全固态聚合物铝空气电池研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子设备的快速发展对电池提出了更高的性能要求,提高电池的容量及能量密度是电池领域最主要的研究方向。金属空气燃料电池以空气中的氧为氧化剂,将金属燃料中的化学能直接转化为电能,具有很高的能量密度及利用效率,是高性能电池的理想解决方案。与传统的氢燃料电池相比,金属空气燃料电池的优势在于制备成本低、燃料储运安全以及便于维护等。Li, Ca, Mg, Al, Fe及Zn等活性金属均可被用作金属空气燃料电池的阳极材料,其中铝的理论容量密度高达2.98Ah g-1-Al,理论能量密度8.195Wh g-1-Al。同时铝还具有储量丰富、便于获取、价格低廉且无毒环保等优点,是金属空气燃料电池的理想阳极材料。本文以铝作为阳极,在碱性聚合物凝胶电解质环境中与氧气反应放电,得到一种高容量密度的全固态聚合物铝空气电池方案。在此过程中,对阳极金属腐蚀防护、电解质电导率提高及电池结构优化等问题进行了深入研究。最后,制备了柔性薄膜铝空气电池及固态凝胶超级电容,扩展了本文研究内容的应用领域。
     典型的铝空气电池系统由铝阳极、电解质以及多孔空气阴极构成。传统液态电解质流动性很强,易渗透多孔空气电极从而造成泄漏。本文引入交联聚丙烯酸合成碱性聚合物凝胶电解质,并基于此制备全固态聚合物铝空气电池,从根本上解决了电解质的渗漏问题。丙烯酸单体(AA)聚合得到聚丙烯酸高分子链(PAA),进而交联形成三维网络结构,将氢氧化钾(KOH)溶液固定在其中,形成固态凝胶状。电导率是电池电解质最重要的性能参数之一。碱性电解质溶液中,电导率随KOH浓度的增加,呈现先升后降的规律,在KOH质量分数36wt%时达到峰值。本文最终选定KOH36wt%,AA6wt%的电解质成分,配合1wt%的交联剂和0.6wt%的聚合引发剂,得到固态碱性聚合物凝胶电解质,电导率达到460mS cm-1,优于现有技术。铝金属在碱性电解质环境中的析氢腐蚀是铝电池面临的另一重要问题。实验证明,铝在碱性环境中的腐蚀速率受限于氧化反应速率及离子扩散速率中较低者,在KOH质量分数30wt%时达到峰值。碱性聚合物凝胶电解质中,PAA分子附着在铝表面,具有非常明显的缓蚀作用,适用于铝空气电池领域。
     针对实验中观察到的电解质溶液电导率的变化规律,采用分子动力学方法研究其内在机制。建立不同浓度KOH水溶液体系的全原子模型,根据带电离子的运动轨迹计算其均方位移MSD及扩散系数。由Nernst-Einstein关系可知,电导率与带电离子浓度和扩散系数的乘积成正比。随着KOH质量分数的增加,带电离子浓度上升,扩散率下降,因此电导率表现出先升后降的规律;电导率峰值出现在KOH36wt%处,与实验结果一致。电解质体系中各粒子的分布规律表现为径向分布函数RDF。将两种粒子的RDF曲线积分至第一个波谷,即得到该粒子对之间的配位数。K+离子与OH-离子间存在很强的静电引力,因此能够形成较为紧密的结合体。KOH含量的增加可以提高阴阳离子间的配位数,即在更高浓度的KOH溶液中,每个离子受到更多相反电荷的吸引作用,限制其移动。离子的扩散系数随配位数的升高线性下降,证明阴阳离子间的结合和阻滞是抑制扩散系数及电导率的主要原因,从而在分子尺度揭示了电导率的变化机制。
     采用碱性聚合物凝胶电解质,制备全固态聚合物铝空气电池样机。电池阳极采用铝网与镍质集流体结合的结构,铝网孔洞用作氢气逸出通道。将导电材料、催化剂、粘接剂和有机溶剂组成的阴极材料涂布在泡沫镍上,干燥冷压得到多孔空气阴极。铝网阳极、聚合物凝胶电解质和空气阴极层叠布置,得到全固态聚合物铝空气电池,在恒流放电测试中表现出持续稳定的放电特性。电流密度由0.3mAcm-2上升至43.3mAcm-2,放电峰值电压和平均有效电压有所下降,输出功率随之升高,功率密度最高可达34.0mW cm-2。电流密度在8~20mAcm-2范围内,电池容量密度及能量密度分别取到峰值1166mAh g-1-Al和1230mWh g-1-Al。电流密度过大会加剧电池极化,降低电池可用容量;电流过小会延长放电时间,析氢腐蚀中消耗的铝金属随之增加。为降低铝金属的腐蚀损耗,本文提出一种可分离式全固态铝空气电池方案,电池搁置时将铝网与聚合物凝胶电解质分离,从而避免了自放电腐蚀,提高了阳极金属的利用效率。
     本文还开发了一种柔性薄膜铝空气电池,以满足微小电子设备及可穿戴电子产品的需求。文中提出了铝箔金属阳极以及超薄碳膜空气电极方案并给出了详细的制备过程。采用宣纸作为电池的机械支撑及隔离层,与碱性聚合物凝胶电解质相结合,得到纸基凝胶电解质。薄膜铝空气电池的整体厚度为0.32mm,面积密度为0.1g cm-2,具有良好的可弯折性及柔韧性。柔性薄膜铝空气电池放电时的最大电流密度为3.9mAcm-2,功率密度3.7mW cm-2。电池容量密度和能量密度的峰值出现在电流密度3.1mAcm-2时,分别达到2.33mAh cm-2及2.48mWh cm-2,对应的阳极金属铝的质量容量密度为932mAh g-1-Al,质量能量密度为992mWh g-1-Al。
     超级电容具有很高的充放电速度及电荷效率,常与电池组成复合电源共同使用。本文研究的碱性聚合物凝胶电解质同样适用于超级电容领域。基于凝胶电解质与多孔电极制备固态凝胶超级电容,并测试其循环伏安特性及充放电性能。固态凝胶超级电容额定工作电压设定在1.0V,允许20%过载。循环伏安测试中,电流密度随电压扫描速度的增加而明显升高,电容密度有所下降;在0.01V s-1的电压扫描速度下,电容密度达到0.343F cm-2。电容充放电实验中,大电流密度下的快速充放电会减小可用的电容密度,但电荷效率提高至接近100%(5mA cm-2),可忽略电荷损失。固态凝胶超级电容在循环充放电实验中性能稳定,具有良好的应用前景。
     综上所述,本文使用铝作为金属空气燃料电池的阳极材料,得到了很高的容量密度和能量密度。将聚合物凝胶电解质应用在铝空气电池领域,有效解决了渗漏及腐蚀问题。采用分子动力学方法对电解质进行研究,解释了电导率变化规律的内在机制。最后,将上述研究成果应用在柔性薄膜电池及超级电容上,扩展了其应用领域。
The rapidly developing electric equipments require energy storage devices with highcapacity and energy densities. Metal-air fuel batteries can convert the chemical energy inmetals into electrical power directly with relatively high capacity density and energyefficiency. Compared with traditional hydrogen fuel cells, metal-air batteries have lowerprices and maintenance costs. Furthermore, the preparation, storage and transport of metalare more convenient than hydrogen. Aluminum (Al) is an ideal candidate because of tistrivalence and atomic weight of26.98. The theoretical capacity density of Al is up to2.98Ah g-1-Al. Al also exhibits a high energy density of8.195Wh g-1-Al. Besides, Al hasattracted extended attention due to its abundance, low price, non-toxicity, andenvironmental friendliness. In this paper, an all-solid-state polymer Al-air battery with Alanode and polymer alkaline gel electrolyte is proposed to show an excellent capacityperformance. Research on the anodic corrosion, the electrolyte conductivity and thestructural optimization of the battery has also been carried out during this work. Finally, aflexible thin-film Al-air battery and an all-solid-state ultracapacitor are presented to extendthe application field of this work.
     A typical Al-air battery is consisted of an Al anode, an electrolyte and a porous aircathode. The fluidity of popular aqueous electrolytes may lead to the penetrations andleakages through the capillaries in the porous air cathode. In this paper, cross-linkedpoly-acrylic acid (PAA) based alkaline gel electrolyte is prepared to solve this problem.Acrylic acid (AA) monomers can be polymerized into PAA chains and then cross-linked tobe3-dimensional matrix, in which the aqueous electrolyte can be stored to form a gel. Theconductivity, which is one of the most important characteristics of the electrolyte, firstlyrises and then decreases as the KOH fraction increases. The final polymer gel electrolyte iscomposed of36wt%KOH,6wt%AA,1wt%cross-linker and0.6wt%polymerizationinitiator. The conductivity of the gel electrolyte is460mS cm-1. In addition to the leakage,the anodic corrosion is another problem of Al-air batteries. The corrosion rate reaches thepeak with the KOH fraction of30wt%. It is indicated that PAA is a good corrosion inhibitor for Al.
     A molecular dynamic method is used to find the mechanism behind the electrolyteconductivity. All atom models of aqueous alkaline solutions with different KOH fractionsare built to calculate the dynamic and structural performances. According to theNernst-Einstein relationship, the conductivity is proportional to the product of the iondensity and the diffusion coefficient. A higher KOH fraction can raise the ion density butreduce the ion diffusion coefficient. As a result, the peak conductivity is obtained with theKOH fraction of36wt%, which is consistent with the experimental result. In moreconcentrated solutions, the coordination number between ion pairs is enhanced and restrictsthe mobility of ions.
     An all-solid-state Al-air battery has been fabricated with polymer alkaline gelelectrolyte. An Al mesh with a Ni current collector is used as the anode. The cathodic pasteconsisting of conductive carbon, catalyst, polymer binder and organic solvent is casted ontoa Ni foam. The porous air cathode is obtained after evaporation and cold press. The Almesh anode, the polymer alkaline gel electrolyte membrane and the porous air cathode arelaminated sequentially to form an all-solid-state Al-air battery, which presents an excellentperformance during discharging measurements. As the discharging current density risesfrom0.3to43.3mA cm-2, the peak and average voltage drop together, while the powerdensity is promoted up to34.0mW cm-2. The maximum capacity and energy densities canreach1166mAh g-1-Al and1230mWh g-1-Al, respectively. Besides, a separable Al-airbattery is proposed in this work to inhibit the Al corrosion during rest in order to maintainthe available capacity of the battery.
     Base on the all-solid-state polymer Al-air battery, we present a flexible thin-film Al-airbattery using an Al foil anode and an ultra-thin carbon air cathode. A paper based gelelectrolyte is prepared by the combination of polymer gel electrolyte and double rice papers.The total thickness of the whole battery is only0.32mm, and the area density is0.1g cm-2.The maximum power density of the battery can reach3.7mW cm-2with the current densityof3.9mA cm-2. The peak area capacity and energy density are2.33mAh cm-2and2.48mWh cm-2, respectively, when the battery is discharging at3.1mA cm-2. The capacity and energy densities corresponding to anodic Al are932mAh g-1-Al and992mWh g-1-Al,respectively.
     What’s more, the gel electrolyte can also be applied to fabricate solid gelultracapacitors. The ultracapacitor prototype is composed of a gel electrolyte membraneand two porous carbon electrodes. During the cyclic voltammetry testing, the voltagewindow is set as1.0V, and an overload of20%is permitted. The promoted voltagescanning rate can enhance the current density, but the capacitance is limited. Thecapacitance density of0.343F cm-2is obtained with the scanning rate of0.01V s-1. In thecontinuous charging and discharging tests, the capacitance is restricted by large currentdensity, while the coulomb efficiency is promoted to approximate to100%over5mA cm-2.The possible of the combination of all-solid-state batteries and solid gel ultracapacitors isconfirmed in this work.
     As mentioned above, Al has been employed as the anode material in metal-air batteriesto achieve high capacity and energy densities. A PAA based alkaline gel electrolyte is usedto fabricate the all-solid-state polymer Al-air battery to avoid leakage and corrosion. Themechanism of the electrolyte conductivity is investigated using a molecular dynamicmethod. Finally, the results of this work have been extended to flexible thin-film batteriesand solid gel ultracapacitors.
引文
[1] Steele B C H, Heinzel A. Materials for fuel-cell technologies [J]. Nature,2001,414:345-352.
    [2] Kinoshita K. Electrochemical oxygen technology [M]. John Wiley&Sons Inc. NewYork,1992.
    [3] Neburchilov A, Wang H, Martin J J, Qu W. A review on air cathodes for zinc–air fuelcells [J]. J. Power Sources,2010,195:1271–1291.
    [4] Lee J S, Kim S T, Cao R, Choi N S, Liu M, Lee K T, Cho J. Metal–air batteries withhigh energy density: Li–Air versus Zn–Air [J]. Adv. Energy Mater.,2011,1:34-50.
    [5]张勇.碱性铝燃料电池和固体氧化物燃料电池相关关键材料制备与评价表征[D].长沙:中南大学,2012.
    [6]邓润荣,谭惠珠.锌空气电池的应用和技术现状[J].电池工业,2007,12:53-56.
    [7]李芬,徐献芝,朱梅,宋辉.锌空气电池的发展现状及趋势[J].电池工业,2007,12(3):197-204.
    [8]李升宪,朱绍山.用于移动电话的锌空气电池研究[J].电池,2002,32:264-265.
    [9] Armand M, Tarascon J M. Building better batteries [J]. Nature,2008,451:652-657.
    [10] Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H. Rechargeable Li-air batterieswith carbonate-based liquid electrolytes [J]. Electrochemistry,2010,78:403-405.
    [11] Kraytsberg A, Ein-Eli Y. Review on Li-air batteries-Opportunities, limitations andperspective [J]. J. Power Sources,2011,196:886-893.
    [12] Wang X, Hou Y, Zhu Y, Wu Y, Holze R. An aqueous rechargeable lithium battery usingcoated Li metal as anode [J]. Scientific Reports,2013,3:1401.
    [13]韩斌.金属(铝、镁)/空气电池的结构与性能研究[D].天津:河北工业大学,2007.
    [14] Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. Lithium-air battery:promise and challenges [J]. J. Phys. Chem. Lett.,2010,1:2193-2203.
    [15] Yang S, Knickle H. Design and analysis of Al/air battery system for electric vehicles[J]. J. Power Sources,2002,112:162-173.
    [16] Zaromb S. The use and behavior of aluminum anodes in alkaline primary batteries [J].J. Electrochem. Soc.,1962,109:1125-1130.
    [17] Egan D R, Leon C P, Wood R J K, Jones R L, Stokes K R, Walsh F C. Developmentsin electrode materials and electrolytes for aluminiumeair batteries [J]. J. Power Sources,2013,236:293-310.
    [18]桂长清.铝空气电池的最新成就和应用前景[J].船电技术,2005,5:39-41.
    [19]马景灵,许开辉,文九巴,邵海洋.铝空气电池的研究进展[J].电源技术,2012,36:139-141.
    [20] Kim H, Jeong G, Kim Y U, Kim J H, Park C M, Sohn H J. Metallic anodes for nextgeneration secondary batteries [J]. Chem. Soc. Rev.,2013,42:9011-9034.
    [21] Shkolnikov E I, Zhuk A Z, Vlaskin M S. Aluminum as energy carrier: Feasibilityanalysis and current technologies overview [J]. Renewable Sustainable Energy Rev.,2011,15:4611-4623.
    [22] Li Q, Bjerrum N J. Aluminum as anode for energy storage and conversion: a review[J]. J. Power Sources,2002,110:1-10.
    [23] Ma Z, Li X. The study on microstructure and electrochemical properties ofAl–Mg–Sn–Ga–Pb alloy anode material for Al/AgO battery [J]. J. Solid StateElectrochem.,2011,15:2601-2610.
    [24] Brodrecht D J, Rusek J J. Aluminum–hydrogen peroxide fuel-cell studies [J]. Appl.Energy,2003,74:113-124.
    [25] Lei T, Tian Y M, Wang G L, et al. An alkaline Al-H2O2semi-fuel cell based on a nickelfoam supported Co3O4nanowire arrays Cathode [J]. Fuel Cells,2011,11:431-435.
    [26] Hasvold, St rkersen N J, Forseth S, Lian T. Power sources for autonomousunderwater vehicles [J]. J. Power Sources,2006,162:935-942.
    [27] Zhang S S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems,and solutions [J]. J. Power Sources,2013,231:153-162.
    [28] Cardenas-Valencia A M, Short R T, Adornato L, Langebrake L. Recent developmentsof semi-fuel cells for powering underwater sensors and platforms [J]. ECS Trans.,2010,26:417-429.
    [29] Cheng S, Chan K Y. High-Voltage Dual Electrolyte Electrochemical Power Sources [J].ECS Trans.,2010,25:213-219.
    [30] Li H, Weng G, Li C Y V, Chan K Y. Three electrolyte high voltage acid–alkalinehybrid rechargeable battery [J]. Electrochim. Acta,2011,56:9420-9425.
    [31]王俊波.铝在碱性介质中的腐蚀与电化学行为[D].杭州:浙江大学,2008.
    [32]Abedin S Z E, Moustafa E M, Hempelmann R, Natter H, Endres F. Additive freeelectrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid [J].Electrochem. Commun.,2005,7:1111-1116.
    [33] Abbott A P, Qiu F, Abood H M A, Ali M R, Ryder K S. Double layer, diluent andanode effects upon the electrodeposition of aluminium from chloroaluminate basedionic liquids [J]. PCCP,2010,12:1862-1872.
    [34] Xue B, Fu Z, Li H, Liu X, Cheng S, Yao J, Li D, Chen L, Meng Q. Cheap andEnvironmentally Benign Electrochemical Energy Storage and Conversion DevicesBased on AlI3Electrolytes [J]. JACS,2006,128:8720-8721.
    [35] Hibino T, Kobayashi K, Nagao M. An all-solid-state rechargeable aluminum–airbattery with a hydroxide ion-conducting Sb(V)-doped SnP2O7electrolyte [J]. J. Mater.Chem. A,2013,1:14844-14848.
    [36]刘伟春.空气电极及制造方法和具有该空气电极的金属空气电池:中国,201010593587.3[P].2011-5-25.
    [37] Smedley S I, Zhang X G. A regenerative zinc–air fuel cell [J]. J. Power Sources,2007,165:897-904.
    [38] An L, Zhao T S, Zeng L. Agar chemical hydrogel electrode binder forfuel-electrolyte-fed fuel cells [J]. Appl. Energy,2013,109:67-71.
    [39] Othman R, Yahaya A H, Arof A K. A zinc–air cell employing a porous zinc electrodefabricated from zinc–graphite-natural biodegradable polymer paste [J]. J. Appl.Electrochem.,2002,32:1347-1353.
    [40] Mohamad A. Zn/gelled6M KOH/O2zinc–air battery [J]. J. Power Sources,2006,159:752-757.
    [41] Idris N H, Rahman M M, Wang J Z, Liu H K. Microporous gel polymer electrolytesfor lithium rechargeable battery application [J]. J. Power Sources,2012,201:294-300.
    [42] Drillet J F, Adam M, Barg S, Herter A, Kock D, Schmidt V M, et al. Development of anovel Zinc/air fuel cell with a Zn foam Anode, a PVA/KOH membrane and aMnO2/SiOC-based air cathode [J]. ECS Trans.,2010,28:13-24.
    [43] Merle G, Hosseiny S S, Wessling M, Nijmeijer K. New cross-linked PVA basedpolymer electrolyte membranes for alkaline fuel cells [J]. J. Membr. Sci.,2012,409-410:191-199.
    [44] Sekhona S S, Kaura D P, Parkb J S, Yamada K. Ion transport properties of ionic liquidbased gel electrolytes [J]. Electrochim. Acta,2012,60:366-374.
    [45] Yang C C, Lin S J, Hsu S T. Synthesis and characterization of alkaline polyvinylalcohol and poly(epichlorohydrin) blend polymer electrolytes and performance inelectrochemical cells [J]. J. Power Sources,2003,122:210-218.
    [46] Wu G M, Lin S J, Yang C C. Preparation and characterization of PVA/PAA membranesfor solid polymer electrolytes [J]. J. Membr. Sci.,2006,275:127-133.
    [47] Wu G M, Lin S J, Yang C C. Alkaline Zn-air and Al-air cells based on novel solidPVA/PAA polymer electrolyte membranes [J]. J. Membr. Sci.,2006,280:802-808.
    [48] Gaikwad A M, Whiting G L, Steingart D A, Arias A C. Highly flexible, printedalkaline batteries based on mesh-embedded electrodes [J]. Adv. Mater.,2011,23:3251-3255.
    [49] Gaikwad A M, Zamarayeva A M, Rousseau J, Chu H, Derin I, Steingart D A. Highlystretchable alkaline batteries based on an embedded conductive fabric [J]. Adv. Mater.,2012,24:5071-5076.
    [50] Zhang G Q, Zhang X G. MnO2/MCMB electrocatalyst for all solid-state alkalinezinc-air cells [J]. Electrochim. Acta.,2004,49:873-877.
    [51] Palaniappan R, Botte G G. Effcacy of potassium poly(acrylate) gel electrolyte as asubstitute to aqueouselectrolytes for alkaline ammonia electrolysis [J]. Electrochim.Acta,2013,88:772-781.
    [52] Pyun S I, Moon S M. Corrosion mechanism of pure aluminium in aqueous alkalinesolution [J]. J. Solid State Electrochem.,2000,4:267-272.
    [53] Wang H, Leung D Y C, Leung M K H, Ni M. Modeling of parasitic hydrogenevolution effects in an Al-air cell [J]. Energy Fuels,2010,24:3748-3753.
    [54] Othman R, Basirun W J, Yahaya A H, Arof A K. Hydroponics gel as a new electrolytegelling agent for alkaline zinc–air cells [J]. J. Power Sources,2001,103:34-41.
    [55] Nestoridi M, Pletcher D, Wood R J K, Wang S, Jones R L, Stokes K R, Wilcock I. Thestudy of aluminium anodes for high power density Al/air batteries with brineelectrolytes [J]. J. Power Source,2008,178:445-455.
    [56] Smoljko I, Gudic S, Kuzmanic N, Kliskic M. Electrochemical properties of aluminiumanodes for Al/air batteries with aqueous sodium chloride electrolyte [J]. J. Appl.Electrochem.,2012,42:969-977.
    [57] Tang Y, Lu L, Roesky H W, Wang L, Huang B. The effect of zinc on the Al anode ofthe Al–air battery [J]. J. Power Sources,2004,138:313-318.
    [58] Gudic S, Smoljko I, Kliskic M. The effect of small addition of tin and indium on thecorrosion behavior of aluminium in chloride solution [J]. J. Alloys Compd.,2010,505:54-63.
    [59] Kim K, Cho Y H, Eom S W, Kim H S, Yeum J H. Anions of organic acids as gassuppressants in zinc–air batteries [J]. Mater. Res. Bull.,2010,45:262-264.
    [60] Wang J M, Wang J B, Shao H B, Zeng X X, Zhang J Q, Cao C N. Corrosion andelectrochemical behaviors of pure Al in novel KOH-ionic liquid-water solutions [J].Mater. Corros.,2009,60:977-981.
    [61] Zhu H, Chen Z, Sheng Y, Thi T T L. Flaky polyacrylic acid/aluminium compositeparticles prepared using in-situ polymerization [J]. Dyes Pigm.,2010,86:155-160.
    [62] Umoren S A, Li Y, Wang F H. Effect of aluminium microstructure on corrosion andinhibiting effect of polyacrylic acid in H2SO4solution [J]. J. Appl. Electrochem.,2011,41:307-315.
    [63] Arthur D E, Jonathan A, Ameh P O, Anya C. A review on the assessment of polymericmaterials used as corrosion inhibitor of metals and alloys [J]. Int. J. Ind. Chem.,2013,4:2.
    [64] Amin M A, EI-Rehim S S A, El-Sherbini E E F, Hazzazi O A, Abbas M N. Polyacrylicacid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I: Weightloss, polarization, impedance EFM and EDX studies [J]. Corros. Sci.,2009,51:658-667.
    [65] Agmon N. The Grotthuss mechanism [J]. Chem. Phys. Lett.,1995,244:456-462.
    [66] Ueki T, Watanabe M. Macromolecules in ionic liquids: progress, challenges, andopportunities [J]. Macromolecules,2008,41:3739-3749.
    [67] Marx D, Chandra, Tuckerman M E. Aqueous basic solutions: hydroxide solvation,structural diffusion, and comparison to the hydrated proton [J]. Chem. Rev.,2010,110:2174-2216.
    [68] Agmon N. Mechanism of hydroxide mobility [J]. Chem. Phys. Lett.,2000,319:247-252.
    [69] Tuckerman M E, Chandra A, Marx D. Structure and dynamics of OH-(aq)[J]. Acc.Chem. Res.,2006,39:151-158.
    [70] Chen B, Ivanov I, Park J M, Parrinello M, Klein M L. Solvation structure and mobilitymechanism of OH-: a Car Parrinello molecular dynamics investigation of alkalinesolutions [J]. J. Phys. Chem. B,2002,106:12006-12016.
    [71] Asthagiri D, Pratt L R, Kress J D, Gomez M A. Hydration and mobility of HO-(aq)[J].PNAS,2004,101:7229-7233.
    [72] Ho P C, Palmer D A, Wood R H. Conductivity measurements of dilute aqueous LiOH,NaOH, and KOH solutions to high temperatures and pressures using a flow-through cell[J]. J. Phys. Chem. B,2000,104:12084-12089.
    [73] Gilliam R J, Graydon J W, Kirk D W, Thorpe S J. A review of specifc conductivitiesof potassium hydroxide solutions for various concentrations and temperatures [J]. Int. J.Hydrogen Energy,2007,32:359-364.
    [74] Mohamad A A, Mohamed N S, Yahya M Z A, Othman R, Ramesh S, Alias Y, et al.Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte andits use in nickel–zinc cells [J]. Solid State Ionics,2003,156:171-177.
    [75] Zhu X, Yang H, Cao Y, Ai X. Preparation and electrochemical characterization of thealkaline polymer gel electrolyte polymerized from acrylic acid and KOH solution [J].Electrochim. Acta,2004,49:2533-2539.
    [76]张正富,马明煜,伍美珍. PVA-AA-KOH-H2O碱性聚合物电解质的制备与性能研究[J].功能材料,2010,41:281-284.
    [77] Ghorai P K, Yashonath S, Lynden-Bell R M. Size-dependent maximum in ionconductivity: the levitation effect provides an alternative explanation [J]. J. Phys. Chem.B,2005,109:8120-8124.
    [78] Yashonath S, Ghorai P K. Diffusion in nanoporous phases: size dependence andlevitation effect [J]. J. Phys. Chem. B,2008,112:665-686.
    [79] Iwakura C, Nohara S, Furukawa N, Inoue H. The possible use of polymer gelelectrolytes in nickel/metal hydride battery [J]. Solid State Ionics,2002,148:487-492.
    [80] Roy K I, Lucy C A. Capillary electrophoresis in aqueous–organic media ionic strengtheffects and limitations of the Hubbard–Onsager dielectric friction model [J]. J.Chromatogr. A,2002,964:213-225.
    [81] Allen M P, Tildesley D J. Computer simulation of liquids [M]. Oxford: OxfordUniversity Press,1986.
    [82]张群利,韩兆让,赵吉丽,王莉,刘凤岐.高分子链动态行为的Monte Carlo模拟[J].吉林大学学报(理学版),2006,44:113-117.
    [83]史红兵,于养信,高光华.电解质水溶液传递性质的布朗动力学模拟研究[J].化学学报,2005,63:358-362.
    [84]安海龙,张素花,韩英荣,谢宁,赵同军,展永.钾离子通道布朗动力学研究[J].原子核物理评论,2005,22:416-418.
    [85]孙祉伟.经典流体的计算机模拟实验——蒙特卡洛法和分子动力学法[J].力学与实践,1983,6:59-62.
    [86] Care C M, Cleaver D J. Computer simulation of liquid crystals [J]. Rep. Prog. Phys.,2005,68:2665-2700.
    [87]杨萍,孙益民.分子动力学模拟方法及其应用[J].安徽师范大学学报(自然科学版),2009,32:51-54.
    [88] Picaud S, Hoang P N, Herlem G. A molecular dynamics simulation of the electricalconductivity behaviors of highly concentrated liquid ammoniates NaI αNH3:Comparison with experimental measurements [J]. J. Chem. Phys.,2005,122:171102.
    [89] Kowsari M H, Alavi S, Ashrafizaadeh M, Njafi B. Molecular dynamics simulation ofimidazolium-based ionic liquids. II. Transport coeffcients [J]. J. Chem. Phys.,2009,130:014703.
    [90] Chowdhuri S, Chandra A. Molecular dynamics simulations of aqueous NaCl and KClsolutions: Effects of ion concentration on the single-particle, pair, and collectivedynamical properties of ions and water molecules [J]. J. Chem. Phys.,2001,115:3732.
    [91] Varanasi S R, Kumar P, Masia M, Demontis P, Suffritti G B, Yashonath S. A moleculardynamics study and molecular level explanation of pressure dependence of ionicconductivity of potassium chloride in water [J]. Phys. Chem. Chem. Phys.,2011,13:10877-10884.
    [92] Wu Y T, Wu C Y, Lin C F, Lee S F. Design and test of single cell for zinc-air fuel cellmodule of electric vehicle [C]. Electric Information and Control Engineering (ICEICE).IEEE,2011:4885-4890.
    [93] Electric Fuel Transportation Corp. Electric Fuel introduces practical, zero-emissiontransportation [EB/OL].(2004-11-1)[2013-10-3].http://www.electric-fuel.com/evtech/EF-tech-brochure.pdf
    [94]潘军青,籍利忠,程杰,孙艳芝,文越华,万平玉,杨裕生.一种锌氧单液流电池:中国,200910016983.3[P].2009-10-16.
    [95]Cooper J F, Krueger R. The refuelable zinc-air battery: alternative techniques for zincand electrolyte regeneration [M]. United States: Department of Energy,2006.
    [96] Isherwood W, Smith J, Aceves S M, Berry G, Clark W, Johnson R, et al. Remotepower systems with advanced storage technologies for Alaskan villages [J]. Energy,2000,25:1005-1020.
    [97] Clark W, Isherwood W. Distributed generation: remote power systems with advancedstorage technologies [J]. Energy Policy,2004,32:1573-1589.
    [98] Cai Z, Geng M, Tang Z, Wang Y. Possible application of novel solid polymermembrane gel separator in nickel/metal hydride battery [J]. J. Mater. Sci.,2004,39:703-705.
    [99] Zhang G Q, Zhang X G. A novel alkaline Zn/MnO2cell with alkaline solid polymerelectrolyte [J]. Solid State Ionics,2003,160:155-159.
    [100] Rahimi S R, Vickers E C. System and method for managing pain: U.S. Patent20,140,031,895[P].2014-1-30.
    [101] Ni L M, Liu Y, Lau Y C, Patil A P. LANDMARC: indoor location sensing usingactive RFID [J]. Wireless networks,2004,10:701-710.
    [102] Bao L, Li X. Towards textile energy storage from cotton T-Shirts [J]. Adv. Mater.,2012,24:3246-3252.
    [103] Wang Y, Zhou H. To draw an air electrode of a Li–air battery by pencil [J]. EnergyEnviron. Sci.2011,4:1704-1707.
    [104] Zheng G, Hu L, Wu H, Xie X, Cui Y. Paper supercapacitors by a solvent-free drawingmethod [J]. Energy Environ. Sci.,2011,4:3368-3373.
    [105] Li N, Chen Z, Ren W, Li F, Cheng H M. Flexible graphene-based lithium ionbatteries with ultrafast charge and discharge rates [J]. PNAS,2012,109:17360-17365.
    [106] Yu C, Masarapu C, Rong J, Wei B, Jiang H. Stretchable supercapacitors based onbuckled single-walled carbon-nanotube macrofilms [J]. Adv. Mater.,2009,21:4793-4797.
    [107] Hu L, Choi J W, Yang Y, Jeong S, Mantia F L, Cui L F, Cui Y. Highly conductivepaper for energy-storage devices [J]. PNAS,2009,106:21490-21494.
    [108] Gupta N, Toh T, Fatt M W, Mhaisalkar X, Srinivasan M. Paper like free-standinghybrid single-walled carbon nanotubes air electrodes for zinc-air batteries [J]. J. SolidState Electrochem.,2012,16:1585-1593.
    [109] Nyholm L, Nystr m G, Mihranyan A, Stromme M. Toward flexible polymer andpaper-based energy storage devices [J]. Adv. Mater.,2011,23:3751-3769.
    [110] Ferreira I, Brás B, Martins J I, Correia N, Barquinha P, Fortunato E, Martins R.Solid-state paper batteries for controlling paper transistors [J]. Electrochim. Acta,2011,56:1099-1105.
    [111] Zhang L C, Sun X, Hu Z, Yuan C C, Chen C H. Rice paper as a separator membranein lithium-ion batteries [J]. J. Power Sources,2012,204:149-154.
    [112] Burke A. Ultracapacitors: why, how, and where is the technology [J]. J. PowerSources,2000,91:37-50.
    [113] Nohara S, Asahina T, Wada H, Furukawa N, Inoue H, Sugoh N, Iwasaki H, IwakuraC. Hybrid capacitor with activated carbon electrode, Ni(OH)2electrode and polymerhydrogel electrolyte [J]. J. Power Sources,2006,157:605-609.
    [114] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes [J]. Chem.Soc. Rev.,2009,38:2520-2531.
    [115] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Graphene-based ultracapacitors [J].Nano lett.,2008,8:3498-3502.
    [116] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nat. Mater.,2008,7:845-854.
    [117] Wang Y, Shi Z, Huang Y, Wang C, Chen M, Chen Y. Supercapacitor devices based ongraphene materials [J]. J. Phys. Chem. C,2009,113:13103-13107.
    [118] Sung J H, Kim S J, Jeong S H, Kim E H, Lee K H. Flexible micro-supercapacitors [J].J. Power Sources,2006,162:1467-1470.
    [119] Sun W, Chen X. Fabrication and tests of a novel three dimensional microsupercapacitor [J]. Microelectron. Eng.,2009,86:1307-1310.
    [120] Beidaghi M, Wang C. Micro-supercapacitors based on interdigital electrodes ofreduced graphene oxide and carbon nanotube composites with ultrahigh power handlingperformance [J]. Adv. Funct. Mater.,2012,22:4501-4510.
    [121] Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos C, Grigoropoulos C P,Maboudian R. Highly flexible, all solid-state micro-supercapacitors from verticallyaligned carbon nanotubes [J]. Nanotechnology,2014,25:055401.
    [122] Chen T, Peng H, Durstock M, Dai L. High-performance transparent and stretchableall-solid supercapacitors based on highly aligned carbon nanotube sheets [J]. Scientificreports,2014,4:3612.
    [123] Yadav A, Khaire B R M. Overview of supercapacitor [J]. International Journal ofAdvanced Research in Computer Science and Software Engineering,2013,3:459-463.
    [124] Li W, Joos G. A power electronic interface for a battery supercapacitor hybrid energystorage system for wind applications [C]. Power Electronics Specialists Conference,2008. PESC2008. IEEE. IEEE,2008:1762-1768.
    [125] Ingale S M, Chaudhari A P, Mahajan G K. A review on advance energy storagetechnology for microgrid and smartgrid [J]. International Journal of Science,Engineering and Technology Research,2013,2:1894-1899.
    [126] Thounthong P, Ra l S, Davat B. Energy management of fuelcell/battery/supercapacitor hybrid power source for vehicle applications [J]. J. PowerSources,2009,193:376-385.
    [127] Khaligh A, Li Z. Battery, ultracapacitor, fuel cell, and hybrid energy storage systemsfor electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of theart [J]. IEEE Trans. Veh. Technol.,2010,59:2806-2814.
    [128] Thounthong P, Ra l S, Davat B. Control strategy of fuel cell/supercapacitors hybridpower sources for electric vehicle [J]. J. Power Sources,2006,158:806-814.
    [129]楼海星,姚维.超级电容在电动汽车电池能量回馈中的应用[J].轻工机械,2013,31:54-58.
    [130] Pushparaj V L, Shaijumon M M, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan P M. Flexible energy storage devices based on nanocompositepaper [J]. PNAS,2007,104:13574-13577.
    [131] Hu X, Deng Z, Suo J, Pan Z. A high rate, high capacity and long life (LiMn2O4+AC)/Li4Ti5O12hybrid battery–supercapacitor [J]. J. Power Sources,2009,187:635-639.
    [132] Meng C, Liu C, Chen L, Hu C, Fan S. Highly flexible and all-solid-state paperlikepolymer supercapacitors [J]. Nano lett.,2010,10:4025-4031.
    [133] Yuan L, Lu X H, Xiao X, Zhai T, Dai J, Zhang F, Hu B, Wang X, Gong L, Chen J, HuC, Tong Y, Zhou J, Wang Z L. Flexible solid-state supercapacitors based on carbonnanoparticles/MnO2nanorods hybrid structure [J]. Acs Nano,2011,6:656-661.
    [134] Nelson P A, Owen J R. A high-performance supercapacitor/battery hybridincorporating templated mesoporous electrodes [J]. J. Electrochem. Soc.,2003,150:A1313-A1317.
    [135] Wada H, Nohara S, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Morita M, IwakuraC. Electrochemical characteristics of electric double layer capacitor using sulfonatedpolypropylene separator impregnated with polymer hydrogel electrolyte [J].Electrochim. Acta,2004,49:4871-4875.
    [136] Yang C C, Lin S J. Preparation of alkaline PVA-based polymer electrolytes forNi-MH and Zn-air batteries [J]. J. Appl. Electrochem.,2003,33:777-784.
    [137] Vassal N, Salmon E, Fauvarque J F. Nickel/metal hydride secondary batteries usingan alkaline solid polymer electrolyte [J]. J. Electrochem. Soc.,1999,14620-26.
    [138] Lewandowski A, Zajder M, Frackowiak E, Beguin F. Supercapacitor based onactivated carbon and polyethylene oxide–KOH–H2O polymer electrolyte [J].Electrochim. Acta,2011,46:2777-2780.
    [139] Bockstie L, Trevethan D, Zaromb S. Control of Al corrosion in caustic solutions [J]. J.Electrochem. Soc.,1963,110:267-271.
    [140] Patnaik R S M, Ganesh S, Ashok G, Ganesan M, Kapali V. Heat management inaluminium/air batteries: sources of heat [J]. J. Power Sources,1994,50:331-342.
    [141] Wang X Y, Wang J M, Shao H B, Zhang J Q, Cao C N. Influences of zinc oxide andan organic additive on the electrochemical behavior of pure aluminum in an alkalinesolution [J]. J. Appl. Electrochem.,2005,35:213-216.
    [142]陶征红,彭晓宏,李立,林裕卫,陈小刚.泡沫体系分散聚合制备两性聚丙烯酰胺[J].石油化工,2006,35:877-880.
    [143] Knehr K W, Kumbur E C. Open circuit voltage of vanadium redox flow batteries:Discrepancy between models and experiments [J]. Electrochem. Commun.,2011,13:342-345.
    [144]鄭伍富.鋅顆粒燃料電池之流動電解液研究[D].臺北:臺北科技大學,2009.
    [145]贺建军,孙超.质子交换膜燃料电池的建模与仿真分析[J].中南大学学报(自然科学版),2010,41:566-571.
    [146] Brillas E, Alcaide F, Cabot P L. A small-scale flow alkaline fuel cell for on-siteproduction of hydrogen peroxide [J]. Electrochim. Acta,2002,48:331-340.
    [147]唐有根,黄伯云,卢凌彬,刘东任.金属燃料电池[J].物理,2004,33:85-89.
    [148]兰敬辉.溶液电导率测量方法的研究[D].大连:大连理工大学,2002.
    [149] Ng P L, Jamaludin A, Alias Y, Basirun W J, Ahmad Z A, Mohamad A A. Effect ofKOH concentration in the gel polymer electrolyte for direct borohydride fuel cell [J]. J.Appl. Polym. Sci.,2012,123:2662-2666.
    [150] Williamson M J, Hubbard H V S A, Ward I M. NMR measurements of self diffusionin polymer gel electrolytes [J]. Polymer,1999,40:7177-7185.
    [151] Li Z, Liu H, Liu Y, He P, Li J. A room-temperature ionic-liquid-templatedproton-conducting gelatinous electrolyte [J]. J. Phys. Chem. B,2004,108:17512-17518.
    [152] Cheng C L, Wan C C, Wang Y Y. Microporous PVdF-HFP based gel polymerelectrolytes reinforced by PEGDMA network [J]. Electrochem. Commun.,2004,6:531-535.
    [153] Pandey G P, Hashmi S A. Experimental investigations of an ionic-liquid-based,magnesium ion conducting, polymer gel electrolyte [J]. J. Power Sources,2009,187:627-634.
    [154] Klingshirn M A, Spear S K, Subramanian R, Holbrey J D, Huddleston J G, Rogers RD. Gelation of ionic liquids using a cross-linked poly(ethylene glycol) gel matrix [J].Chem. Mater.,2004,16:3091-3097.
    [155] Zhao M C, Schmutz P, Brunner S, Liu M, Song G, Atrens A. An exploratory study ofthe corrosion of Mg alloys during interrupted salt spray testing [J]. Corros. Sci.,2009,51:1277-1292.
    [156] Li H, Addai-Mensah J, Thomas J C, Gerson A R. The crystallization mechanism ofAl(OH)3from sodium aluminate solutions [J]. J. Cryst. Growth,2005,279:508-520.
    [157] Zhang J, Klasky M, Letellier B C. The aluminum chemistry and corrosion in alkalinesolutions [J]. J. Nucl. Mater.,2009,384:175-189.
    [158] Chan S H, Khor K A, Xia Z T. A complete polarization model of a solid oxide fuelcell and its sensitivity to the change of cell component thickness [J]. J. Power Sources,2001,93:130-140.
    [159] Noren D A, Hoffman M A. Clarifying the Butler–Volmer equation and relatedapproximations for calculating activation losses in solid oxide fuel cell models [J]. J.Power Sources,2005,152:175-181.
    [160] McCafferty. Validation of corrosion rates measured by the Tafel extrapolation method[J]. Corros. Sci.,2005,47:3202-3215.
    [161] McCafferty E, McArdle J V. Corrosion inhibition of iron in acid solutions bybiological siderophores [J]. J. Electrochem. Soc.,1995,142:1447-1453.
    [162] Poorqasemi E, Abootalebi O, Peikari M, Haqdar F. Investigating accuracy of theTafel extrapolation method in HCl solutions [J]. Corros. Sci.,2009,51:1043-1054.
    [163] Amin M A, Khaled K F, Fadl-Allah S A. Testing validity of the Tafel extrapolationmethod for monitoring corrosion of cold rolled steel in HCl solutions–Experimentaland theoretical studies [J]. Corros. Sci.,2010,52:140-151.
    [164] Umoren S A, Li Y, Wang F H. Effect of polyacrylic acid on the corrosion behaviourof aluminium in sulphuric acid solution [J]. J. Solid State Electrochem.,2010,14:2293-2305.
    [165] Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloysusing Tafel extrapolation [J]. Corros. Sci.,2010,52:579-588.
    [166] Zhang Z, Zuo C, Cao Q, Ma Y, Chen S. Modulation of electroosmotic flow usingpolyelectrolyte brushes: A molecular dynamics study [J]. Macromol. Theory Simul.,2012,21:145-152.
    [167] Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical propertiesof Lennard-Jones molecules [J]. Physical review,1967,159:98-103.
    [168] Weeks J D, Chandler D, Andersen H C. Role of repulsive forces in determining theequilibrium structure of simple liquids [J]. J. Chem. Phys.,1971,54:5237-5247.
    [169]曹倩倩.聚电解质的构象行为及复杂流动研究[D].长春:吉林大学,2011.
    [170] Cao Q, Zuo C, Li L, Zhang Y. Electrophoresis of bottle-brush polyelectrolytes in anattractive nanochannel [J]. Macromolecular Theory and Simulations,2012,21:492-499.
    [171] Allen M P. Introduction to molecular dynamics simulation [J]. Computational SoftMatter: From Synthetic Polymers to Proteins,2004,23:1-28.
    [172] Margulis C J, Stern H A, Berne B J. Computer simulation of a “green chemistry”room-temperature ionic solvent [J]. J. Phys. Chem. B,2002,106:12017-12021.
    [173] Qian H, Sheetz M P, Elson E L. Single particle tracking. Analysis of diffusion andflow in two-dimensional systems [J]. Biophys. J.,1991,60:910-921.
    [174] Raupach C, Zitterbart D P, Mierke C T, Metzner C, Muller F A, Fabry B. Stressfluctuations and motion of cytoskeletal-bound markers [J]. Phys. Rev. E,2007,76:011918.
    [175] Despósito M A, Vinales A D. Subdiffusive behavior in a trapping potential: Meansquare displacement and velocity autocorrelation function [J]. Phys. Rev. E,2009,80:021111.
    [176] Michalet X. Mean square displacement analysis of single-particle trajectories withlocalization error: Brownian motion in an isotropic medium [J]. Phys. Rev. E,2010,82:041914.
    [177] Morgan B, Madden P A. Ion mobilities and microscopic dynamics in liquid (Li,K)Cl[J]. J. Chem. Phys.,2004,120:1402-1413.
    [178] Tsuzuki S, Shinoda W, Saito H, Mikami M, Tokuda H, Watanabe M. Moleculardynamics simulations of ionic liquids cation and anion dependence of self-diffusioncoefficients of ions [J]. J. Phys. Chem. B,2009,113:10641-10649.
    [179] Picalek J, Kolafa J. Molecular dynamics study of conductivity of ionic liquids: TheKohlrausch law [J]. J. Mol. Liq.,2007,134:29-33.
    [180] Lee Y C, Kolafa J, Curtiss L A, Ratner M A, Shriver D F. Molten salt electrolytes. I.Experimental and theoretical studies of LiI/AlCl [J]. J. Chem. Phys.,2001,114:9998-10009.
    [181] Bhargava B L, Balasubramanian S. Dynamics in a room-temperature ionic liquid: Acomputer simulation study of1,3-dimethylimidazolium chloride [J]. J. Chem. Phys.,2005,123:144505.
    [182] MacFarlane D R, Forsyth M, Izgorodina E I, Abbott A P, Annat G, Fraser K. On theconcept of ionicity in ionic liquids [J]. PCCP,2009,11:4962-4967.
    [183] Harris K R. Relations between the fractional Stokes Einstein and Nernst Einsteinequations and velocity correlation coefficients in ionic liquids and molten salts [J]. J.Phys. Chem. B,2010,114:9572-9577.
    [184]谈荣日,邵建群. SPC, SPC/E和TH3P模型水的结构和性质[J].现代机械,2011,4:92-94.
    [185] Lee S H, Rasaiah J C. Molecular dynamics simulation of ionic mobility. I. Alkalimetal cations in water at25°C [J]. J. Chem. Phys.,1994,101:6964-6974.
    [186]袁俊生,包捷.钾、钠、氯离子水化现象的分子动力学模拟[J].计算机与应用化学,2009,26:1295-1299.
    [187] Obst S, Bradaczek H. Molecular dynamics study of the structure and dynamics of thehydration shell of alkaline and alkaline-earth metal cations [J]. J. Phys. Chem.,1996,100:15677-15687.
    [188] Koneshan S, Rasaiah J C, Lynden-Bell R M, Lee S H. Solvent structure, dynamics,and ion mobility in aqueous solutions at25°C [J]. J. Phys. Chem. B,1998,102:4193-4204.
    [189] Rasaiah J C, Lynden–Bell R M. Computer simulation studies of the structure anddynamics of ions and non–polar solutes in water [J]. Phil. Trans. R. Soc. Lond. A,2001,359:1545-1574.
    [190]陈磊,林鸿,陶文铨. PEM内水和质子扩散的分子动力学模拟[J].工程热物理学报,2010,31:1917-1920.
    [191] Ebbinghaus S, Kim S J, Heyden M, Yu X, Heugen U, Gruebele M, Leitner D M,Havenith M. An extended dynamical hydration shell around proteins [J]. PNAS,2007,104:20749-20752.
    [192] Rempe S B, Pratt L R, Hummer G, Kree J D, Martin R L, Redondo A. The hydrationnumber of Li+in liquid water [J]. JACS,2000,122:966-967.
    [193] Kowall T, Foglia F, Helm L, Merbach A E. Molecular dynamics simulation study ofLanthanide ions Ln3+in aqueous solution. Analysis of the structure of the firsthydration shell and of the origin of symmetry fluctuations [J]. J. Phys. Chem.,1995,99:13078-13087.
    [194] Rempe S B, Pratt L R. The hydration number of Na+in liquid water [J]. Fluid PhaseEquilib.,2001,183:121-132.
    [195] Grossfield A, Ren P, Ponder J W. Ion solvation thermodynamics from simulation witha polarizable force field [J]. JACS,2003,125:15671-15682.
    [196] Neilson G W, Tromp R H. Neutron and X-ray diffraction on aqueous solutions [J].Annual Reports Section" C"(Physical Chemistry),1991,88:45-75.
    [197] Lamoureux G, Roux B. Absolute hydration free energy scale for alkali and halideions established from simulations with a polarizable force field [J]. J. Phys. Chem. B,2006,110:3308-3322.
    [198] Soper A K, Weckstr m K. Ion solvation and water structure in potassium halideaqueous solutions [J]. Biophys. Chem.,2006,124:180-191.
    [199] Varma S, Rempe S B. Coordination numbers of alkali metal ions in aqueous solutions[J]. Biophys. Chem.,2006,124:192-199.
    [200] Wu G M, Lin S J, Yang C C. High performance composite solid polymer electrolytesystems for electrochemical cells [J]. J. Power Sources,2013,244:287-293.
    [201] Zhang Z, Zuo C, Liu Z, Yu Y, Zuo Y, Song Y. All-solid-state Al–air batteries withpolymer alkaline gel electrolyte [J]. J. Power Sources,2014,251:470-475.
    [202] Mohamad A A. Electrochemical properties of Al anodes in gel electrolyte-basedAl-air batteries [J]. Corros. Sci.,2008,50:3475-3479.
    [203] Han B, Liang G. Neutral electrolyte aluminum air battery with open configuration [J].Rare Met.,2006,25:360-363.
    [204]李鑫庆,余静琴,谢蕴丹.铝及其合金阳极氧化的最新发展[J].机械工人:热加工,2005:19-23.
    [205] Singh N, Galande C, Miranda A, Mathkar A, Gao W, Reddy A L M, Vlad A, Ajayan PM. Paintable battery [J]. Scientific reports,2012,2:481.
    [206] Hu L, Wu H, La Mantia F, Yang Y, Cui Y. Thin, flexible secondary Li-ion paperbatteries [J]. ACS nano,2010,4:5843-5848.
    [207] Nohara S, Wada H, Furukawa N, Inoue H, Morita M, Iwakura C. Electrochemicalcharacterization of new electric double layer capacitor with polymer hydrogelelectrolyte [J]. Electrochim. Acta,2003,48:749-753.
    [208] K tz R, Carlen M. Principles and applications of electrochemical capacitors [J].Electrochim. Acta,2000,45:2483-2498.
    [209] Yang C C, Hsu S T, Chien W C. All solid-state electric double-layer capacitors based
    on alkaline polyvinyl alcohol polymer electrolytes [J]. J. Power Sources,2005,152:
    303-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700