MgZn_2→β-MgZn。而在富Zn区(即固溶时未析出δ相的区域)可能的析出序列为:过饱和固溶体SSSS→GP区→β_1′-MgZn_2→(β_1′-Mg_4Zn_7和/或β_2′-MgZn_2)→β-MgZn。
     该研究对了解Mg-Zn-Cu-Zr系合金的时效析出行为和进行Mg-Zn系合金的时效强化设计具有重要的理论和实用意义,并为开发新型低成本、高性能的Mg-Zn-Cu-Zr镁合金提供了理论依据。
In view of the poor castability and coarse microstructure which are responsible for the inadequate precipitation strengthening, micro-alloying with Cu and Zr was employed to improve the castability, precipitation microstructure and mechanical properties. A series of cast Mg-Zn base alloys Mg-6Zn-xCu-0.6Zr (x=0, 0.5, 1.0, 2.0, wt.%) were prepared for the study, and optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (both conventional and HRTEM), scanning transmission electron microscopy with energy dispersive spectroscopy (STEM-EDS), microhardness testing and tensile testing were used to investigate the aging behavior, microstructure and mechanical properties, and the effects of the alloying elements Cu and Zr on them were elucidated. The morphology, crystallography, formation mechanism and precipitation sequence of the precipitates were characterized as well.
     Cu addition to the Mg-Zn-Zr alloys changed the as-cast microstructure of the alloys from being composed of (α-Mg matrix + MgZn_2) to being composed of (α-Mg matrix + MgZn_2 + MgZnCu), with the cubic-structured MgZnCu distributing at the grain boundaries as an eutectic phase. The Cu addition, when above 1.0%, can to some extent refine the as-cast microstructure, it can also increase the number density and homogeneity of the predominant strengthening precipitate [0001]_α_1′-MgZn_2 in the peak-aged condition, and retard the precipitation of the plate-like (0001)_αβ_2′-MgZn_2 formed in the over-aged alloys. The aspect ratio (the length/diameter ratio) of the [0001]_αβ_1′-MgZn_2, however, decreased with further increasing the Cu content, thus slightly deteriorating the mechanical properties.
     The micro-alloying with Cu also had a striking influence on the mechanical properties of cast Mg-Zn-Cu-Zr alloys. The alloy with 0.5% Cu in its peak aged condition was found to have the optimal composite mechanical property with a UTS of 266.3 MPa, a YS of 185.6 MPa and an elongation of 16.7%, the elongation being appreciably enhanced. Meanwhile, 0.5-1.0% Cu could delay the occurrence of over-aging. The composite mechanical property of the 1.0% Cu alloy was slightly poorer than that of the 0.5% Cu alloy. As the Cu content reached 2.0%, however, the precipitation strengthening effect was greatly deteriorated due to the network-like eutectic phase MgZnCu distributing at the grain boundaries, and to the consumption of Zn by the MgZnCu which would diminish the precipitation of the main strengthening precipitateβ_1′-MgZn_2. The appreciable increase of the elongation value was thought to be due to the homogenization of the microstructure and to the decrease of the c/a ratio of the Mg matrix, both brought about by the Cu addition. The Cu-free Mg-Zn-Zr alloy showed a typical intergranular brittle fracture surface while the Cu-containing alloy exhibited a quasi-cleavage fracture surface mixed with ductile rupture characterized by the dimples and tear ridges.
     The mechanical properties of the as-cast alloys were poor due to their coarse and inhomogeneous microstructure. A T6 treatment (i.e., solution treatment + aging) led to the precipitation of a large quantity of fine-dispersed and coherent strengthening phases, thus appreciably enhancing the strength and plasticity of the alloys.
     The microalloying element Zr could not only refine grains, but also promote the precipitation of the tetragonal Zr-richδ-Zn_2Zr_3 in the as-solutionized condition at 430°C. Based on the morphology and crystallograghic features of theδ-Zn_2Zr_3 precipitates, they were classified as four types. The thin, long rod-likeδ-Zn_2Zr_3 of type 1 was with its axis perpendicular to the basal plane (0001)_α; type 2, while being nearly tetrahedral in shape, was lying in the basal plane (0001)_αand with its axis parallel to < 1120 >α; type 3, also being thin, long rod-like, was lying in the basal plane (0001) _αand with its axis parallel to < 1100 >α; and type 4, while being also thin, long rod-like, was inclining to [0001]_αby 25-35°. A correlation between the morphology and crystallography existed for each of the former three types ofδ-Zn_2Zr_3, i.e., their axes adopted a crystal direction in which the directional misfit between theδ-Zn_2Zr_3 andα-Mg matrix was minimal. Theseδ-Zn_2Zr_3 particles precipitated during solution treatment at 430°C could serve as a heterogeneous nucleation site for the precipitation ofβ_1′-MgZn_2 during the subsequent aging treatment at 180°C. Theδ-Zn_2Zr_3 particles gradually decomposed with the growth of the successorβ_1′-MgZn_2, with the released Zr atoms diffusing into the matrix or taking part in forming new Zr-containing compounds.
     Before peak-aging, three types of [0001]_αβ_1′precipitates were formed, which were all rod-like shapes with their axis perpendicular to the basal plane (0001)_α. Types 1 and 2 were all the hexagonalβ_1′-MgZn_2, only with slightly different orientation relationships with theα-Mg matrix; and type 3 was the monoclinicβ_1′-Mg_4Zn_7 occurring close to the peak-aged stage. Two other types of precipitates were formed in the over-aged alloys. They were the plate-like hexagonalβ_2′-MgZn_2, with its plate face parallel to the basal plane, and the rod-like rhombohedral equilibrium phaseβ-MgZn, also with its axis perpendicular to the basal plane (0001)_α. In the early stages of aging, two types of GP zones, parallel to {0001}_αand {1120}_αrespectively, were formed. The crystallographic features of the above five types of aged precipitates were characterized, and their formation mechanisms were discussed on the basis of the crystallographic features.
     The possible precipitation sequence in the Zr-rich region (i.e., the region withδ-Zn_2Zr_3 precipitated in the solution treated condition) was proposed as follows:δ-Zn_2Zr_3→β_1′-MgZn_2→β_2′-MgZn_2→β-MgZn, orδ-Zn_2Zr_3→β_1′-MgZn_2→β-MgZn. And, the possible precipitation sequence in the Zn-rich region (i.e., the region free ofδ-Zn_2Zr_3 in the solution treated condition) was proposed as follows: Super saturated solid solution (SSSS)→GP zones→β_1′-MgZn_2→(β_1′-Mg_4Zn_7 and/orβ_2′-MgZn_2)→β-MgZn.
     The study is significant in clarifying the aging behavior of the Cu-modified Mg-Zn-Cu-Zr alloys, and helpful to design a precipitation-strengthening procedure for the Mg-Zn series alloy. It may also provide a theoretical basis for developing new Mg-Zn-Cu-Zr alloys with low cost and high performance.
引文
[1]丁文江,吴玉娟,彭立明,等.高性能镁合金研究及应用的新进展[J].中国材料进展, 2010, 29: 37-45.
    [2] Mordike B.L., Ebert T.. Magnesium properties-applications-potential[J]. Materials Science and Engineering A, 2001, 302:37-45
    [3] Polmear I. J.. Magnesium alloys and applications[J]. Materials Science and Technology, 1994, 10: 1-16
    [4] Eliezer D., Aghion E., (Sam) Froes F.H.. Magnesium science, technology and applications[J]. Advanced Performance Materials, 1998, 5:201-212
    [5] Kojima Y.. Platform science and technology for advanced magnesium alloys[J]. Material Science Forum, 2000, 350-351:3-18
    [6]耿浩然,滕新营,王艳,等.铸造铝、镁合金[M].北京:化学工业出版社, 2007
    [7] Aghion E., Bronfin B.. Magnesium alloys development towards the 21st century[J]. Materials Science Forum, 2000, 350-351:19-28
    [8]席俊杰,党旭丹.新型镁合金及其热处理和表面改性技术[J].金属热处理, 2011, 36:1-6
    [9] Mordike B.L.. Creep-resistant magnesium alloys[J]. Materials Science and Engineering A, 2002, 324: 103-112
    [10] Luo A., Pekguleryuz M.O.. Review Cast magnesium alloys for elevated temperature applications[J]. Journal of Materials Science, 1994, 29:5259-5271
    [11] Yang Z., Li J.P., Zhang J.X., et al. Review on research and development of magnesium alloys[J]. Acta Metall. Sin.(Engl. Lett.), 2008, 21:313-328
    [12] Zeng R.C., Zhang J., Huang W.J., et al. Review of studies on corrosion of magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2006, 16:763-771
    [13] Ye H.Z., Liu X.Y.. Review of recent studies in magnesium matrix composites[J]. Journal of Materials Science, 2004, 39: 6153-6171
    [14] Counts W.A., Friák M., Raabe D., et al. Using ab initio calculations in designing bcc Mg-Li alloys for ultra-lightweight applications[J]. Acta Materialia, 2009, 57:169-76
    [15] Wu L.B., Cui C.L., Wu R.Z., et al. Effects of Ce-rich RE additions and heat treatment on the microstructure and tensile properties of Mg-Li-Al-Zn-based alloy[J]. Materials Science and Engineering A, 2011, 528:2174-2179
    [16]王建军,王智民.铸造镁合金成形工艺现状与发展趋势[J].中国铸造装备与技术, 2005, 5:4-8
    [17]丁宏升,郭景杰,苏彦庆,等.我国铸造有色合金及其特种铸造技术发展现状[J].铸造, 2007, 56: 561-566
    [18] Song J., Xiong S.M.. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy[J]. Journal of Alloys and Compounds, 2011, 509: 1866-1869
    [19] Sumida M.. Microstructure development of sand-cast AZ-type magnesium alloys modified by simultaneous addition of calcium and neodymium[J]. Journal of Alloys and Compounds, 2008, 460: 619-626
    [20] Bichler L., Ravindran C.. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings[J]. Materials Characterization, 2010, 61:296-304
    [21] Liu Z.L, Pan Q.L, Chen Z.F., et al. Heat transfer characteristics of lost foam casting process of magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2006, 16:445-451
    [22] Masoumi M., Hu H.. Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg-Al-Ca alloy[J]. Materials Science and Engineering A, 2011, 528: 3589-3593
    [23]李强,黄国杰,谢水生,等.镁合金半固态成形研究进展[J].热加工工艺, 2009, 38:61-65
    [24] Pekgüleryüz M.?., Avedesian M.M.. Magnesium alloying, some potentials for alloy development[J]. Light Metals, 1992, 42:679
    [25]丁文江.镁合金科学与技术[M].北京:科学出版社, 2007
    [26]郭会廷,夏兰廷.合金元素对镁及镁合金力学性能强化的研究[J].铸造设备研究, 2007, 2:40-43
    [27] Kubota K., Mabuchi M., Higashi K.. Processing and mechanical properties of fine-grained magnesium alloys[J]. Journal of Materials Science, 1999, 34:2255-2262
    [28]李宏战,夏兰廷,师素粉.镁及镁合金的晶粒细化[J].铸造设备研究, 2007, 5:39-42
    [29] Lee Y. C., Dahle A. K., StJohn D. H.. The role of solute in grain refinement of magnesium[J]. Metallurgical and Materials Transactions A, 2000, 31A:2000-2895
    [30] StJohn D.H., Qian M., Easton M.A., et al. Grain refinement of magnesium alloy[J]. Metallurgical and Materials Transactions, 2005, 36A:1669-1679
    [31]王忠海,陈善华,康鸿越.镁基复合材料强化机制[J].轻金属, 2007, 11:37-40
    [32]王慧远,姜启川.原位镁基复合材料的研究进展[J].中国材料进展, 2010, 29:17-22
    [33] Unsworth W.. New magnesium alloy for automobile applications[J]. Light Metal Age, 1987, 45: 10-13
    [34]陈晓强,刘江文,罗承萍.高强度Mg-Zn系合金的研究现状与发展趋势[J].材料导报, 2008, 22: 58-62.
    [35] Maeng D.Y., Kim T.S., Lee J.H., et al. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys[J]. Scripta Materialia, 2000, 43:385-389
    [36] Wei L. Y., Dunlop G. L., Westengen H.. Intergranular microstructure of cast Mg-Zn and Mg-Zn-rare earth alloys[J]. Metallurgical and Materials Transactions A, 1995, 26:1947-1955
    [37] Wei L. Y., Dunlop G. L., Westengen H.. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys[J]. Metallurgical and Materials Transactions A, 1995, 26:1705-1716
    [38] Gao X., Nie J.F.. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy[J]. Scripta Materialia, 2007, 57:655-658
    [39] El-Baradie Z.M.. Structure and properties of magnesium-zinc composite alloys thermomechanically treated[J]. Materials Letters, 2003, 57:3269-3275
    [40] Buha J.. Reduced temperature (22-100°C) aging of an Mg-Zn alloy[J]. Materials Science and Engineering A, 2008, 492:11-19
    [41] Bettles C.J., Gibson M.A., Venkatesan K..Enhanced age-hardening behaviour in Mg-4 wt.% Zn micro-alloyed with Ca[J]. Scripta Materialia, 2004, 51:193-197
    [42] Clark J.B.. Transmission electron microscopy study of age hardening in a Mg-5wt.%Zn alloy[J]. Acta Metallurgica, 1965, 13:1281-1289
    [43] Chun J.S., Byrne J.G.. Precipitate strengthening mechanisms in magnesium zinc alloy single crystals[J]. Journal of materials science, 1969, 4:861-872
    [44] Luo C.P., Liu J.W., Liu H.W.. Effects of Al/Zn Ratio on the Microstructure and Strengthening of Mg-Al-Zn Alloys[J]. Materials Science Forum, 2005, 488-489:205-209
    [45] Gao X., Nie J.F.. Characterization of strengthening precipitate phases in a Mg-Zn alloy[J]. Scripta Materialia, 2007, 56:645-648
    [46] Mendis C.L., Oh-ishi K., Hono K.. Effect of Al additions on the age hardening response of the Mg-2.4Zn-0.1Ag-0.1Ca (at.%) alloy-TEM and 3DAP study[J]. Materials Science and Engineering A, 2010, 527:973-980
    [47]李萧.铸造ZC62镁合金显微组织与力学性能的研究[D].广州:华南理工大学, 2006
    [48]李萧,刘江文,罗承萍.铸造ZC62镁合金的时效行为[J].金属学报, 2006, 42:733-738
    [49] Buha J., Ohkubo T.. Natural Aging in Mg-Zn(-Cu) Alloys[J]. Metallurgical and Materials Transactions A, 2008, 39:2259-2273
    [50] Buha J.. Mechanical properties of naturally aged Mg-Zn-Cu-Mn alloy[J]. Materials Science and Engineering A, 2008, 489:127-137
    [51] Jun J. H., Kim J. M., Park B. K., et al. Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy[J]. Journal of Materials Science, 2005, 40: 2659-2661
    [52] Nijnez-lopez C. A., Skeldon P., Thompson G. E., et al. The corrosion behaviour of Mg alloy ZC71-SiCp metal matrix composite[J]. Corrosion Science, 1995, 37:689-708
    [53] Arrabal R., Matykina E., Skeldon P., et al. Coating formation by plasma electrolytic oxidation on ZC71/SiC/12p-T6 magnesium metal matrix composite[J]. Applied Surface Science, 2009, 255: 5071-5078
    [54] Pérez-Castellanos J.L., Guzmán-López R., Rusinek A., et al. Temperature increment during quasi- static compression tests using Mg metallic alloys[J]. Materials & Design, 2010, 31: 3259-3269
    [55]袁允社,李国禄,刘金海,等.镁合金复合材料研究进展[J].热加工工艺, 2006, 35:67-70
    [56] Ma Q., StJohn D.H., Frost. M.T. Characteristic zirconium-rich coring structures in Mg-Zr alloys[J]. Scripta Materialia, 2002, 46:649-654
    [57]孙明,吴国华,戴吉春,等. Zr在镁合金中晶粒细化行为研究进展[J].铸造, 2010, 3:255-259
    [58]罗治平,张少卿. Mg-Zr, Mg-Zn及Mg-Zn-Zr合金的微观结构[J].金属学报, 1993, 29: A176-A181
    [59] Bhan S., Lal A.. The Mg-Zn-Zr System (Magnesium-Zinc-Zirconium)[J]. Journal of Phase Equilibria, 1993, 14:634-637
    [60] Galiyev A., Kaibyshev R., Gottstein G.. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia, 2001, 49:1199-1207
    [61] Arroyave R., Liu Z.K.. Thermodynamic modelling of the Zn-Zr system[J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30:1-13
    [62] Arroyave R., van de Walle A., Liu Z.K.. First-principles calculations of the Zn-Zr system[J]. Acta Materialia, 2006, 54:473-482
    [63] Shahzad M., Wagner L.. Microstructure development during extrusion in a wrought Mg-Zn-Zr alloy[J]. Scripta Materialia, 2009, 60:536-538
    [64]麻彦龙.高强度变形镁合金ZK60合金相的控制与成分优化[D].重庆:重庆大学, 2004
    [65]麻彦龙,潘复生,左汝林.高强度变形镁合金ZK60的研究现状[J].重庆大学学报, 2004, 27: 80-85
    [66]周江,刘科研,金龙兵,等. ZK61M变形镁合金铸造工艺研究[J].轻合金加工技术, 2010, 38:13-16
    [67] Yu W.B.,Liu Z.Y., He H., et al. Microstructure and mechanical properties of ZK60-Yb magnesium alloys[J]. Materials Science and Engineering A, 2008, 478:101-107
    [68] Zhao Z.D., Chen Q., Chao H.Y., et al. Microstructural evolution and tensile mechanical properties of thixoforged ZK60-Y magnesium alloys produced by two different routes[J]. Materials & Design, 2010, 31:1906-1916
    [69] Xia C.Q., Wang Y.N., Wu A.R. et al. Effects of cerium on microstructure and mechanical properties of ZK60 alloy[J]. Journal of Central South University of Technology, 2005, 12: 515-520
    [70]吴安如,夏长清.铈含量对ZK60镁合金组织和性能的影响[J].材料热处理学报, 2006, 27: 45-48
    [71] Wu W., Wang Y., Zeng X., et al. Effect of neodymium on mechanical behavior of Mg-Zn-Zr magnesium alloy[J]. Journal of Materials Science Letters, 2003, 22:445-447
    [72] Yu K., Wang X.Y., Rui S.T., et al. Plastic deformation behavior of ZK60 magnesium alloy with addition of neodymium[J]. Journal of Central South University of Technology, 2008,15: 434-437
    [73] Zhang J., Ma Q., Pan F.S..Effects of trace Er addition on the microstructure and mechanical properties of Mg-Zn-Zr alloy[J]. Materials & Design, 2010,31:4043-4049
    [74] Wang Z.J., Yang Q.X., Qiao J.. Phase structure of ZK60-1Er magnesium alloy compressed at 450 oC[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:S567-S570
    [75] He S.M., Peng L.M., Zeng X.Q.,et al. Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition[J]. Materials Science and Engineering A, 2006, 433:175-181
    [76] Wang P., Li J.P., Ma Q.. Effects of gadolinium on the microstructure and corrosion resistance properties of ZK60 magnesium alloy[J]. Rare Metal Materials and Engineering, 2008, 37: 1056-1059
    [77] Ma C.J., Liu M.P., Wu G.H., et al. Tensile properties of extruded ZK60-RE alloys[J]. Materials Science and Engineering A, 2003, 349:207-212
    [78] He Y.B., Pan Q.L., Qin Y.J., et al. Microstructure and mechanical properties of ZK60 alloy processed by two-step equal channel angular pressing[J]. Journal of Alloys and Compounds, 2010, 492: 605-610
    [79] Orlov D., Raab G.,Lamark T.T., et al. Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing[J]. Acta Materialia, 2011, 59: 375-385
    [80] Luo S.J., Chen Q., Zhao Z.D.. An investigation of microstructure evolution of RAP processed ZK60 magnesium alloy[J]. Materials Science and Engineering A, 2009, 501:146-152
    [81] Cho J.H., Chen H.M., Choi S.H., et al. Aging Effect on Texture Evolution during Warm Rolling of ZK60 Alloys Fabricated by Twin-Roll Casting[J]. Metallurgical and Materials Transactions A, 2010, 41A:2575-2583
    [82] Wang S.R., Wang M., Kang S.B., et al. Microstructure comparison of ZK60 alloy under casting, twin roll casting and hot compression[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 763-768
    [83] Mei Z., Guo L.F., Yue T.M.. The effect of laser cladding on the corrosion resistance of magnesium ZK60/SiC composite[J]. Journal of Materials Processing Technology, 2005, 161: 462-466
    [84] Wang C.Y., Wu K., Zheng M.Y.. Hot deformation behavior of Al18B4O33w/ZK60 magnesium matrix composite[J]. Materials Science and Engineering A, 2008, 487:495-498
    [85] Paramsothy M., Chan J., Kwok R., et al. Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 180-188
    [86] Lee J.Y., Kim D.H., Lim H.K., et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J]. Materials Letters, 2005, 59:3801-3805
    [87] Datta A., Waghmare U.V., Ramamurty U.. Structure and stacking faults in layered Mg-Zn-Y alloys: A first-principles study[J]. Acta Materialia, 2008, 56:2531-2539
    [88] Shao X.H., Yang Z.Q., Ma X.L.. Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Materialia, 2010, 58:4760-4771
    [89] Yang J., Wang J.L., L.D. Wang, et al. Microstructure and mechanical properties of Mg-4.5Zn-xNd (x=0, 1 and 2, wt%) alloys[J]. Materials Science and Engineering A, 2008, 479:339-344
    [90] Zhang J.S., Yan J., Liang W., et al. Microstructures of Mg-Zn-Nd alloy including small quasicrystalline grains[J]. Journal of Non-Crystalline Solids, 2009, 355:836-839
    [91] Li J.H., Du W.B., Li S.B., et al. Effect of aging on microstructure of Mg-Zn-Er alloys[J]. Journal of Rare Earths, 2009, 27:1042-1045
    [92] Li H., Du W.B., Li J.H., et al. Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:1212-1216
    [93] Yamasaki M., Sasaki M., Nishijima M., et al. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature[J]. Acta Materialia, 2007, 55:6798-6805
    [94] Yan H., Chen R.S., Han E.H.. Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys[J]. Materials Science and Engineering A, 2010, 527:3317-3322
    [95] Chino Y., Huang X.S., Suzuki K., et al. Influence of Zn concentration on stretch formability at room temperature of Mg-Zn-Ce alloy[J]. Materials Science and Engineering A, 2010, 528:566-572
    [96] Singh A., Somekawa H., Mukai T.. Compressive strength and yield asymmetry in extruded Mg-Zn-Ho alloys containing quasicrystal phase[J]. Scripta Materialia, 2007, 56: 935-938
    [97]杨明波,潘复生,汤爱涛,等. Mg-Zn-Al(ZA)系耐热镁合金的研究现状[J].热加工工艺, 2007, 8: 73-77
    [98] Zhang J., Guo Z.X., Pan F.S., et al. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys[J]. Materials Science and Engineering A, 2007, 456:43-51
    [99] Shi Z.Z., Zhang W.Z.. A transmission electron microscopy investigation of crystallography ofτ-Mg32(Al,Zn)49 precipitates in a Mg-Zn-Al alloy[J]. Scripta Materialia, 2011, 64:201-204
    [100] Zhang Z., Tremblay R., Dube D.. Microstructure and mechanical properties of ZA104 (0.3-0.6Ca) die-casting magnesium alloys[J]. Materials Science and Engineering A, 2004, 385:286-291
    [101] Xiao W.L., Jia S.S., Wang L.D., et al. Effects of Sn content on the microstructure and mechanical properties of Mg-7Zn-5Al based alloys[J]. Materials Science and Engineering A, 2010, 527: 7002-7007
    [102] Balasubramani N., Srinivasan A., Pillai U.T.S., et al. Effect of antimony addition on the microstructure and mechanical properties of ZA84 magnesium alloy[J]. Journal of Alloys and Compounds, 2008, 455:168-173
    [103] Xiao W.L., Jia S.S., Wang L.D., et al. The microstructures and mechanical properties of cast Mg-Zn-Al-RE alloys[J]. Journal of Alloys and Compounds, 2009, 480:L33-L36
    [104] Horie T., Iwahori H. Awano. Y., et al. Creep properties of Mg-Zn alloy improved by calcium addition [J]. Journal of Japan Institute of Light Metals, 1999, 49:272-276
    [105] Mendis C.L., Oh-ishi K., Hono K.. Enhanced age hardening in a Mg-2.4 at.% Zn alloy by trace additions of Ag and Ca[J]. Scripta Materialia, 2007, 57:485-488
    [106] Gao X., Zhu S.M., Muddle B.C., et al. Precipitation-hardened Mg-Ca-Zn alloys with superior creep resistance[J]. Scripta Materialis, 2005, 53:1321-1326
    [107] Homma T., Mendis C.L., Hono K., et al. Effect of Zr addition on the mechanical properties of as-extruded Mg-Zn-Ca-Zr alloys[J]. Materials Science and Engineering A, 2010, 527: 2356-2362
    [108] Tong L.B., Zheng M.Y., Xu S.W., et al. Effect of Mn addition on microstructure, texture and mechanical properties of Mg-Zn-Ca alloy[J]. Materials Science and Engineering A, 2011, 528: 3741-3747
    [109] Tong L.B., Zheng M.Y., Hu X.S., et al. Influence of ECAP routes on microstructure and mechanical properties of Mg-Zn-Ca alloy[J]. Materials Science and Engineering A, 2010, 527:4250-4256
    [110]宋海宁,袁广银,王渠东,等.耐热Mg-Zn-Si-Ca合金的显微组织和力学性能[J].中国有色金属学报, 2002, 12:956-960
    [111] Yuan G.Y., Liu M.P., Ding W.J, et al. Microstructure and mechanical properties of Mg-Zn-Si-based alloys[J]. Materials Science and Engineering A, 2003, 357:314-320
    [112] Ben-Hamu G., Eliezer D., Shin K.S.. The role of Si and Ca on new wrought Mg-Zn-Mn basedalloy[J]. Materials Science and Engineering A, 2007, 447:35-43
    [113] Mark P. S., Alexis M. P., Jerawala H., et al. Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27:1728-1734
    [114] Zhang E.L, Yang L.. Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application[J]. Materials Science and Engineering A, 2008, 497: 111-118
    [115] Zhang E.L, Yin D.S., Xu L.P., et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J]. Materials Science and Engineering C, 2009, 29:987-993
    [116] Du H., Wei Z.J., Wang H.W., et al. Surface microstructure and cell compatibility of calcium silicate and calcium phosphate composite coatings on Mg-Zn-Mn-Ca alloys for biomedical application[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83: 96-102
    [117] Buha J..Natural aging in magnesium alloys and alloying with Ti[J]. Journal of Material Science, 2008, 43:1220-1227
    [118] Buha J. Grain refinement and improved age hardening of Mg-Zn alloy by a trace amount of V[J]. Acta Materialia, 2008, 56:3533-3542
    [119] Buha J..The effect of micro-alloying addition of Cr on age hardening of an Mg-Zn alloy[J]. Materials Science and Engineering A, 2008, 492:293-299
    [120] Buha J.. The effect of Ba on the microstructure and age hardening of an Mg-Zn alloy[J]. Materials Science and Engineering A, 2008, 491:70-79
    [121] Rashkova B., Prantl W., G?rgl R., et al. Precipitation processes in a Mg-Zn-Sn alloy studied by TEM and SAXS[J]. Materials Science and Engineering A, 2008, 494:158-165
    [122] Ben-Hamu G., Eliezer D., Kaya A., et al. Microstructure and corrosion behavior of Mg-Zn-Ag alloys[J]. Materials Science and Engineering A, 2006, 435-436:579-587
    [123] Geng J., Gao X., Fang X.Y., et al. Enhanced age-hardening response of Mg-Zn alloys via Co additions[J]. Scripta Materialia, 2011, 64:506-509
    [124]艾延龄.含Ca、Si镁合金的显微组织及晶体学分析[D].广州:华南理工大学, 2004
    [125] James E.M., Browning N.D.. Practical aspects of atomic resolution imaging and analysis in STEM[J]. Ultramicroscopy, 1999, 78:125-139
    [126]李鹏飞.高角度环形暗场Z衬度像成像原理及方法[J].兵器材料科学与工程, 2002, 25:44-47
    [127] Liu Y., Yuan G.Y., Lu C., et al. Microstructure and mechanical properties of Mg-Zn-Gd-based alloys strengthened with quasicrystal and Laves phase[J]. Transactions of Nonferrous Metals Society of China, 2007, 17:s353-s357
    [128]束德林.工程材料力学性能[M].第二版.北京:机械工程出版社, 2007
    [129] Chino Y., Kado M., Mabuchi M.. Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2 wt%(0.035 at%)Ce[J]. Materials Science and Engineering A, 2008, 494:343-349
    [130] Wu B.L., Zhao Y.H., Du X.H., et al. Ductility enhancement of extruded magnesium via yttrium addition[J]. Materials Science and Engineering A, 2010, 527:4334-4340
    [131] Wang S.C., Chou C.P.. Effect of adding Sc and Zr on grain refinement and ductility of AZ31 magnesium alloy[J]. Journal of materials processing technology, 2008, 197:116-121
    [132] H?nzi A.C., Dalla Torre F.H., Sologubenko A.S., et al. Design strategy for microalloyed ultra-ductile magnesium alloys[J]. Philosophical Magazine Letters, 2009, 89:377-390
    [133] Yoo M.H.. Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metallurgical Transactions A, 1981, 12:409-418
    [134] Mishra R.K., Gupta A.K., Rao P.R., et al. Influence of cerium on the texture and ductility of magnesium extrusions[J]. Scripta Materialia, 2008, 59:562-565
    [135] Chang G.W., Chen S.Y., Zhou C., et al. Relationship between solid/liquid interface and crystal orientation for pure Magnesium solidified in fashion of cellular crystal[J]. Transactions of Nonferrous Metals Society of China, 2010, 20:289-293
    [136] Geng L., Zhang B.P., Li A.B., et al. Microstructure and mechanical properties of Mg-4.0Zn-0.5Ca alloy[J]. Materials Letters, 2009, 63:557-559
    [137] Ganeshan S. , Shang S. L., Wang Y. , et al. Effect of alloying elements on the elasticproperties of Mg from first-principles calculations[J]. Acta Materialia, 2009, 57:3876-3884
    [138] Herbstein F.H., Averbach B.L..The structure of lithium-magnesium solid solutions-I Measurements on the Bragg reflections[J]. Acta Metallurgica, 1956, 4:407-413
    [139] Ben-Hamu G., Eliezer D., Shin K.S., et al. The relation between microstructure and corrosionbehavior of Mg-Y-RE-Zr alloys[J]. Journal of Alloys and Compounds, 2007, 431:269-276
    [140] Mendis C.L., Oh-ishi K., Kawamura Y., et al. Precipitation-hardenable Mg-2.4Zn-0.1Ag-0.1Ca- 0.16Zr (at.%) wrought magnesium alloy[J]. Acta Materialia, 2009, 57:749-760
    [141] Gao X., Muddle B.C., Nie J.F.. Transmission electron microscopy of Zr-Zn precipitate rods in magnesium alloys containing Zr and Zn[J]. Philosophical Magazine Letters, 2009, 89:33-43
    [142]肖晓玲,罗承萍,刘江文,等. AZ91 Mg-Al合金中β-(Mg17Al12)析出相的形态及其晶体学特征[J].金属学报, 2001, 37:1-7
    [143]罗承萍,肖晓玲,刘江文,等. AZ91 Mg-Al合金中γ-Mg17Al12析出相的多重位向关系及{112}γ伪孪晶关系[J].金属学报, 2002, 38:709-714
    [144] Singh A., Tsai A.P.. Structural characteristics ofβ1′precipitates in Mg-Zn-based alloys[J]. Scripta Materialia, 2007, 57:941-944
    [145] Singh A., Rosalie J.M., Somekawa H., et al. The structure ofβ1′precipitates in Mg-Zn-Y alloys[J]. Philosophical Magazine Letters, 2010, 1:1-11
    [146] Rosalie J.M., Somekawa H., Singh A., et al. Structural relationships among MgZn2 and Mg4Zn7 phases and transition structures in Mg-Zn-Y alloys[J]. Philosophical Magazine, 2010, 90:3355-3374
    [147]罗承萍,肖晓玲,刘江文,等.不变线应变原理及其在相变晶体学研究中的应用[J].自然科学进展, 2000, 10:193-200
    [148] Zhang M.X., Kelly P.M., Ma Q., et al, Crystallography of grain refinement in Mg-Al based alloys[J]. Acta Materialia, 2005, 53:3261-3270
    [149] Nie J.F.. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia, 2003, 48:1009-1015
    [150] Murakami Y., Kawano O., Tamura H. , Kyoto Univ., Memoirs of the Faculty of Engineering. 1962, 28:93
    [151] Takahashi T., Kojima Y., Takanishi K.. Study of precipitates in an aged magnesium-3.6wt% zinc alloy by an X-ray method[J]. Journal of Japan Institute of Light Metals, 1973, 23:376-382
    [152] Polmear I.J.. Light Alloys: Metallurgy of the Light Metals[M]. 3rd ed.. Arnold, London, 1995:204
    [153] Oh-ishi K., Hono K., Shin K.S.. Effect of pre-aging and Al addition on age-hardening and microstructure in Mg-6 wt% Zn alloys[J]. Materials Science and Engineering A, 2008, 496:425-433
    [154] Oh-ishi K., Mendis C.L., Homma T., et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) alloys[J]. Acta Materialia, 2009, 57:5593-5604
    [155] Tarschisch L.. Z. Kristallogr. Teil A, 1933, 86:423-438
    [156] McKeehan L.W.. Z. Kristallogr. Teil A, 1935, 91:501-503
    [157] Khan Y.. Dynamic temperature crystallization behaviour of amorphous and liquid Mg70Zn30 alloy[J]. Journal of materials science, 1989, 24:963-973
    [158] Gallot J.. Ph.D. Thesis[D]. Rouen, France: University of Rouen, 1966
    [159] Lorimer G.W.. Proceeding of the London Conference on Magnesium Technology[C]. Institute of Metals, London, 1986:47-53
    [160] Okamoto H.. Comment on Mg-Zn (Magnesium-Zinc)[J]. Journal of Phase Equilibria, 1994, 15: 129-130
    [161] Morishita M., Yamamoto H., Shikada S., et al. Thermodynamics of the formation of magnesium-zinc intermetallic compounds in the temperature range from absolute zero to high temperature[J]. Acta Materialia, 2006, 54:3151-3159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700