磁珠结合质谱分析2型糖尿病肾病早期尿液多肽及药物干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病肾病(Diabetic Nephropathy,DN)是2型糖尿病(Type2diabetes mellitus, T2DM)患者常见的、严重影响生活质量的慢性并发症,发病率逐年升高,据估测,2030年全世界T2DM患者数量将从2000年的1.71亿增加到3.66亿,其中30%-40%的T2DM将发展为DN,在欧美国家DN是终未期肾病(End-stage renal disease,ESRD)的最常见病因,约占全部ESRD病例的44%。早期诊断DN并干预其发展越来越受到医学界的重视,但DN起病隐袭,早期缺乏明显的临床症状。目前临床上早期诊断DN存在较大困难。。肾活检是早期诊断最可靠的方法,然而,很多患者不愿意接受这种具有创伤性的侵入检查,很多接受检查的患者肾脏组织病理活检并不能找到特征性的病理改变。肾穿刺活检术不能作为T2DM患者检查的常规项目。而尿液富含肾脏病变信息,取材简单、无创伤,可重复取样,目前被广泛认可的糖尿病肾病的早期实验室诊断标准是持续性微量白蛋白尿,已有许多研究发现尿微量白蛋白(Microalbuminuria, MALB)作为DN早期诊断指标的准确性和特异性不高,2型糖尿病患者大多年龄较大,常伴有高血压、冠心病等合并症,微量白蛋白尿也可因这些并发症引起。且在MALB出现时,DN已发展到第Ⅲ期,因而只依靠监测MALB并不能及时准确地对DN做出诊断,会带来较高的误诊和漏诊。因此2型糖尿病肾病的早期诊断迫切需要寻找新的特异性标志物以判断病情,指导治疗,评价疗效。随着蛋白质组学技术的发展,将其与体液技术相结合的尿液蛋白质组学技术为DN早期诊断标志物的筛选提供了技术支持,利用尿液蛋白质组学技术可能发现一些新的DN早期诊断标志物并作为药物疗效评价的指标。本研究通过弱阳离子(weak cation exchange, WCX)磁珠分离系统联合基质辅助激光解吸电离-飞行时间质谱(Matrix-Assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry, MALDI-TOF-MS)技术对2型糖尿病患者及模型动物的尿液标本进行比较蛋白组学分析,并对模型动物进行干预研究。本课题研究内容共分为以下三部分。
     第一部分:2型糖尿病肾病患者尿小分子多肽差异分析;
     第二部分:2型糖尿病肾病大鼠模型的建立及肾病早期尿小分子多肽差异分析;
     第三部分:厄贝沙坦干预对糖尿病肾病大鼠尿小分子多肽影响。
     第一部分:2型糖尿病肾病患者尿小分子多肽差异分析
     目的:利用弱阳离子磁珠分离系统结合MALDI-TOF-MS的方法获取糖尿病肾病患者的尿小分子多肽谱。
     方法:按Mogensen标准,68例2型糖尿病患者经测三天平均微量白蛋白尿排泄率(Urinary Albamin Excretion Rate, UAER)后分组,其中正常蛋白尿(A)组24例,微量白蛋白(B)组22例,大量蛋白(C)组22例;健康对照(D)组20例。A及B组肾小球率过滤(glomerular filtration rate,GFR)均>90ml/(min·1.73m2),C组GFR60~89ml/(min·1.73m2)。采用WCX磁珠纯化试剂盒富集尿多肽,再经MALDI-TOF-MS技术,采集尿液多肽谱,应用ClinProtTM软件进行生物学比较分析。
     结果:质荷比<12000时,A组与D组相比,有15个蛋白质峰差异有统计学意义(P<0.01)。B组与D组相比,有1个蛋白质峰差异有统计学意义(P=0.0298)。C组与D组相比,有10个蛋白质峰差异有统计学意义(P<0.01)。
     结论:弱阳离子磁珠分离系统联合MALDI-TOF-MS蛋白质检测技术,能够获得健康人及DN患者尿液小分子多肽谱,为进一步从中寻找早期筛查及评价干预效果的标志物提供基础。
     第二部分:2型糖尿病肾病大鼠模型的建立及肾病早期尿小分子多肽差异分析
     目的:探寻高糖高脂饮食联合小剂量链脲佐菌素(Streptozocin, STZ)诱导致2型糖尿病大鼠糖尿病肾病早期尿液小分子差异多肽。
     方法:①40只4周龄SD (Sprague-Dawley)大鼠随机分为糖尿病模型(A)组30只和对照(B)组10只,A组应用高糖高脂饮食6周联合STZ注射(以注射时计为0),诱导致2型糖尿病大鼠模型,B组正常饮食;②每2周测体质量,尾静脉取血检测血糖;-2、2、12周周末收集各组大鼠24小时尿液、血样本和肾脏标本。尿液测24小时白蛋白排泄率,血样本测胰岛素、胆固醇、甘油三脂等指标,肾脏标本HE染色光镜下观察。③将大鼠尿液分为四组:A1组(-2周末时A组尿液,10个标本)、A2组(12周末时A组尿液,10个标本);B组(12周末时B组尿液,10个标本)。采用弱阳离子磁珠联合MALDI-TOF-MS技术对各组尿液样本进行尿液多肽谱的采集,应用ClinProTools软件进行生物学比较分析。
     结果:①高糖高脂饮食6周联合25mg/kg STZ腹腔注射诱导2型糖尿病肾病大鼠模型,成模率87%,成模大鼠具有高血糖、高血脂、胰岛素抵抗等特点,并出现DN相应的形态及功能改变。②弱阳离子磁珠联合MALDI-TOF-MS技术检测三组尿液。ClinProTools软件分析后发现A1和B组间无明显差异。A2组和B组间多肽谱比较发现有7个差异多肽峰具有统计学意义,在A2组表达高表达有4个,低表达的有3个。
     结论:①利用高糖高脂饮食6周联合小剂量STZ可以成功诱导2型糖尿病肾病大鼠模型。②弱阳离子磁珠联合MALDI-TOF-MS技术,能获得2型糖尿病大鼠糖尿病肾病早期和正常对照大鼠尿液多肽谱,并有效地鉴定出峰度较高的差异峰。
     第三部分:厄贝沙坦干预对糖尿病肾病大鼠尿小分子多肽影响
     目的探讨血管紧张素Ⅱ(AngiotensinⅡ,AngⅡ)1型受体拮抗剂(Angiotensin receptor blocker, ARB)厄贝沙坦对2型糖尿病大鼠尿小分子多肽的影响。方法①将30只实验大鼠随机分成正常对照组(A组)、糖尿病组(B组)、厄贝沙坦治疗组(C组)。高糖高脂饮食联合小剂量STZ诱导致2型糖尿病大鼠糖尿病肾病早期,以STZ注射时计为0;②C组在造模成功后3天即开始喂服厄贝沙坦[50mg/(kg·d),杭州赛诺菲安万特民生制药有限公司)],B组则以等体积蒸馏水灌胃。每2周末测体质量、血压,尾静脉取血检测血糖;-2、12周末收集各组大鼠24小时尿液、血样本和肾脏标本。尿液测24小时白蛋白排泄率,血样本测胰岛素、胆固醇、甘油三脂等指标。肾脏标本测肾重后制作病理切片。③将大鼠尿液分为四组:A1组(-2周时A组尿液,8个标本)、A2组(12周时A组尿液,8个标本)、B组(12周时B组尿液,8个标本)和C组(12周时C组尿液,8个标本)。采用弱阳离子磁珠联合MALDI-TOF-MS技术对各组尿液样本进行尿液多肽谱的采集,应用ClinProTools软件进行生物学比较分析。
     结果:①弱阳离子磁珠联合MALDI-TOF-MS技术检测四组尿液。ClinProTools软件分析后发现A1和A2组间无明显差异。A2组和B组间多肽谱比较发现有7个差异多肽峰具有统计学意义,在B组表达高表达有4个,低表达的有3个。C组和A2组间多肽谱比较发现有5个差异多肽峰具有统计学意义,在C组表达高表达有3个,低表达的有2个。C组和B组间多肽谱比较发现有2个差异多肽峰具有统计学意义,在C组表达高表达有1个,低表达的有1个。②C组12周时肾脏病理结构与同时期B组比较改变轻微。
     结论:①弱阳离子磁珠联合MALDI-TOF-MS技术,能获得2型糖尿病大鼠糖尿病肾病早期和正常对照大鼠尿液多肽谱,并有效地鉴定出峰度较高的差异峰。②厄贝沙坦早期干预可以明显改善糖尿病肾病大鼠尿液多肽谱的异常。③厄贝沙坦早期干预可以延缓或阻止糖尿病肾病大鼠病理改变进程。
Diabetic nephropathy(DN) is one common chronic microvascular complications of diabetes, seriously affecting the quality of life. The incidence of diabetic nephropathy increased year by year, according to estimates, in2030the number of DM patients in the world will increase from171000000in2000to366000000, including30%-40%T2DM will evolve into DNIn Europe and the United States, DN is the most common cause of the end stage renal disease (ESRD),accounting for about44%of all ESRD cases.In some domestic developed regions diabetic nephropathy is the first cause of ESRD hemodialysis patients.Its exact pathogenesis remains unclear. Glucose toxicity, renal hemodynamics changes, lipid metabolic disorder, hypertension and smoking,genetic, race, gender, environment and so on were risk factors for diabetic nephropathy, and at the same time with genetic polymorphism.The early diagnosis of DN and interfere with the development have gained more and more attention by the medical profession. As insidious onset, DN are difficulty to diagnose at its early stage. Renal biopsy is a trauma, T2DM patients are difficult to accept it as a routine examination. While urine contains disease information,the urine sample can be collected simple, non-invasive, repeatable.At present, the clinical commonly used urinary albumin as DN early diagnosis index, but many studies found that the specificity and accuracy of MALB diagnosis of DN is not so good.
     With the development of proteomics, urine protein group combined with the fluid technology provides technical support for the early screening markers in the diagnosis of DN. Using proteomics technology may find some new DN early diagnosis marker.
     Through the study of weak cation (WCX) beads combined with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) are observe urine specimens of patients with type2diabetes mellitus and animal model in comparative proteomics analysis, and intervention research on animal mode.
     The content of this paper is divided into three parts as follows.
     Part one:Urinary polypeptide analysis in the type2diabetic nephropathy with magnetic bead separation and MALDI-TOF MS.
     Part two:Establishment of Rat Model of Type2Diabetic Nephropathy and Rat Diabetic Nephropathy's early-stage Urinary Polypeptide Analysis.
     Part three:Protein expression profile of the urine peptides on early stage of type2diabetic nephropathy rats treated by irbesartan.
     Part one:Urinary polypeptide analysis in the type2diabetic nephropathy with magnetic bead separation and MALDI-TOF MS
     Objective:To detect urinary polypeptide patterns of the type2diabetic nephropathy (T2DN)'s every-stage in order to screen and to find out the potential biomarkers. Methods: A total of68urine samples from type2diabetic patients with normoalbuminuria(A,n=24),microalbuminuria(B,n=22)and macroalbuminuria(C,n=22),and healthy controls(D,n=20) were analyzed by MALDI-TOF-MS (the matrix auxiliary laser analytic ionization-flight time mass spectrometry) and ClinProtTM software was used to profile and screen the polypeptide patterns in urine of the patients.Results:When the relative molecular mass<12000, A compared to D groups, there are15difference statistically significant protein peak (P<0.01). B compared to D groups1difference statistically significant low expression of the protein peak (P=0.0298). C compared to D groups, there are10difference statistically significant protein peak (P<0.01). Conclusion: WCX magnetic beads separation coupled to MALDI-TOF-MS is a fast, convenient and high throughput analyzing method capable of screening some relative specific, potential biomarkers from the urine of DN subgroups thus it possesses better clinical value.
     Part two:Establishment of Rat Model of Type2Diabetic Nephropathy and Rat Diabetic Nephropathy's early-stage Urinary Polypeptide Analysis
     Objective:To monitor and determine the urinary polypeptides of type2diabetic rat models with early stages of diabetic nephropathy which were induced by high-sugar and high-fat feeding combined with low doses of Streptozocin.Methods:Male SD rats at four weeks of age were randomly divided into model group (A group,n=30),which were intraperitoneally injected low doses of streptozotocin after having the sucrose and fat enriched diets for6weeks,and control group (B group, n=10) with conventional diet. Body weight and urine samples from A and B groups were collected for urime albumin excretin every two weeks.At-2、2、12weeks kidney samples were collected for pathological diagnosis and blood samples were collected for serum insulin, cholesterol, and triglyceride levels. Urine samples were divided into four groups:A1group (-2、 weeks urine samples of A group,10samples), A2group (12weeks urine samples of A group,10samples) and B group (12weeks urine samples of B group,10samples). These urinary polypeptides were enriched by weak cations (WCX) magnetic beads purification kits, then combined with Matrix auxiliary laser analytic ionization-flight time mass spectrometry(MALDI-TOF-MS) and ClinProTools software were used to profile and screen the polypeptide patterns in urine. Results:①The rate of modeling in rats fed with high-sugar and high-fat diet for6weeks and received STZ injection was87%.Blood glucose of rats in A group increased significantly than those in B group(P<0.05),body weight of rats in DM group decreased significantly than those in B group (P<0.05).②WCX magnetic beads separation coupled to MALDI-TOF-MS is capable of profiling the polypeptide patterns of the four groups'urine samples. ClinProTools software was used to analysis these polypeptide patterns. There was no significant differences between A1group and B group (P>0.05). While4peaks were up-regulated, while3peaks were down-regulated in A2group compared to B group. Conclusion:①A rat model of type2diabetic nephropathy was developed successfully by combination of dietary-induced insulin resistance and low-doses of STZ-induced hyperglycemia.②WCX magnetic beads separation coupled to MALDI-TOF-MS was capable of profiling the polypeptide patterns of the urine collected from the T2DM rats and the control group, as well as screening some relative specific, potential biomarkers from the urine samples.
     Part three:Protein expression profile of the urine peptides on early stage of type2diabetic nephropathy rats treated by irbesartan
     Objective:Observe the protein expression profile of the urinary polypeptides of type2diabetic rat models with early stages of diabetic nephropathy treated by losartan.
     Methods:①30Male SD rats at four weeks of age were randomly divided into three groups:A group, control group;B group,diabetis group; C group,irbesartan treat group.B and C group which were intraperitoneally injected low doses of streptozotocin after having the sucrose and fat enriched diets for6weeks, and control group with conventional diet.②After the success of modeling the C group is fed irbesartan50mg/(kg-d),B group with the same volume of distilled water.③Body weight, blood pressure and tail vein blood glucose from three groups were collected every two weeks.At-2、12weeks urine samples for urime albumin excretin, kidney samples for pathological diagnosis and blood samples for serum insulin, cholesterol, and triglyceride levels were collected.④Urine samples were divided into four groups:A1group (-2weeks urine samples of A group,8samples), A2group (12weeks urine samples of A group,8samples)、B group (12weeks urine samples of B group,8samples) and C group (12weeks urine samples of C group,8samples). These urinary polypeptides were enriched by weak cations (WCX) magnetic beads purification kits, then combined with Matrix auxiliary laser analytic ionization-flight time mass spectrometry(MALDI-TOF-MS) and ClinProTools software were used to profile and screen the polypeptide patterns in urine.
     Results:①The rate of modeling in rats fed with high-sugar and high-fat diet for6weeks and received STZ injection was87%.Blood glucose of rats in A group increased significantly than those in B group(P<0.05), body weight of rats in B and C group decreased significantly than those in A group (P<0.05).②WCX magnetic beads separation coupled to MALDI-TOF-MS is capable of profiling the polvpeptide patterns of the four groups'urine samples. ClinProTools software was used to analysis these polypeptide patterns. There was no significant differences between A1group and A2group (P>0.05). While4peaks were up-regulated and3peaks were down-regulated in B group compared to A2group(P<0.05). There were3peaks were up-regulated and2peaks were down-regulated in C group compared to A2group(P<0.05). There were1peaks were up-regulated and1peaks were down-regulated in C group compared to B group(P<0.05). Conclusion:①A rat model of type2diabetic nephropathy was developed successfully by combination of dietary-induced insulin resistance and low-doses of STZ-induced hyperglycemia.(2)WCX magnetic beads separation coupled to MALDI-TOF-MS was capable of profiling the polypeptide patterns of the urine collected from the T2DM rats and the control group, as well as screening some relative specific, potential biomarkers from the urine samples.③The early use of irbesartan can significantly reduce the spectrum of urine polypeptide abnormalities in rat with diabetic nephropathy.④The early use of irbesartan can delay or prevent the process of renal pathological changes in rats with diabetic nephropathy.
引文
[1]Fioretto P, Bruseghin M, Berto I, et al. Renal protection in diabetes:role of glycemic control, J Am Soc Nephrol,2006,17:86-89.
    [2]USRDS:The United States Renal Data System. Am J Kidney Dis,2003; 42:1-230.
    [3]Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice. Nephropathy in patients with type 2 diabetes[J]. N Engl J Med,2002,346:1145-1151.
    [4]Parving HH, Lehnert H, Brochner J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes [J]. N Engl Med,2001,345(1 2):870-878.
    [5]Yang W,Lu J,Weng J, et al. Prevalence of Diabetes among Men and Women in China,N Engl J Med 2010; 362:1090-101.
    [6]钱荣立.控制糖尿病,刻不容缓—2010联合国糖尿病日:中国蓝光行动.中国糖尿病杂志,2010,18(12)881-882.
    [7]舒同,曾龙驿,林可意,等.舒洛地特对糖尿病大鼠肾脏的保护作用及抗氧化反应机制.南方医科大学学报,2009,29(4):778-784.
    [8]Ruggenenti P;Lauria G;Iliev IP,et al.Effects of Manidipine and Delapril in Hypertensive Patients With Type 2 Diabetes Mellitus The Delapril and Manidipine for Nephroprotection in Diabetes (DEMAND) Randomized Clinical Trial. Hypertension. 2011,58(5)776-33.
    [9]Centers for Disease Control and Prevention (CDC). Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes-United States and Puerto Rico,1996-2007. MMWR Morb Mortal Wkly Rep,2010,59 (42) 1361-1366.
    [10]Pawing HH,Osterby M,Ritz E.Diabeitc nephropathy. In:The Kidney..B renner BM ed.10 th ed.Ph iladelphia:WB Sunders Company,2000.1731-1754.
    [11]Niewczas MA, Ficociello LH, Johnson AC, et al. Serum concentrations of nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephml,2009,4:62-70.
    [12]Miyauchi M, Toyoda M, Kobayashi K, el al. Hypertrophy and loss of podocytes in diabetic nephropathy. Intern Med,2009,48:1615-1620.
    [13]Gross JL,de A zevedo MJ,Si Iveior SP,et al.D iabetic nephorpathy.diagnosis, prevention,and treatment Diabetes Care,2005,28:64-176.
    [14]湛贻璞.糖尿病肾病的病理表现.中华老年多器官疾病杂志,2002,1:167-169.
    [15]HosttterTH, Troy JL, Brenner BM.Glomerular hemodynamics in expermental diabetes mellitus, Kidney Int,1981,19:410-415.
    [16]Norby SM, Cosio FG. Thin basement membrane nephropathy associated with other glomerular disease. Seminars in Nephrology,2005.25:270-275.
    [17]F Huang, Q Yang. L Chen et al Renal pathological chang in patients with Type 2 diabetes is not always diabetic nephropathy. ClinicalNephrology.2007:292-293
    [18]Parving HH, Gall MA, Skott P, et al Prevalence and cause of albu-minuring in non-insulin-dependent diabeteic patients. Kidney Int,1992,41:758-762.
    [19]LipkinGW. More than one kind of type 2 diabetes with renal disease do not have diabetic nephropathy. J Am Soc Nephrol.1994,5:37-42.
    [20]Mogensen CE, Christensen CK, Vittinghus E, et al. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes.1983, 32 (2):64-78.
    [21]全国eGFR课题执行组.MDRD方程在我国慢性肾脏病患者中的改良和评估.中华肾脏病杂志,2006.22:589--595.
    [22]张红霞,原杰,柳洁,等.3种肾小球滤过率评估方程对早期糖尿病肾病的诊断价值比较.中华肾脏病杂志,2011,27:341_345.
    [23]Kraner HJ, Nguyren QD, Curhan G, et al.Renal insufficiency in the absence of albuminuira and retinopathy among adults with type 2 diabetes mellitus. AJMA, 2003,289:3273-277.
    [24]王颖辉,庞博,李景,等.糖尿病肾病病机当代研究述评.中华中医药杂志,2010,25(3):327-331.
    [25]National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease:evaluation, classification, and stratification. Am J Kidney Dis,2002, 39(2 Suppl 1):S1-266.
    [26]Nowak R. Entering the postgenome era. Science.1995,270(5235),368-369.
    [27]WilkinsMR. SanchEz JC, Cooley AA, el al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotecehnol Genet ENG Rev,1996,13:19-50.
    [28]James P. Protein identification in the post-genome era:the rapid rise of proteomics[J]. Q Rev Biophys,1997,30(4):297-331.
    [29]Strohman R. Epigenesis:the missing beat in biotechnology? biotechnol,1994,12: 156-164.
    [30]钱小红,贺福初.功能基因组与蛋白质组.蛋白质组学:理论和方法.科学出版社,2003:1-15.
    [31]吕茂民,章金刚,生物质谱技术及其应用,生物技术通报,2001,4:38-41.
    [32]杨松成,蛋白质组学中的有机质谱,现代科学仪器,2000,5:9-15.
    [33]赵晓光,薛燕,刘炳玉,MALDI-TOF质谱仪关键技术及进展,仪器评价,2003,4:17-20.
    [34]Kris Gevaert, Joel Vandekerckhove, Protein identification methods in proteomics, Electrophoresis,2000,21:1145-1154.
    [35]Halecm JI, Timothy DV, Ihomas PC, et al. The SELDLI-TOF MSapproach to proteomics:protein profiling and biomarkeridentification. Biochem Biophys Res Coranran,2002,292:587-592.
    [36]Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding10,000daltons[J].AnalChem,1988,60(20):2299-2301.
    [37]Pang R'r, Peon TC, Chan KC, et al. Serum proteomic fingerprints of adult patients with severe acute respiratory syndrome. Clin Chem,2006,52(3):421-429.
    [38]Shah ZA, Jortani SA, Tauman R, et al. Serum proteomic patterns associated with Sleep-disordered breathing in children. Pediatr Res,2006,59(3):466-470.
    [39]Paweletz C, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF:potential for new biomarkers toaid in the diagnosis of breast cancer. Dis Marker,2001,17(4):301-307.
    [40]Srinivas PR, Srivastava S, Hanash S et al. Proteomics in early detection of cancer. Clin Chem,2001,47(10):1901-1911.
    [41]Pieper R, Gatlin C L, McGrath A M, et al. Characterization of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics,2004,4:1159-1174.
    [42]Irmak S, Tilki D, Heukeshoven J, et al. Stage-dependent increase of orosomucoid and zinc-alpha2-glycoprotein in urinary bladder cancer.Proteomics,2005,5:4296-4304.
    [43]M'Koma A E, Blum D L, Norris J L, et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem Biophys Res Commun,2007, 353:829-834.
    [44]Rogers M A, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res,2003,63: 6971-6983.
    [45]Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int,2004,65: 323-332.
    [46]Schaub S, Wilkins J A, Antonovici M, et al. Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am J Transplant,2005,5:729-738.
    [47]Cutillas P R, Chalkley R J, Hansen K C, et al. The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol,2004,287:F353-364.
    [48]Mischak H, Kaiser T, Walden M, et al. Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond),2004,107:485-495.
    [49]Weissinger E M, Wittke S, Kaiser T, et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int, 2004,65:2426-2434.
    [50]Haubitz M, Wittke S, Weissinger E M, et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int,2005,67:2313-2320.
    [51]Kim HJ,Cho EH, Yoo JH, et aL Proteome analysis of serum from type 2 diabetics with nonephropathy. J Proteome Res,2007,6;735-743.
    [52]Cho EH, Kim MR, Kim HI, et al. The discovery of biomarker for type 2 diabetic nephropathy by serum proteome analysis. Protoomics Clin ApplAppl,2007,1: 352-361.
    [53]Rossing K, Mischak H, parring HH, et al. Impact of diabetic nephropathy and angiotensin Ⅱ receptor blockade on urinary polypeptide patterns. Kidney Int,2005, 68:193-205.
    [54]Dihazi H, Muller GA, Lindner S, et al. Characterization of diabetic nephropathy by urinary proteomic analysis:identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin Chem,2007, 53:1636-1645.
    [55]Yang YH, Zhang S, Cui JF, et al. Diagnostic potential of serum protein pattern in type 2 diabetic Nephropathy. Diabet Med,2007,24:1386-1392.
    [56]KIGA C, NAKAGAWA T, KOIZUMI K, et al. Expression patterns of plasma proteins in spontaneously diabetic rats after oral administration of a kampo medicine, Hachimi·jio·gall, using SELDI proteinchip platform[J]. Biol PharmBull,2005,28(6): 1031-1037.
    [57]Thongboonkerd V, Barati MT, Mclish KR, et al. Alterations in the renal elastin-elastase system in type 1 diabetic Rephropathy identified by proteomie analysis. J Am Soc Nephrol,2004,15:650-662.
    [58]Fugmann T,Borgia B,Revesz C,et al.Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy.Kidney Int.2011,80(3):272-81.
    [59]O'Riordan E, Orlova T N, Mei J J, et al. Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol,2004,15:3240-3248.
    [60]Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int,2004,65:323-332.
    [61]王娜,董方霆,张学敏,等.水热法制备质谱专用提取多肽的金属螫合纳米磁珠.化学学报,2007。65:344-348.
    [62]Zon GM, Luo MH, Reed A, et al. Apel regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood,2007,109(5): 1917-1922.
    [63]FliserD, Novak J, Thongboonkerd V, et al. Advances in urinary pretoome analysis and biomarker discovery. J Am Soc Nephrol。2007,18:1057-1071.
    [64]Pieper R, Gatlin CL, McGrath AM, et al. Chameterizafion of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional eleetrophoresis gels with a yield of nearly 1400 distinct protein spot[J]. Proteomics,2004,4(4):1159-1174
    [65]Netti GS,Rocchetti MT.Papale M,et al. Proteomies and the kidney:an innovative approach to the study of renal disease. Gital Nefrol.2008; 25(2):169-82
    [66]Thongboonkerd V,Malasit P. Renal and urinary proteomies:current applications and challenges. Proteomics.2005; 5(4):1033-42
    [67]Hovind P, Tarnow L, Rossing K, et al. Decreasing incidence of severe diabetic. microangiopathy in type 1 diabetes. Diabetes Care,2003,26:1258-1264.
    [68]Yokoyama H, Okudaira M, Otani T, et al. Higher incidence of diabetic nephropathy in type 2 than in type 1 diabetes in earlyonset diabetes in Japan. Kidney Int,2000,58: 302-311.
    [69]Susztak K, Bottinger EP. Diabetic nephropathy:a frontier for personalized medicine[J]. J Am Soc Nephrol,2006,17:361-367.
    [70]Pieper R, Gatlin CL, McGrath AM, et al. Characterization of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gela with a yield of nearly 1400 distinct protein spots. Proteomics,2004,4(4):1159-1174.
    [71]Mischak H, Kaiser T, Walden M, et al.Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond).2004 Nov;107 (5):485-95.
    [72]Jain S, Rajput A, Kumar Y, et al. Proteomic analysis of urinary protein markers for accurate prediction of diabetic kidney disorder.J Assoc Physicians India.2005 Jun;53:513-20.
    [73]Dihazi H, Muller GA, Lindner S, et al. Characterization of diabetic nephropathy by urinary proteomic analysis:identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin Chem.2007 Sep;53(9):1636-45.
    [74]Yang YH, Zhang S, Cui JF, et al. Diagnostic potential of serum protein pattern in Type 2 diabetic nephropathy. Diabet Med.2007 Dec;24 (12):1386-92.
    [75]Out HH, Can H, Spentzos D, et al. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy. Diabetes Care. 2007 Mar;30(3):638-43.
    [76]Rossing K, Mischak H, Dakna M, et al. Urinary proteomics in diabetes and CKD J Am Soc Nephrol.2008 Jul;19(7):1283-90.
    [77]Jiang H, Guan G, Zhang R, et al. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy. Diabetes Metab Res Rev.2009 Mar;25(3):232-41.
    [78]Riaz S, Alam SS, Srai SK, et al. Proteomic identification of human urinary biomarkers in diabetes mellitus type 2 Diabetes Technol Ther.2010 Dec; 12 (12):979-88.
    [79]Wu J, Chen YD, Yu JK, et al. Analysis of urinary proteomic patterns for type 2 diabetic nephropathy by ProteinChip. Diabetes Res Clin Pract.2011 Feb;91(2):213-9.
    [80]Conrads TP, Hood BL, Issaq HJ, et al. Proteomic patterns as a diagnostic tool for early-stage cancer:a review of its progress to a clinically relevant tool[J].Mol Diag.,2004,8(2):77-85.
    [81]李春艳,朗景和,朱兰等.子宫内膜异位症比较蛋白质组学研究及相关蛋白的鉴定与表达.中国协和医科大学.2009;23(7):43-8.
    [82]Zhang X, Leung SM, Morris CR, et al. Evaluation of a novel integrated approach using functionalized magnetic beads, bench-top MALDI-TOF-MS、with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma. J Biomol Tech 2004; 15(3):167-75.
    [83]王剑,刘殿武,曹国玉.基于磁珠处理的MALDI TOF实验技术优化.河北北方学院学报:医学版.2008;41(5):14.
    [84]孟君,刘丽华,单保恩等.应用MALDI-TOF MS技术建立贲门癌血清蛋白指纹图谱诊断模型.中国癌症杂志.2010;23(12):881-86.
    [85]颜怀军,郑智国,孟旭莉等.质谱在乳腺癌血清蛋白组中的应用及其临床意义.中华医院感染学杂志.2011;16(3):6-10.
    [86]基于磁珠分离的生物质谱技术用于急性白血病疗效评价.分析化学.2010;52(2):14-9.
    [87]Georg M, Sven B, Alexander L, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry,2007,53:421-428.
    [88]吴杰,李艳,谢院生等.磁珠分离结合生物质谱分析肾小球疾病患者尿液多肽谱.中华肾脏病杂志.2009;25(08):596-600.
    [89]高碧霞,李明喜,刘雪娇等.磁珠分离结合生物质谱分析代谢综合征早期肾损害尿液蛋白谱.中国医学科学院学报,2011,33(5):511-516.
    [90]Fiedler GM, Baumann S, Leichtle A, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem,2007,53(3): 421-428
    [91]Yamamoto T, Langham RG, Ronco P, et al. Toward standard protocols and guidelines for urine proteomics:a report on the Human Kidney and Urine Proteome Project(HKUPP) symposium and workshop.6 October 2007, Scoul, Korea and 1 November 2007, San Francisco, Ca, USA. Proteomics,2008,8:2156-59.
    [92]Georg M, Sven B, Alexander L, et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry,2007,53:421-428.
    [93]Abe H. Yamada N. Animal models for hyperinsulinemia and insulin resistance. Ann N Y Acad Sci,2000,902:134-139.
    [94]Saini KS, Thompson C, Winterford CM, et al. Streptozotocin at low doses induces apoptosis and at high doses causes necrosis in a murine pancreatic beta cell line, INS-1. Biochem Mol Biol Int,1996,39(6):1229
    [95]吴凤丽,潘兴瑜,马晓光.链脲佐菌素诱导1型糖尿病的发生机制.中国实验诊断学,2008,12(9):1096-1099.
    [96]Tesch GH, Allen TJ, et al. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton).2007,12(3):261-276.
    [97]周迎生,高妍,李斌,等.高脂喂养联合链脲佐菌素注射的糖尿病大鼠模型特征。中国实验动物学报,2005,13(3):154-159.
    [98]Horo I;Gonzalez E;Gutierrez-de Juan V et al. Anal Bioanal Non-invasive detection of drug toxicity in rats by solid-phase extraction and MALDI-TOF analysis of urine samples.Chem.2013 V405N7-.2311-20
    [99]高晓燕,白玉静.RP-LC/ESI-MS和HILIC/ESI-MS相结合的大鼠尿液成分检测方法的建立.中国实验方剂学杂志,2012,18(20):119-121.
    [100]辛衍代,季虹,刘兴艳等.基于气相色谱-质谱的肥胖抵抗大鼠尿液代谢组学研究.医学研究杂志,2012,41(12):95-99.
    [101]牛俊,皮子凤,越皓等.格列美脲治疗的2型糖尿病大鼠的尿液代谢组学研究高等学校化学学报,2012,33(10):2169-2172.
    [102]夏鑫华,刘梅,李欢.基于衍生化反应和GC-MS技术测定大鼠血液和尿液中内源性代谢物轮廓谱.中华中医药学刊,2012,30(1):41-43.
    [103]乔滨,梁义怀,金泰虞等.应用表面增强激光解析电离飞行时间质谱技术分析镉中毒大鼠尿液蛋白质组学变化,毒理学杂志,2009,23(1):68-70.
    [104]Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature,2003,422: 198-207.
    [105]Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev,2004,23(1):34-44.
    [106]Wang Y, Chen Y, Zhang Y, et al. Differential ConA-enriched urinary proteome in rat experimental glomerular diseases. Biochem Biophys Res Commun,2008,371: 385-390.
    [107]Ikeda K, Nara Y,Yamori Y. Indirect systolic and mean blood pressure determination by a new tail cuff method in spontaneously hypertensive rats. Lab Anim。1991,25: 26-29.
    [108]涂晓文,陈香美.阻断肾素血管紧张素系统对慢性肾脏疾病的治疗作用.中华肾脏病杂志.2006;22(1):54-6.
    [109]Kobon H, Nangaku M, Navar LG et al. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev.2007; 59(3):251-87.
    [110]Ribeiro-Oliveira A Jr,Nogueira AI, Pereira RM, et al. The renin-angiotensin system and diabetes:an update. Vase Health Risk Manag.2008; 4(4):787-803.
    [111]Oliverio MI, Kim HS, Ito M, et al. Reduced growth, abnormal kidney structure, and type 2(AT2)angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and ATI B receptors for angiotensin II. Proc Natl AcadSci USA.1998; 95(26):15496-501.
    [112]Yanai K, Saito T, Kakinuma Y, et al. Renin. dependent cardiovascular functions and renin-independent blood-brain barrier functions revealed by renin. Deficient mice. J Biol Chem.2000; 275(1):5-8.
    [113]Oshima K, Miyazaki Y, Brock JW 3rd, et al. Angiotensin type II receptor expression and ureteral budding. J Urol.2001; 166(5):1848-52.
    [114]Qiao J, Bush KT,Steer DL, et al. Multiple broblast growth factors support 42 growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev.2001; 109(2):123-35.
    [115]Guron G, M61ne J, S werkersson S, et al. A 14-year-old girl with renal abnormalities after brief intrauterine exposure to enalapril during late gestation. Nephrol Dial Transplant.2006; 21(2):522-5.
    [116]贾俊亚,丁国华.肾脏中肾素.血管紧张素系统的生理和病理生理作用.生理科学进展.2008;39(1):71-4.
    [117]Giacchetti G Sechi LA, Rilli S, et al. The renin-angiotensin-aldosterone system, glucose metabolism and diabetes. Trends Endocrinol Metab.2005; 16(3):120-6.
    [118]Sharma R, Sharma M, Reddy S, et a 1. Chronically increased intrarenal angiotensin II causes nephropathy in all'animal model of type 2 diabetes. Front Biosci.2006; 11:968-76.
    [119]Singh RSingh AK, Leehey DJ. A novel mechanism for angiotensin II formation in streptozotocin-diabetic rat glomeruli. Am J Physiol Renal PhysiOl.2005; 288(6): F1183-90.
    [120]Soler MJ, Wysocki J, Batlle D. Angiotensin-convening enzyme 2 and the kidney. Exp PhysiOl.2008; 93(5):549-56.
    [121]Cao Z, Kelly DJ, Cox A, et al. Angiotensin type 2 receptor is expressed in the adult rat kidney and promotes cellular proliferation and apoptosis. Kidney Int.2000; 58(6): 2437-51.
    [122]Parving HH, Lehnert H, Brochner-Mortensen J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med.2001; 345(12):870-8.
    [123]Lewis EJ, Hunsicker LG,Clarke wlL et al. Renoprotective effect of the angiotensin-receptor angagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med.2001; 345(12):851-60.
    [124]Remuzzi G Bertani T. Pathophysiology of progressive nephropathies。N Engl J Med.1998; 339(20):1448-56.
    [125]Jia J, Ding G Zhu J, et al. Angiotensin Ⅱ infusion induces nephrin expression changes andpodocyte apoptosis. Am J NephrOl.2008; 28(3):500-7.
    [126]龙海波,钟娟,魏连波,等.血管紧张素Ⅱ受体拮抗剂对早期糖尿病大鼠足细胞损伤的影响.南方医科大学学报,2007,27(4):505-8.
    [127]Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med,2001,345(12):851-860.
    [128]Parving HH, Andersen S, Jzcobsen et al. Angiotensin receptor blockers in diabetic nephropathy:renal and cardiovascular end points. Semin Nephrol,2004,24(2): 147-157.
    [129]Temporary angiotensin Ⅱ blockade at the prediabetic stage attenuates the development of renal injury in type 2 Diabetic Rats. J Am Soc Nephrol,2005,16: 703-711.
    [1]Fioretto P, Bruseghin M, Berto I, et al. Renal protection in diabetes:role of glycemic control, J Am Soc Nephrol,2006,17:86-89.
    [2]USRDS:The United States Renal Data System. Am J Kidney Dis,2003; 42:1-230.
    [3]Remuzzi G, Schieppati A, Ruggenenti P. Clinical practice. Nephropathy in patients with type 2 diabetes[J]. N Engl J Med,2002,346:1145-1151.
    [4]Parving HH, Lehnert H, Brochner J, et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes [J]. N Engl Med,2001,345(1 2):870-878.
    [5]Yang W,Lu J,Weng J, et al. Prevalence of Diabetes among Men and Women in China,N Engl J Med 2010; 362:1090-101.
    [6]钱荣立.控制糖尿病,刻不容缓—2010联合国糖尿病日:中国蓝光行动.中国糖尿病杂志,2010,18(12)881-882.
    [7]舒同,曾龙驿,林可意,等.舒洛地特对糖尿病大鼠肾脏的保护作用及抗氧化反应机制.南方医科大学学报,2009,29(4):778-784.
    [8]Ruggenenti P;Lauria G;Iliev IP,et al.Effects of Manidipine and Delapril in Hypertensive Patients With Type 2 Diabetes Mellitus The Delapril and Maniddipine for Nephroprotection in Diabetes (DEMAND) Randomized Clinical Trial. Hypertension. 2011,58(5)776-83.
    [9]Centers for Disease Control and Prevention (CDC). Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes-United States and Puerto Rico,1996-2007. MMWR Morb Mortal Wkly Rep,2010,59 (42): 1361-1366.
    [10]Pawing HH,Osterby M,Ritz E.Diabeitc nephropathy. In:The Kidney..B renner BM ed.10 th ed.Ph iladelphia:WB Sunders Company,2000.1731-1754.
    [11]Niewczas MA, Ficociello LH, Johnson AC, et al. Serum concentrations of nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephml,2009,4:62-70.
    [12]Miyauchi M, Toyoda M, Kobayashi K, el al. Hypertrophy and loss of podocytes in diabetic nephropathy. Intern Med,2009,48:1615-1620.
    [13]Gross JL,de A zevedo MJ,Si lveior SP,et al.D iabetic nephorpathy:diagnosis, prevention,and treatment Diabetes Care,2005,28:64-176.
    [14]湛贻璞.糖尿病肾病的病理表现.中华老年多器官疾病杂志,2002,1:167-169.
    [15]HosttterTH, Troy JL, Brenner BM.Glomerular hemodynamics in expermental diabetes mellitus, Kidney lnt,1981,19:410-415.
    [16]Norby SM, Cosio FG. Thin basement membrane nephropathy associated with other glomerular disease. Seminars in Nephrology,2005.25:270-275.
    [17]F Huang, Q Yang。L Chen et al Renal pathological chang in patientswith Type 2 diabetes is not always diabetic nephropathy. ClinicalNephrology.2007:292-293
    [18]Parving HH, Gall MA, Skott P, et al Prevalence and cause of albu-minuring in non-insulin-dependent diabeteic patients. Kidney Int,1992,41:758-762.
    [19]LipkinGW. More than one kind of type 2 diabetes with renal disease do not have diabetic nephropathy. J Am Soc Nephrol.1994,5:37-42.
    [20]Mogensen CE, Christensen CK, Vittinghus E, et al. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes.1983, 32 (2):64-78.
    [21]全国eGFR-深题执行组.MDRD方程在我国慢性肾脏病患者中的改良和评估.中华肾脏病杂志,2006.22:589-595.
    [22]张红霞,原杰,柳洁,等.3种肾小球滤过率评估方程对早期糖尿病肾病的诊断价值比较.中华肾脏病杂志,2011,27:341_345.
    [23]Kraner HJ, Nguyren QD, Curhan G, et al.Renal insufficiency in the absence of albuminuira and retinopathy among adults with type 2 diabetes mellitus. AJMA, 2003,289:3273-277.
    [24]王颖辉,庞博,李景,等.糖尿病肾病病机当代研究述评.中华中医药杂志,2010,25(3):327-331.
    [25]National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease:evaluation, classification, and stratification. Am J Kidney Dis,2002, 39(2 Suppl1):S1-266.
    [26]Nowak R. Entering the postgenome era. Science.1995,270(5235),368-369.
    [27]WilkinsMR. SanchEz JC, Cooley AA, el al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotecehnol Genet ENG Rev,1996,13:19-50.
    [28]James P. Protein identification in the post-genome era:the rapid rise of proteomics[J]. Q Rev Biophys,1997,30(4):297-331.
    [29]Strohman R. Epigenesis:the missing beat in biotechnology? biotechnol,1994,12: 156-164.
    [30]钱小红,贺福初.功能基因组与蛋白质组.蛋白质组学:理论和方法.科学出版社,2003:1-15.
    [31]吕茂民,章金刚,生物质谱技术及其应用,生物技术通报,2001,4:38-41.
    [32]杨松成,蛋白质组学中的有机质谱,现代科学仪器,2000,5:9-15.
    [33]赵晓光,薛燕,刘炳玉,MALDI-TOF质谱仪关键技术及进展,仪器评价,2003,4:17-20.
    [34]Kris Gevaert, Joel Vandekerckhove, Protein identification methods in proteomics, Electrophoresis,2000,21:1145-1154.
    [35]Halecm JI, Timothy DV, Ihomas PC, et al. The SELDLI-TOF MSapproach to proteomics:protein profiling and biomarkeridentification. Biochem Biophy Res Coranran,2002,292:587-592.
    [36]Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding10,000daltons[J].AnalChem,1988,60(20):2299-2301.
    [37]Pang R'r, Peon TC, Chan KC, et al. Serum proteomic fingerprints of adult patients with severe acute respiratory syndrome. Clin Chem,2006,52(3):421-429.
    [38]Shah ZA, Jortani SA, Tauman R, et al. Serum proteomic patterns associated with Sleep-disordered breathing in children. Pediatr Res,2006,59(3):466-470.
    [39]Paweletz C, Trock B, Pennanen M, et al. Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF:potential for new biomarkers toaid in the diagnosis of breast cancer. Dis Marker,2001,17(4):301-307.
    [40]Srinivas PR, Srivastava S, Hanash S et al. Proteomics in early detection of cancer. Clin Chem,2001,47(10):1901-1911.
    [41]Pieper R, Gatlin C L, McGrath A M, et al. Characterization of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics,2004,4:1159-1174.
    [42]Irmak S, Tilki D, Heukeshoven J, et al. Stage-dependent increase of orosomucoid and zinc-alpha2-glycoprotein in urinary bladder cancer. Proteomics,2005,5:4296-4304.
    [43]M'Koma A E, Blum D L, Norris J L, et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem Biophys Res Commun,2007, 353:829-834.
    [44]Rogers M A, Clarke P, Noble J, et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res,2003,63: 6971-6983.
    [45]Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int,2004,65: 323-332.
    [46]Schaub S, Wilkins J A, Antonovici M, et al. Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am J Transplant,2005,5:729-738.
    [47]Cutillas P R, Chalkley R J, Hansen K C, et al. The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol,2004,287:F353-364.
    [48]Mischak H, Kaiser T, Walden M, et al. Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond),2004,107:485-495.
    [49]Weissinger E M, Wittke S, Kaiser T, et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int, 2004,65:2426-2434.
    [50]Haubitz M, Wittke S, Weissinger E M, et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int,2005,67:2313-2320.
    [51]Kim HJ,Cho EH, Yoo JH, et aL Proteome analysis of serum from type 2 diabetics with nonephropathy. J Proteome Res,2007,6; 735-743.
    [52]Cho EH, Kim MR, Kim HI, et al. The discovery of biomarker for type 2 diabetic nephropathy by serum proteome analysis. Protoomics Clin ApplAppl,2007,1: 352-361.
    [53]Rossing K, Mischak H, parring HH, et al. Impact of diabetic nephropathy and angiotensin Ⅱ receptor blockade on urinary polypeptide patterns. Kidney Int,2005, 68:193-205.
    [54]Dihazi H, Muller GA, Lindner S, et al. Characterization of diabetic nephropathy by urinary proteomic analysis:identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients. Clin Chem,2007, 53:1636-1645.
    [55]Yang YH, Zhang S, Cui JF, et al. Diagnostic potential of serum protein pattern in type 2 diabetic Nephropathy. Diabet Med,2007,24:1386-1392.
    [56]KIGA C, NAKAGAWA T, KOIZUMI K, et al. Expression patterns of plasma proteins in spontaneously diabetic rats after oral administration of a kampo medicine, Hachimi-jio-gall, using SELDI proteinchip platform[J]. Biol PharmBull,2005,28(6): 1031-1037.
    [57]Thongboonkerd V, Barati MT, Mclish KR, et al. Alterations in the renal elastin-elastase system in type 1 diabetic Rephropathy identified by proteomie analysis. J Am Soc Nephrol,2004,15:650-662.
    [58]Fugmann T,Borgia B,Revesz C,et al.Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy.Kidney Int.2011,80(3):272-81.
    [59]O'Riordan E, Orlova T N, Mei J J, et al. Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol,2004,15:3240-3248.
    [60]Schaub S, Wilkins J, Weiler T, et al. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight massspectrometry. Kidney Int,2004,65: 323-332.
    [61]王娜,董方霆,张学敏,等.水热法制备质谱专用提取多肽的金属螫合纳米磁珠.化学学报,2007。65:344-348.
    [62]Zon GM, Luo MH, Reed A, et al. Apel regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain.Blood,2007,109(5): 1917-1922.
    [63]Fliser D, Novak J, Thongboonkerd V, et al. Advances in urinary pretoome analysis and biomarker discovery. J Am Soc Nephrol。2007,18:1057-1071.
    [64]Pieper R, Gatlin CL, McGrath AM, et al. Chameterizafion of the human urinary proteome:a method for high-resolution display of urinary proteins on two-dimensional eleetrophoresis gels with a yield of nearly 1400 distinct protein spot[J]. Proteomics,2004,4(4):1159-1174
    [65]Netti GS, Rocchetti MT, Papale M, et al. Proteomies and the kidney:an innovative approach to the study of renal disease. Gital Nefrol.2008; 25(2):169-82.
    [66]Thongboonkerd V.Malasit P.Renal and urinary proteomies:current applications and challenges. Proteomics.2005; 5(4):1033-42
    [67]Hovind P, Tarnow L, Rossing K, et al. Decreasing incidence of severe diabetic. microangiopathy in type 1 diabetes. Diabetes Care,2003,26:1258-1264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700