重金属(铜、锌和汞)对中华倒刺鲃生物毒性效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属作为一类主要的污染物其对鱼类的毒害作用,已日益受到人们的关注。目前人们对许多外源性化学物的单一毒性已有较多的了解,但对于环境中存在的多种污染物的联合毒性作用及其机理则认识的较少。本试验采用体长为4.5—5.6cm的中华倒刺鲃作为受试对象,以重金属铜、锌、汞作为污染物来研究其对中华倒刺钯的生物毒性效应,包括单因子急性毒性试验、联合急性毒性试验和亚急性毒性试验,其中亚急性毒性试验则是研究污染物在较长的时间内对鱼体体内酶类和DNA的影响。试验结果表明:
     1.单因子急性毒性试验
     采用静水染毒法,得出重金属铜、锌和汞对中华倒刺鲃的96h半致死浓度分别为0.534mg/L、10.13mg/L和0.141mg/L,安全浓度分别为0.053mg/L、1.013mg/L和0.014mg/L,其毒性大小为:Hg~(2+)>Cu~(2+)>Zn~(2+)。并且其半致死浓度随着受试时间的增长而呈现下降的趋势。
     2.联合急性毒性试验
     在单一急性毒性试验的基础上,进行Cu~(2+)—Hg~(2+)、Cu~(2+)—Zn~(2+)、Hg~(2+)—Zn~(2+)三个组合的联合急性毒性试验。用96hLC_(50)(半致死浓度)作为1个毒性单位,本试验设6个浓度梯度且各处理组的毒性总和都为1。试验结果表明,Cu~(2+)—Zn~(2+)、Zn~(2+)—Hg~(2+)对的联合毒性效应均为增毒作用,而Cu~(2+)—Hg~(2+)中华倒刺鲃的毒性效应在Cu~(2+):Hg~(2+)为0.2:0.8时为拮抗作用,在比值为0.4:0.6时为相加作用,随着Cu~(2+)比例的增加其毒性效应表现为增毒作用。
     3.亚急性毒性试验
     取96h半致死浓度的5%、10%和20%设立3个染毒组和1个对照组。试验共进行28d,采用静态置换法每3d更新溶液50%,每天投喂无污染配合饲料一次,分别于7d、14d、21d和28d采集样本。试验结果表明:Cu~(2+)、Zn~(2+)和Hg~(2+)对中华倒刺鲃鳃组织GPT和GOT活力影响呈现抑制作用,在28d时,鳃组织GPT活力出现最小值,其中2.026 mg/L Zn~(2+)组抑制率最大达到57.45%,其对中华倒刺钯鳃组织GPT活力的抑制作用大小为:Cu~(2+)     随着处理组重金属离子浓度的增大,对ACP和AKP活力的抑制作用也随之增强,但Cu~(2+)、Zn~(2+)和Hg~(2+)对鳃组织AKP活力的抑制作用在暴露时间上并未呈现较大的变化,反而AKP活力于21d时还均有不同程度的上升。同时各个处理组在随着暴露时间的增加对ACP活力也没有出现较大的差异,这可能是AKP酶和ACP酶较为敏感,在重金属暴露处理的前期(<7d)其活力就受到了抑制。虽然对SOD酶活力也存在抑制作用,但抑制作用不大,并未达到显著水平,可以看出,Cu~(2+)、Zn~(2+)和Hg~(2+)对鳃组织的SOD酶活力没有明显的影响。
     随着处理时间延长,对中华倒刺鲃肝胰脏的DNA损伤程度呈现上升趋势,染毒7d后,Zn~(2+)和Cu~(2+)处理组对DNA的损伤以3级损伤为主,损伤率达到100%,染毒21d以后其差异不明显:2.026mg/L Zn~(2+)组对中华倒刺鲃的DNA损伤最大,0.007mg/L Hg~(2+)组为最小。其对DNA损伤的大小顺序:Zn~(2+)>Cu~(2+)>Hg~(2+)。
     通过试验发现,用SCGE技术检测重金属对中华倒刺鲃肝胰脏细胞DNA损伤具有灵敏、快速、直接、可靠等优点,可以检测出细胞的DNA断裂,很好地反映出低剂量的遗传毒性,可作为检测早期生物学毒性效应的生物标志物。
Heavy metal is the principal pollutant in the river, people follow the bane action of fish closely day by day. People understand more knowledge about single toxicity of chemical substances at the present, but grasping the action and mechanism of multiple contamination's joint toxicity is not enough. The experiment used Spinibarbus sinensis with 4.5-5.6cm stature as the trier, and researched the biotoxicity of the heavy metal to Spinibarbus sinensis, included single factor acute toxicity experiment, joint acute to xicity experiment and subacut acute toxicity experiment, subacute acute toxicity experiment researched the influence of pollutant to fish's Enzymes and DNA. The results showed:
     1. Single factor acute toxicity experiment
     Used method of static state, 96hours' half lethal concentration of Copper, Zinc and Mercury on Spinibarbus sinensis was 0.534mg/L, 10.13 mg/L and 0.141 mg/L and safe concentration was 0.053 mg/L, 1.013 mg/L, 0.014 mg/L, So we could reach a conclusion that the magnitude of toxicity is Hg~(2+) >Cu~(2+)>Zn~(2+). And the half lethal concentration presented the going down tendency along with the experiment's time.
     2. Joint acute toxicity experiment
     On the basis of single factor acute toxicity experiment, joint acute toxicity experiment with three assembling of Cu~(2+)-Hg~(2+), Cu~(2+)-Zn~(2+), Hg~(2+)-Zn~(2+) were carrying out. Regarding 96hLC_(50) (96hours' half lethal concentration) as a toxicity unit, the experiment set up 6 concentration gradient and everyone's sum toxicity is 1. The results showed: the joint acute toxicity of Zn~(2+)-Hg~(2+), Cu~(2+)-Zn~(2+) were synergy, but the joint acute toxicity of Cu~(2+)-Hg~(2+) was antagonism when Cu~(2+): Hg~(2+)=0.2:0.8, the effect of Cu~(2+):Hg~(2+)=0.4:0.6 was additive action, and the effect of toxicity were synergy with increasing the proportion of Cu~(2+).
     3. Subacute acute toxicity experiment
     5%, 10% and 20% of 96hours' half lethal concentration were taken to be 3 experiment groups. The experiment carried out 28days, half of the experiment liquor could be replaced by new liquor every 3 days and fishes were be feeded once every day. The samples were gathered at 7~(th), 14~(th), 21~(th) and 28~(th)day. The result testified, the effect of Cu~(2+), Zn~(2+) and Hg~(2+) on the GPT and GOT enzyme activity of Spinibarbus sinensis gill was inhibition, the GPT enzyme activity of gill reached minimum value at 28~(th) day, in which the suppression ratio of 2.026 mg/L Zn~(2+) was maximum and reach 57.45%, so the inhibition sequence of heavy metal on GPT enzyme activity of gill was Cu~(2+)     With the level of the heavy metal ion increasing, the inhibition of the ACP and AKP enzyme activity become increased, but the inhibition of the AKP enzyme activity increased little, especially, the enzyme activity of AKP has different level of ascending at 21th day. And the ACP enzyme activity don't become increasing by the experiment increasing either, this may be the AKP and ACP enzyme activity is more sensitive, which be to keep down at the preceeding of the experiment<7~(th)d). Heavy metal on the SOD enzyme activity is also inhibition, but the effect of increasing is small, can't reach markedness level, so the Cu~(2+), Zn~(2+) and Hg~(2+) ion can't reach the markedness effect on the SOD enzyme activity.
     The heavy metal ion on DNA damage appear the ascending trend, Zn~(2+) and Cu~(2+) on DNA damage almost reach third class and the damage ratio achieve 100% after 7~(th) day. The discrepancy is not markedness after 21th day, the max is 1.98 on 1.013mg/L Zn~(2+) at 21~(th) day. 2.026mg/L Zn~(2+) is maximal damage on heptopancreas DNA and 0.007mg/L Hg~(2+) is lowest, the sequence is Zn~(2+)>Cu~(2+)>Hg~(2+).
     Through experiment, we find out SCGE technique have sensitive, high-speed, immediante, reliable etc merits on heavy metal on the damage of Spinibarbus sinensis heptopancreas DNA, which can detect the DNA rupture and reflect inheritance toxicity by low dose, so regarding it as biomarker in inchoate biolog
引文
1.王焕校.污染生态学 高等教育出版社,2000,1.
    
    2.龚书椿.环境化学 华东师范大学出版社,1991,166.
    
    3.童建,冯致英.环境化学物的联合毒性作用[M].上海:上海科学技术文献出版社,1994,1
    
    4.邱郁春.水污染鱼类毒性试验方法[M].中国环境科学出版社,1992,4
    
    5.Bryan GW. Pollution due to heavy metals and their compounds[J]In: Kinne O, ed. Marine Ecology. Chichester: John Wiley&S ones, 1984,1289-1430
    
    6.Eisler R. Trace metal concentrations in marine organisms[M]. New York: Pergam on Press, 1981.
    
    7.Kennish MJ. Practical handbook of estuarine and marine pollution[M]. Boca Raton, FL: CRC Press, 1981.
    
    8.Rainbow PS. The significance of trace metal concentrations in marine invertebrates. In: Dallinger R and Rainbow P S, eds. Ecotoxicology of metals in invertebrates[J]. Boca Raton: Lewis,1993. 4-23.
    
    9.刘长发,陶澍.金鱼对铅和镉的吸收蓄积[J].水生生物学报,2001,25(4):344-349.
    
    10.Conto-Cinier-c-de, Petit-Ramel-M, Faure-R. Comparative Biochemistry and Physiology Part C, 1999,122,345-352.
    
    11.Paulami-Maiti, Samir-Banerjee, Maiti-P, Banerjee-S. Environment and Ecology, 1999, 17(4):895-898.
    
    12.刘长发.金鱼对游离态的铅的吸收积累及鳃分泌液的自身保护作用,环境科学学报,1999,19(4):435-442.
    
    13.梁涛.颗粒态铜对鱼体的生物有效性.环境科学进展,1999,7(4):70-75.
    
    14.贺亮,范必威.铜在鱼体中的积累规律研究[J].广东微量元素科学,2007,14(4):15-19.
    
    15.彭德姣,侯娟等,无机汞在鲤鱼体内生物富集规律的研究[J].毒理学杂志,2007,21(4):129-131.
    
    16.王焕校,孙赛初等.高等水生植物中镉的富集分配规律及危害[J].环境科学学报,1984,4(3):231~236.
    
    17.Witeska M, Jezierska B, Chaber J. Aquacultcure, 1995:129:129-132
    
    18.Denton G R W, Burdon Jones C. Influence of temperature and salinity on the up take, distribution and depuration of mercury, cadmium and lead by the black lip oyster Saccostrea echinata [J]. Mar Biol, 1981, 64: 317-326.
    
    19.Denton G R W, Burdon Jones C. Influence of temperature and salinity on the up take, distribution and depuration of mercury, cadmium and lead by the black lip oyster Saccostrea echinata[J]. MarBiol, 1981, 64:317-326.
    
    20.孔繁翔主编.环境生物学[M].北京:高教出版社,2000
    
    21.Halliwell B, Gutteridge J M C. Oxygen toxicity, oxygen randicals, transition metals and disease[J]. Biochem J, 1984,219:1-14.
    
    22.Halliwell B, Gutteridge J M C. Free radicals in biology and medicine[M]. Oxford: Clarendon Press, 1989.
    
    23.Wiston G W. Oxidants and antioxidants in aquatic animals[J]. Comp Biochem Physiol, 1991,100C:173-176.
    
    24.Xu L, Zheng G J, Lam P K S, et al. Relationship between tissue concentrations of polycyclic aromatic hydrocarbons and DNA adducts in green-lipped mussels (Perna viridis) [J]. Ecotoxicology, 1999,8:73-82.
    
    25.牟海津,江晓路,刘树清等.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响.青岛海洋大学学报,1999,29(3):463-468.
    
    26.丁美丽,林林,李光友等.有机污染对中国对虾体内外环境影响的研究[J].海洋与湖沼,1997,28:17-21.
    
    27.李光友.中国对虾疾病与免疫机制[J].海洋科学,1995,4:1-3.
    
    28.Zikic V. Stajin A S, Ognjanovic B Z, et al. Axtivities of superoxide dismutase and catalse in erythrocytes and transninasea in the plasma of carps (Cyprinus carpio L.) exposed to cadinm. Physiol Res (Prague) , 1997,46(5):391-396.
    
    29.蔺玉华,卢建民.鲤对鲤鱼离体肝脏的脂质过氧化及红细胞膜的毒性影响[J],水产学杂志,1998,11(1):53-56.
    
    30. Doyotte A, Cossu C, Jacquin M, et al. Anrioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimented of firld exposure in the gills and the digestive gland of the fresh water bivalive Unio tumidus. Aquatic Toxicology, 1997, 39(2):93-110.
    
    31.郭立,齐红莉等.锌离子对宝石鲈组织酶活性的影响[J].中国水产,2006,4:72-74.
    
    32.欧阳培,林世荣,叶玫.几种重金属离子对厦门文昌鱼碱性磷酸酶的作用[J].海洋环境科学,1985,4(3):25-31.
    
    33.王鑫,马桂荣,郑宝灿等.SL—益生素对小白鼠体重及其单核吞噬细胞功能的影响[J]。微生物学报,1995,35(6):455-45
    
    34.陈素丽,薛雄志,力政军等.几种金属离子对文昌鱼酸性磷酸酶的影响[J].厦门大学学报(自然科学版):1997,33(增刊):24-27
    
    35.詹付凤,赵欣平.重金属镉对鲫鱼碱性磷酸酶和酸性磷酸酶活性的影响[J].四川动物,2007,26(3):641-643.
    
    36.郑永华,蒲富永.汞对鲤鲫鱼组织转氨酶活性的影响[J].西南农业大学学报,1997,19(1):41-45.
    
    37.王丙莲,张迎梅等.镉、铅对泥鳅组织转氨酶活性的影响[J].兰州大学学报,2006,42(3):67-70.
    
    38.徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报,1995,19(2):171-185.
    
    39. Olive P L, Ranath J P, Durand R. Heterogeneity in radiationinduced DNA damage and repair in tumor and normal cells using the comet assay. Radration Res, 1990,122: 86.
    
    40.田云,卢向阳,易克等.单细胞凝胶电泳技术[J].生命的化学,2004,24(1):77-78.
    
    41.朱文文,王晓涛.DNA损伤检测—单细胞凝胶电泳技术的研究[J].微量元素与健康研究,2007,24(3):6-7.
    
    42. Jian-Ming Yang, Marc Arnush, Qiong-Yu Chen. Cadminu-induced damage to promary cultures of rat Leydig cells[J]. Reproducctive Toxicology, 2003, (17):553-560.
    
    43.赵守城,张娟.用SCGE技术检验镉污染对鲫鱼肾细胞DNA损伤的研究[J].河北渔业,1999,4:11-13.
    
    44.胡晓磐,周建华,时夕金.利用单细胞凝胶电泳技术研究镉对鲫鱼淋巴细胞DNA的损伤[J].农业环境科学学报,2005,24(1):43-45.
    
    45.胡晓磐,时夕金,周建华.重金属混合物对鲫淋巴细胞DNA损伤的研究[JJ.水利渔业,2005,25(1):11-12.
    
    46.张迎梅,王叶菁等.重金属Cd~(2+)、Pb~(2+)和Zn~(2+)对泥鳅DNA损伤的研究[J].水生生物学报,2006,30(4):399-403.
    
    47.季遥等.废电池浸出液对鲫鱼红细胞DNA损伤的研究[J].农业环境科学学报,2007,26(3):1178-1182.
    
    48.薛良义,李卢,聂松平.苯酚和对苯二酚对鲫血细胞DNA损伤的研究[J].水生生物学报,2006,30(2):241-243.
    
    49.周永欣,章宗涉.水生生物毒性试验方法[M],北京:农业出版社,1989,1-157.
    
    50.熊治延.环境生物学[M].武汉:武汉大学出版社,2000
    
    51.瞿建国.锌对金鱼的急性毒性及在体内的积累和分布[J].上海环境科学,1996,15(6):42-43.
    
    52.黄玉瑶,陈锦萍.铜离子对鳗鲡幼鱼的急性毒性[J].中国环境科学,1992,12(4):255-260
    
    53.陈锡涛。镉对花鲍Aristichthys nobills幼鱼,鱼苗和鱼种的急性毒性及其安全浓度的??评价[J]。环境科学与技术,1991,(4):5-8
    
    54.杨丽华.重金属(镉、铜、锌和铬)对鲫鱼的生物毒性研究,华南师范大学硕士论文,2003.
    
    55.高晓丽,齐凤生等.铜、汞、铬对泥鳅的急性毒性和联合毒性试验[J],水利渔业,2003,23(2):63-64.
    
    56.王银秋,张迎梅等.重金属镉、铅、锌对鲫鱼和泥鳅的毒性[J],甘肃科学学报,2003,15(1):35-38.
    
    57.王志铮,刘毅祖等.Hg~+、Zn~(2+)、Cr~(6+)对黄姑鱼幼鱼的急性致毒效应[J],中国水产科学,2005,12(6):745-750.
    
    58.隋国斌等.铅、汞、镉对皱纹盘鲍幼鲍的急性毒性试验[J].中国环境科学,1995,15(5):348-350.
    
    59.慕立义.植物化学保护研究方法[M].北京:中国农业出版社,1997.124.
    
    60.童建,冯致英.环境化学物的联合毒性作用[M].上海:上海科学技术文献出版社,1994,1.
    
    61.修瑞琴等.氟与硒对鱼类联合毒性的研究[J].中国环境科学,1995,15(5):348-350.
    
    62.侯丽萍,马广智.镉与锌对草鱼种的急性毒性和联合毒性研究[J].淡水渔业,2002,32(3):44-46.
    
    63.方允中.医学酶学[M].北京:人民卫生出版社,1984.3:196.
    
    64.丛峰松.生物化学试验[M].上海:上海交通大学出版社,2005:119-120.
    
    65.王丙莲,张迎梅等.镉、铅对泥鳅组织转氨酶活性的影响[J],兰州大学学报,2006,42(3):67-70.
    
    66.潘鲁青,吴众望等.重金属离子对凡纳滨对虾组织转氨酶活力的影响[J],中国海洋大学学报,2005,35(2):195-199.
    
    67.De la Torre F R, Salibian A, Ferrari L. Biomarkers assessment in juvenile Cyprinus crapio exposed to waterbome cadmium [J]. Environmental Pollution, 2000,109:248-254.
    
    68.Stebbing A R D, Hormesis the stimulation of growth by low levels of inhibition[J].Sci Tol Envir, 1982,22(1):213-234.
    
    69.Murugesan Ramaswamy,Palaniswamy Thangavel,N Panneer Selvam. Gutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) enzyme activities in different tissues of Sarotherodon massambicus (Peters) exposed to a carbamate pesticide, carbamate pesticide, carbaryl[J]. Pesticide Science,1999,55:1217-1221.
    
    70.Rainbow P S.海洋生物对重金属的积累及意义[J].海洋环境科学,1992,11(1):44-45.
    
    71.吴坚.微量金属对海洋生物的生物化学效应[J].海洋环境科学,1991,10(2):58-62.
    
    72.孔祥会,刘占才等.汞暴露对草鱼器官组织中碱性磷酸酶活性的影响[J].2007,14(2):270-274.
    
    73.丁克祥.SOD临床研究集[M].北京:原子能出版社,1992,2-3.
    
    74.靳晓敏等.高效氯氰菊酯原粉对鲤血清CAT和SOD的影响[J].水利渔业,2006,26(4):98-99.
    
    75.张红霞等.重金属离子对日本鲟雪淋巴抗氧化酶(SOD,CAT,GPx)活力的影响[J].中国海洋大学学报,2006,36(增刊):49-53.
    
    76.贾秀英,陈志伟.铜、铬对鲫组织超氧化物歧化酶活性的影响[J].水生生物学报 2003,27(3):323-325.
    
    77.赵守城,张娟.用SCGE技术检验铬污染对鲫鱼肾细胞DNA损伤的研究[J].河北渔业1999,106:11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700