合金早期沉淀过程的原子尺度计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用微观相场模型,基于离散格点形式的微观扩散方程和非平衡自由能函数,在国内首先编制了二元、三元镍基合金的原子层面计算机模拟程序,无需预先设定新相结构和转变路径,自动描述可能的非平衡相、原子簇聚、有序化等,适用于沉淀的全过程以及全部成分范围,可获得原子图像、序参数及有序相体积分数等信息。系统地研究了存在有序化和原子簇聚的复杂体系的早期沉淀机制、两种有序相共存的析出序列、共格弹性应变能的影响。为客观地验证模拟结果,与国、内外相关的实验研究和理论进行了对比,主要结果获得印证,并得到了目前实验手段未能或难以发现的现象和规律。
     低浓度Ni-Al合金γ′相的沉淀机制为非经典形核长大,有序化与原子簇聚过程同时发生,没有发现GP区。随浓度增加,非经典形核长大的特征增强,有序相临界晶核成分序参数和长程序参数降低,且分布更为平缓,沉淀序列为:过饱和固溶体→非化学计量比有序相→化学计量比平衡γ′相→长大。
     高浓度Ni-Al合金γ′相的沉淀机制为:等成分有序化+失稳分解,有序化先于原子簇聚发生。等成分有序化产生非化学计量比的单相有序畴,失稳分解主要发生在反相畴界处,形成无序相,并促进畴内的失稳分解,在畴内形成无序相,但随时间延续,畴内无序相逐渐消失。沉淀序列为:
     中间浓度Ni-Al合金的沉淀机制没有发生不连续转变,随浓度增加,逐渐由非经典形核长大的沉淀特征向失稳分解沉淀特征转变,主要表现为:有序化过程提前、加快;有序相形成时浓度降低,尺寸变大直至形成浓度起伏很低的单相有序畴;有序相出现失稳分解等。靠近低浓度区的沉淀机制为非经典形核长大,与低浓度合金的沉淀机制相似;靠近高浓度区的沉淀机制为非经典形核长大+失稳分解,与高浓度合金沉淀机制更接近,沉淀序列为:
    
    西北工业大学博士学位论文
     低浓度NivsAlxV25一合金的e相先于丫相析出,e相的沉淀机制为:等成分有序
    化+失稳分解;丫相在e相的反相畴界处非经典形核,二者均先形成非化学计量比有
    序相,之后向化学计量比有序相转变。随Al浓度增加,e相发生等成分有序化的
    过程越来越慢,丫相临界核心成分值越来越平缓,尺寸越来越大且所占比例增加。
     中间浓度N玩Alxv25一、合金丫相和e相同时析出,随Al浓度增加,丫相所占比
    例继续增加,e相减少;丫相沉淀方式由非经典形核机制逐渐向等成分有序化+失稳
    分解机制转变,0相沉淀方式则由等成分有序化+失稳分解逐渐向非经典形核机制
    转变,e相和丫相都经历了既具非经典形核特征又具失稳分解特征的混合机制的沉
    淀过程,二者沉淀序列和机制的转变并非在某一点发生突变,而是连续过渡的。
     高浓度Ni75AlxV25-x合金沉淀过程中,,·与I区合金相反,丫相先出现,沉淀方式
    为等成分有序化+失稳分解,e相在丫相的妙BS上非经典形核,二者均先形成非化
    学计量比有序相,之后向化学计量比有序相转变。随Al浓度增加,丫相发生等成分
    有序化的过程更快,失稳分解的过程放缓,O相临界核心成分值越来越尖锐,尺寸
    越来越小且所占比例减少。
     研究共格弹性应变能对模型合金沉淀相形貌的影响规律发现:当共格弹性应变
    能为零时,沉淀相为球状弥散分布的颗粒或“海绵状”结构,呈各向同性特征;随
    应变能作用的增强,沉淀相分布的取向性越来越明显,趋于沿弹性“软”方向分布,
    形成类方格阵、纵横层状结构等,呈各向异性特征。
With the microscopic phase-field model, the atomic-scale computer simulation programs of the binary and ternary Ni-based alloys were firstly worked out based on the microscopic diffusion equation and nonequilibrium free energy. It can be applied to the whole precipitation process and composition range. Any a prior assumptions on the new phase structure or transformation path was unnecessary, the possible nonequilibrium phases, atomic clustering and ordering could be described automatically, and atomic pictures, order parameters and volume fractions of precipitates were obtained. Computer simulation was performed systematically on the precipitation mechanism, precipitation sequence and influence of coherent elastic strain energy in complicated system with ordering and clustering simultaneously. The main simulation results were confirmed by comparing the experimental results and theories of others, meanwhile, the phenomenon and laws were also obtained, which are difficult or unable to discover in experiments at present. The main conclusions were summarized as follows:
    Non-classical nucleation and growth mechanism of y' ordered phase occurs in the lower composition Ni-Al alloys. Ordering and clustering occurs simultaneously and no GP zones are found. With the increase of Al composition, there is more characteristic of Non-classical nucleation and growth, and the order parameter values of critical ordered nucleus decrease. The precipitation sequence is:
    Supersaturated solid solution Non-classical NG Nonstoicheometric ordered phase
    stoicheometric ordered phaseGrowth
    For higher composition Ni-Al alloys, the precipitation mechanism of y' phase is congruent ordering followed by spinodal decomposition, and ordering occurs prior to clustering. By congruent ordering, a nonstoicheometric single ordered phase is produced with the ordered domains being separated by antiphase domain boundaries (APBS). Spinodal decomposition occurs predominantly at APBS, which results in the replacement of the APBS by the two-order/disordered interfaces. Spinodal decomposition at APBS promotes the decomposition in domains, however, the disordered phase in domains disappear as time follows. The precipitation sequence is as follows:
    
    
    
    Supersaturated solid solution Congruent ordering Nonstoicheometric ordered phase
    Spinodal decomposition stoicheometric ordered phase
    No incontinuous transition of precipitation mechanism has been found in middle composition Ni-Al alloys. With the increase of Al composition, the precipitation characteristic transforms from non-classical nucleation and growth to Spinodal decomposition. Ordering occurs earlier and quicker than clustering; the composition in critical nucleus is lower and the size is larger; Spinodal decomposition occurs in ordered phase. The precipitation mechanism near lower composition alloys zone is non-classical nucleation and growth mechanism, which is similar to that of lower composition alloys. Non-classical nucleation and growth + Spinodal decomposition mechanism occurs in alloys near higher composition zone, which is similar to that of higher composition alloys. The precipitation sequence is as follows:
    Supersaturated solid solution Non-classical NG Nonstoicheometric ordered phase
    Spinodal decomposition stoicheometric ordered phase
    For Ni75AlxV25-x alloy with lower Al composition, ordered phase precipitated earlier than y' ordered phase by congruent ordering + spinodal decomposition mechanism and thus produced a nonstoicheometric single ordered phase. Then, the nonstoicheometric r' phase precipitated by a non-classical nucleation and growth mechanism at the APBS of phases. With the increase of Al composition, the congruent ordering process of phase be more slowly, and the composition in critical r nucleus is lower and the size is larger. Meanwhile, the occupation percentage of r increase. Meanwhile, both of them transformed to stoicheometric ordered phases.
    For Ni75AlxV25-x alloy with middle Al composition, and y' ordered phase precipitated at the same time. With the
引文
1.冯端.金属物理学第二卷相变.北京:科学出版社,1998:31
    2. R .W .Cahn,P.Haasen,E.J.Kramer. Phase transformation in materials(材料的相变)[M]. Beijing: Science Press(北京:科学出版社), 1998:219
    3. G. M. Pound. Perspectives on nucleation. Metallurgical Trans. 1985, 16A: 487
    4. J .W. Cahn, Hilliard J E. Free energy of a nonuniform system Ⅰ .Interfacial free energy. J. Chem. Phys. 1958,28(2): 258
    5. J .W. Cahn, Hilliard J E. Free energy of a nonuniform system Ⅲ.Nucleation in a two component Incompressible fluid. J. Chem. Phys. 1959(3), 31:688
    6. F.K. Legous, Y. W. Lee, H. I. Influence of crystallography upon critical nucleus shapes and kinetics of homogeneous f.c.c-f.c.c nucleation -Ⅱ.The non-classical regime. Aaronson. Acta Metal. Mater. 1984, 32(10): 1837
    7. R.W .Cahn,P.Haasen,E.J.Kramer. Phase transformation in materials(材料的相变)[M]. Beijing: Science Press(北京:科学出版社), 1998:245
    8. A. D. Brailsford, P. Wynblatt. The dependence of ostwald ripening kinetics on particle volume fraction. Acta Metal. Mater. 1979, 27:489
    9. A.J. Ardell. Late-Stage two-dimensional coarsening of circular clusters. Phys. Rev. B. 1990, 41(4): 2554
    10. A. Kalogeridis, J. Pesicka, E. Nembach. On the increase of the precipitated volume fraction during ostwald ripening, exemplified for Al-Li alloys. Mater. Sci. Eng. A. 1999,268:197
    11. J. Hoyt, S. Spooner. The surface energy of metastable A13Li precipitates from coarsening kinetics. Acta metal mater.. 1991, 39(4): 689
    12. S. Q. Xiao, P. Haasen. Herm investigation of homogeneous decomposition in a Ni-12at. %Al alloy. Acta metal mater. 1991,39(4): 651
    13. C. Marsh, H. Chen An insistu x-ray diffraction study of precipitation from a supersaturated solid solution: the γ' precipitate in Ni-12.5at. %Al alloy. Acta metall. mater. 1990, 38:2287
    14. S. P. Marsh, M.E. Glicksman. Kinetics of phase coarsening in dense systems. Acta Metal. Mater. 1996,44(9): 3761
    
    
    15. V. A. Snyder, J. Alkemper, E W. Voorhees. The development of spatial collelations during Ostwald ripening: a test of theory. Aeta mater. 2000, 48:2689
    16. H. A. Calderon, P .W. Voorhees, J. L. Murray, et al.Ostwald ripening in concentrated alloys. Acta Metal. Mater. 1994, 42(3): 991
    17. C. K. L. Davies, E Nash, R. N. Stevens. The effect of volume fraction of precipitate on ostwald ripening. Acta Metal. Mater.. 1980, 28:179
    18. Y.Wang, L.Q.Chen, A.G.Khachatuyran. Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta metall, mater. 1993,41(1):279-296
    19. R .W .Cahn,P.Haasen,E.J.Krarner. Phase transformation in materials(材料的相变)[M]. Beijing: Science Press(北京:科学出版社), 1998:245
    20. W.Wanger,R.Poerschke,H.Wollenberger.(1984),in:Decomposition of Alloys:the early stges: P. Hassen, V.Gerold, R.Wanger, M.Ashby.(Eds.). Oxford:Pergamon press, pp. 170-175
    21. J .S. Langer, A. J. Schwartz. Kinetics of nucleation in near-critical fluids. Phys. Rev. A. 1980, 21:948
    22. H. Wendt, P.Haasen. Nucleation and growth of γ' precipitates in Ni-14at. %Al alloy. Acta metal. Mater. 1983, 31(10): 1649
    23. R .W .Cahn,P.Haasen,E.J.Kramer. Phase transformation in materials(材料的相变)[M]. Beijing: Science Press(北京:科学出版社), 1998:255
    24. A. W. Zhu. Evolution of size distribution of shearable ordered precipitates under homogeneous deformation: application to an Al-Li alloy. Acta Metal. Mater.. 1997,45(10): 4213
    25. E. D. Siebert, Knobler C M. Measurements of homogeneous nucleation near a critical solution temperature. Phy. Rev. Lett.. 1984,52:1133
    26. M. Kumar, R. Sasilumar, N. Kesavan. Competition between nucleation and early growth of ferrite from austertite studies using cellular automation simulations. Acta metal. Mater. 1998, 46(17): 6291
    27.冯端.金属物理学第二卷相变.北京:科学出版社,1998:195
    28. D. Fontaine.K-space syrnmertry rules for order-disorder reactions. Acta metal. 1975, 23:553
    29. D. Fontaine.Ordering instabilities and pretransitional effects. Metall Trans. 1981, 12
    
    A: 559
    30. D.E.Laughlin, J .W. Cahn. Spinodal decomposition in age hardening copper-T itanium Acta Metall.. 1975, 23:329
    31. K. Binder. Time-dependent Ginzburg-Landau theory of nonequilibidum relaxation. Phys. Rev. B. 1973, 8:3423
    32. K. Binder, M.Krumbaar. Investigation of metastable states and nucleation in the kinetic Ising model. Phys. Rev. B. 1974, 9(8): 2328
    33. C. Unger, W. Klein. Nucleation theory near the classical spinodal. Phys. Rev. B.1984, 29:2698
    34. R.Wanger, R.Kampmann, B.Jiang.in: Proc, int,conf. Cu86-Copper Tomorrow-Technology, Products, Research:Ceresara,S.(Ed).Barag die Lucca, pp119-127
    35. R.Wanger. 1982,Field Ion Microscopy in Materials Science. Vol.6, Crystals -Growth, Properties and Applications:Freyhardt, H.C.(Ed.)Berlin:Spriner Verlag. (实验技术: AFIM)
    36.D.罗伯[德].项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2002:3
    37.D.罗伯[德].项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2002:7
    38. J.M.Liu. A Monte-Carlo simulation of decomposition kinetics in fine-grained binary alloys. Materials Science and Engineering. 1998, (A254): 45-52.
    39. ER.Rios. Comparison between grain size distributions obtained by a Monte Carlo Potts model and by an analytical mean field model. Scripta Matedalia. 1999,41(12): 1283-1287.
    40. S.Hirosawa, T.Sato. Monte Carlo computer simulation of the atomistic behaviour of microalloying elements in Al-Li alloys. Modeling Simul.Mater. Sci.Eng. 2001, (9): 129-141.
    41. T.Pang. Computational Physics. Cambdge University Press. 1997:134
    42. E.A.Holm, A.D.Rollett, and D.J.Srolovitz. In Proceedings of NATO ASI on computer simulation in Materials Science, Vol.eds.: H.O.Kirchnert, L.EKubin, and V.Pontikis, Volume 308 of NATO Advanced ascience Institutes Seris, Series E: Applied Sciences. 1996:373
    43. D.J.Bacher. In Proceedings of NATO ASI on computer simulation in Materials Science, Vol.eds.: H.O.Kirchnert, L.P.Kubin, and V.Pontikis, Volume 308 of NATO Advanced ascience Institutes Seals, Series E: Applied Sciences. 1996:189
    
    
    44. J.A.Chen,C.K.Hu. Histogram-importance-sampling Monte-carlo method for the q-state potts model. Phys.Rev.B. 1994,50(9): 6260
    45. T. Kupper, N. M asbaum. Simulation of particle growth and ostwald ripening via the CHE. Acta metall. Mater. 1994, 42(6): 1847-1858
    46. J. Hafner. Atomic-scale computational materials science. Acta mater. 2000, 48:71
    47.刘俊明,刘治国,吴状春.Cu-Co合金失稳分解动力学.物理学报.1995,44(2):319
    48. O.F.Sankey, D.J.Niklewski. An initio multicenter tight-binding model for moleculardynamic simulations and other applications in covalent systems. Phys.Rev.B. 1989(40): 3979
    49. H.O.Kirchnert, L.P.Kubin, and V.Pontikis. In Proceedings of NATO ASI on computer simulation in Materials Science, Nano/Meso/Macroscopic Space and Time Scales,Volume 308 of NATO Advanced ascience Institutes Seris, Series E: Applied Sciences. 1996:451
    50. S.Müller, L.W.wang, A.Zunger. First Principles kinetic theory of precipitate evolution in Al-Zn alloys. Modelling Simul.Mater.Sci.Eng. 2002,10:131
    51.王永欣,陈铮,李晓玲等.原子间相互作用能对δ′相在过渡区沉淀影响的计算机研究.自然科学进展.2003,13(2):179-185
    52.D.罗伯[德].项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2002:224
    53. S.Y.HU, L.Q.CHEN. A phase field model for evolving microstructures with strong elastic inhomogenety. Acta mater. 2001, (49): 1879-1890.
    54. Y.H.Wen, Y.Wang, L.Q.Chen. Coarsening dynamics of self-accommodating coherent patterns. Acta Mateialia. 2002, (50): 13-21.
    55. K.Wu, J.E.Morral, and Y.Wang. A phase field model of microstructural changes due to the kirkendall effect in two-phase diffusion couples. Acta mater. 2001, (49): 3401-3408.
    56. L.Q.Chen, Yunzhi Wang.The continuum field approach to modeling microstructural evolution. Jom. 1996, (12): 12-18.
    57. Y.Ustinovshikov, V.Koretsky. Computer simulation of the intermetallics formation process. Computational Materials Science. 1998, (11): 74-86.
    58. G.Rubin, A.G.Khachaturyan. Three-Dimensional model of precipitation of ordered intermetallics. Acta mater. 1999,47(7): 1995-2002.
    
    
    59. M.Hillert. A model-based continuum treatment of ordering and spinodal decomposit- I on. Acta mater. 2001, (49): 2491-2497.
    60. Y.Wang,L.Chen,and A.CtKhachatuyran. In Proceedings of NATO ASI on computer simulation in Materials Science, Vol.eds.: H.O.Kirchnert, L.P.Kubin, and V.Pontikis, Volume 308 of NATO Advanced ascience Institutes Seris, Series E: Applied Sciences. 1996:325
    61. T.Miyazaki, T. Koyama, T. Kozakai. Computer simulation of the phase transformation in real alloy systems based on the phase field method. Materials Science and Eng I ineering. 2001 (A312): 38-49.
    62. R.Poduri,L.Q.Chen. Computer simulation of morphological evolution and coarsening of δ`(Al_3Li) precipitates in AI-Li alloys. Acta mater. 1998, 46(11): 3915 -3928.
    63. J.Z. Zhu, L.Q.Chen, J.Shen. Morphological evolution during phase separation and coarsening with strong inhomogeneous elasticity. Modeling Simul.Mater. Sci. Eng. 2001, (9): 499-511.
    64. R.Poduri,L.Q.Chen. Computer simulation of the kinetics of order-disorder and phase separation during precipitation of δ`(Al_3Li) in Al-Li alloys. Acta mater. 1997, 45(1):245-255.
    65. R.Poduri, L.Q.Chen. Non-classical nucleation theory of ordered intermetallic precipitates - application to the Al-Li alloy. Acta mater. 1996, 44(10): 4253-4259.
    66. L.Q.Chen, A.G.Khachaturyan. Computer simulation of decomposition reactions accompanied by a congruent ordering of the second kind. Scripta Metallurgica et materialia. 1991, 25:61-66.
    67. L.Q.Chen, A.G.Khachaturyan. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta metall.mater. 1991, 39(11): 2533-2551.
    68. T.M.Pollock, A.S.Argon. Directional coarsening in Ni-based single crystals with high volume fractions of coherent precipitates. Acta metall.mater. 1994, 42(6): 1859-1874
    69. J.Z.Zhu, Z.K.Liu, V.Vaithyanathan, L.Q.Chen. Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scripta Materilia. 2001,46:401
    70. H.Wendt, EHassen. Nucleation and Growth ofγ` -Precipitates in Ni-14at. %Al. Acta
    
    metal. 1993, 31(10): 1649-1659
    71. D.Banerjee, R.Banerjee, Y.Wang. Formation of split Patterns of γ' Precipitates in Ni-Al Via Particle Aggregation. Scripta Materialia. 1999,41 (9): 1023-1030
    72. V.Vaithyanathan, L.Q.Chen. Coarsening of ordered intermetallic precipitates with coherency stress. Acta Materilia. 2002,50:4061-4073
    73. J.R.Soh, H.M.Lee. Phenomenological Phase Digram Calculation of The Ni-Al System in the Ni-rich Region. Acta mater. 1997, 45 (11): 4743-4749
    74. A.J.Ardell, A.Maheshwari. Coherent Equilibrium in Alloys Containing Spherical Precipitates. Acta metall mater. 1995,43(5): 1825-1835
    75. F.Li, A.J.Ardell. Coherent Solubility Limits of γ' -type phases in Ni-Al, Ni-Ga, and Ni-Ti alloys. Scripta Materialia. 1997,37(8): 1123-1128
    76. P.Staron, R.Kampmann. Early-Stage Decomposition Kinetics in Ni-Al Alloys-Ⅰ. Small and Wide-angle Neutron Scattering Investigation on Ni-13at. % Al and Cluster dynamic Modeling. Acta mater.2000, 48:701-712
    77. P.Staron, R.Kampmann. Early-Stage D,.ecomposition Kinetics in Ni-Al Alloys-Ⅱ. Cluster dynamic Modeling of Former Experimental Results. Acta mater. 2000, 48: 713-720
    78. O.Susuma, K.Noriko, F.Toshiyuki, K.Masaharu. Simplified energy analysis on the equilibrium shape of coherent γ' precipitates in γmatrix with a superspherical shape approximation. Intermetallics. 2002,10:343-346
    79. C.Pareige. Ordering and Phase Separation in Ni-Cr-Al: Monte-Carlo Simulation Vs 3D Atom Probe. Acta mater. 1998, 47 (6): 1889-1899
    80. L.Q.Chen, D.Fan. Computer Simulation Model for Coupled Grain Growth and Ostwald Ripening-Application to Al_2O_3-Z_rO_2 Two-phase Systems. J.Am.Ceram.Soc. 1996,79(5): 1163
    81. J.Z.Zhu, Z.K.Liu, V.Vaithyanathan, L.Q.Chen. Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys. Scripta Materilia. 2001,46:401
    82. L.Q.Chen, Y.Z,Wang. The Continuum Field Approach to Modelling Microstructural Evolution. JOM. 1996,December: 13
    83. L.Q.Chen. Phase-Field Models for Microstructure Evolution. Annu.Rev.Mater.Res. 2002,32:113
    
    
    84. L.Q.Chen, Wolverton, V.Vaithyanathan, Z.K.Liu. Modelling Solid-State Phase Transformations and Microstructure Evolution. Mrs Bulletin. 2001, March
    85. V.Vaithyanathan, C.Wolverton, L.Q.Chen. Multiscale Modelling of Precipitate Microstructure Evolution. Physical Review Letters. 2002,88(12): 125503-1
    86. T.Koyama,T.Miyazaki, M.Mebed. Computer Simulations of Decomposition in Real Alloy Systems Based on the Modified Khachatuyran Diffusion Equation. Metallurgical and Materials Transactions A. 1995,26A(10): 2617
    87. T.Miyazaki, A.Takeuchi, T.Koyama. Computer Simulations of the Phase Decomposition on Cu-Cc binary alloys based on the non-linear diffusion equation. J.Mater.Sci.. 1992,27:2444
    88.李晓玲.δ′相沉淀过程原子层面计算机研究.西北工业大学博士论文.2002:14
    89.李晓玲,陈铮,刘兵,刘晓光.δ′相早期沉淀过程的计算机模拟.自然科学进展.2002,12(1):74
    90. Xiaoling Li, Zheng Chen, Bing Liu, Yongxin Wang. Transition from Metastability to instability in Dynamics for the Precipitation of δ′ (Al_3Li). Rare Metals. 2001,20(4):1
    91.马良.外场作用下δ′相沉淀过程原子层面计算机研究.西北工业大学硕士论文.2003:20
    92. G.Rubin, A.G.Khachaturyan. Three-Dimensional model of precipitation of ordered intermetallics. Acta mater. 1999,47(7): 1995-2002
    93. J Hoyt. Liner spinodal decomposition in a regular ternary alloy. Acta metall mater, 1990,38(2): 227-231
    94. L.Q.Chen. Computer simulation of spinodal decomposition in ternary systems. Acta metall mater, 1994,42(10): 3503-3513
    95. Long Qing Chen. A computer simulation technique for spinodal decomposition and ordering in ternary systems. Scripta Metallurgica et materialia, 1993, 29:683-688
    96. C Pareige, F Soisson, G Martin, D Blavette. Ordering and phase separation in Ni-Cr-Al: monte carlo simulations vs three-dimensional atom probe. Acta mater, 1999,47(6): 1889-1899
    97. T Miyazaki. Computational investigation on the microstructure formation in multi-component alloys systems based on the phase field method [J]. Calphad, 2001, 25(2): 231-239
    
    
    98.陈国良,林均品.有序金属间化合物结构材料.北京:冶金工业出版社.1999:173
    99.张静华,张志亚,李英敖,管恒荣,胡壮麒.镍基单晶高温合金的反相畴界强化.材料工程.P71
    100. T.Miyazaki. Recent Developments and the Future of Computational Science on Microstructure Formation. Materials Transactions.2002, 43(6): 1266-1272
    101. T.Miyazaki, A.Takeuchi, T.Koyama, T.Kozakai. Computer Simulation of Phase Decomposition in the Regular Solid Solution based upon the CH's Non-Linear Diffusion Equation. Materials Transactions JIM. 1991, 32(10): 915-920
    102. V.Vaithyanathan, L.Q.Chen. Coarsening of ordered intermetallic precipitates with coherency stress. Acta Materilia. 2002,50:4061-4073
    103. Y.H.Wen, L.Q.Chen, P.M.Hazzledine, Y.Wang. A Three-dimensional phase-field model for computer simulation of lamellar structure formation in γ TiAl intermetallic alloys. Acta mater. 2001,49:2341-2353
    104. O.Susuma, K.Noriko, F.Toshiyuki, K.Masaharu. Simplified energy analysis on the equilibrium shape of coherent γ′ precipitates in γ matrix with a superspherical shape approximation. Intermetallics. 2002,10:343-346
    105. C.Pareige, D.Blavette. Simulation of the FCC→FCC+Ll_2+DO_(22) Kinetic Reaction. Scripta mater. 2001,44:243-247
    106. L.A. Bendersky, F.S.Biancaniello, M.E.Williams. Solid-Solid phase transfomation s. [M]. TMS,Warrendale, PA, 1994: 899
    107. L Q Chen, J A Simmons.Microscopic master equation approach to diffusional transformations in inhomogeneous systems-single site approximation and direct exchange mechanism. Acta Metal.mater., 1994, 42(9):2943
    108. S.Q. Xiao, P. Haasen. Herm investigation of homogeneous decomposition in a Ni-12at. %Al alloy. Acta metal mater. 1991,39(4): 651
    109. L.Q.Chen, D.Fan. Computer Simulation Model for Coupled Grain Growth and Ostwald Ripening-Application to Al_2O_3-Z_rO_2 Two-phase Systems. J.Am.Ceram.Soc. 1996,79(5): 1163
    110. A.G. Khachaturyan, T F Lindsey, Jr J W Morris.Theoretical Investigation of the precipitation of δ′ in Al-Li. Metall. Trans. 1988, 19(A): 249
    111. B J Shaiu, H T Li, H Y Lee, Chen Haydn. Decomposition and dissolution kinetics of δ′ in Al-Li binary alloys. Metal. Trans. 1990, 21:1133
    
    
    112. C L Corey, B Z Rosenblum, G M Greene. The ordering transition in Ni_3Al alloy. Acta metall. 1973, 21:837
    113. T Sato, A Kamio. Aluminium-Lithium, Verlag: Informationsgesellschaft, 1992:57
    114. V Radmilovic, A G Fox, G Thomas. Spinodal decomposition of Al-rich Al-Li alloys. Acta metall.. 1989, 37:2385
    115. Yasuya Ohmori, Sadayoshi Ito, Kiyomichi Nakai.Aging behavior of an Al-Li-Cu-Mg-Zr alloy. Metall. Trans. 1999, 30(A): 741
    116. S M Allen, J W Cahn. Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys. Acta metall.. 1976, 24:425
    117. D W Heermann. Computer Simulation in Physical Metallurgy. Brussels and Luxembourg: Ecsc. 1986:245
    118. D W Heermann. Computer Simulation in Physical Metallurgy. Brussels and Luxembourg: Ecsc. 1986, 257
    119. P Haasen. Phase transformation in materials. Weinheim: VCH. 1991:225
    120. Amitabha Chakrabarti. Transition from metastability to instability in the dynamics of phase seperation. Phys. Rev. B. 1992, 45:9620
    121. Hajime Tanaka, Takeshi Yokokawa, Hajime Abe. Transition from metastability to instability in a binary-liquid mixture. Phys. Rev. Lett.. 1990, 65:3136
    122.戴吉岩,张静华,金志雄,李斗星,叶恒强.γ/γ′-α定向共晶合金高温时效组织的高分辨电镜研究.金属学报.1994,30(1):A1-A6
    123. R .W .Cahn,EHaasen,E.J.Kramer. Plastic deforrmation and fracture of materials(材料的塑性变形与断裂)[M]. Beijing: Science Press(北京:科学出版社), 1998: 227
    124. H.Zapolsky, C.Pareige, L.Marteau, D.Blavette. Atom Probe Analyses and Numerical Calculation of Ternary Phase Diagram in Ni-Al-V System. Calphad. 2001,25(1): 125-134
    125. L.A. Bendersky, F.S.Biancaniello, M.E.Williams. Solid-Solid phase transfomation s. [M]. TMS,Warrendale, PA, 1994:899
    126. C.Pareige, D.Blavette. Simulation of the FCC→FCC+Ll_2+DO_(22) Kinetic Reaction. Scripta mater. 2001,44:243-247
    127.冯端.金属物理学第二卷相变.北京:科学出版社,1998:128
    
    
    128.R.Poduri,L.-Q.Chen.Computer-simulation of atomic ordering and compositional clustering in the pseudobinary Ni_3Al-Ni_3V system. Acta mater. 1998, 46:1719-1729
    129.Yu.D.Tyapkin,Ye.I.Maliyenko,etc.Phys.Met.Metall. Rearrangement of regular distributions during Ostwald coalescence of Fe-Be alloys, 1989,68(4): 125-132
    130.E.Matsubara, J.B.Cohen. The G.P.zones in A1-Cu alloys. Acta Metall. 1985,33 (11): 1957
    131.Yu.D.Tyapkin,I.V.Gongadze, Ye.I.Maliyenko. Coalescence in alloy Fe-Mn-AI-C at the stage of a fragmentary regular structure. Phys.Met.Metall. 1989,68 (3): 121-128
    132.Yu.D.Tyapkin,I.V.Gongadze, Ye.I.Maliyenko. Structural Mechanism of coalescence of aging Ni-Cu-Si alloys. Phys.Met.Metall. 1988,66 (3): 160-169
    133. T.Miyazaki,T. Koyama,T. Kozakai. Computer simulation of the phase transformation in real alloy systems based on the phase field method,Materials Science and Engineering. 2001, A312:38-49
    134.A.J.Ardell, R.B.Nicholson. On the modulated structure of aged Ni-Al alloys. Acta Metallurgica. 1966,14(10): 1295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700