阴沟肠杆菌w10j15中拟除虫菊酯类杀虫剂降解酶的酶学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用HP6890气相色谱仪测定了联苯菊酯,甲氰菊酯和氯氰菊酯在水体中的添加回收率,3种菊酯在水体中都分别设计了1 mg/L,10mg/L,100mg/L 3个不同浓度的添加回收试验。结果表明,3种菊酯在水样中的添加回收率在95.47%至103.21%之间,变异系数在2.21%-4.72%之间。
     从农药长期污染的土样中分离到一株阴沟肠杆菌w10j15,该菌株可以利用拟除虫菊酯类杀虫剂作为唯一碳源和能源进行生长。经研究表明(王兆守,2003),阴沟肠杆菌w10j15的生长最适p H为7.0,最适温度为30℃。该菌株培养72h,对50mg/L联苯菊酯、甲氰菊酯和氯氰菊酯的降解率分别为52.57%、50.13%和54.31%。在富集培养基培养72h后,可产生最高的联苯菊酯降解酶活性,达到约8U/mL(U为每分钟所降解的农药mg数)。
     W10j15中提取的胞内酶降解联苯菊酯、甲氰菊酯和氯氰菊酯的最适反应p H均为7.5,最适温度均为40℃。该酶对联苯菊酯的米氏常数Km=440.58nmol/mL,最大反应速率Vmax=50.25nmol/min:对甲氰菊酯的米氏常数Km=332.23nmol/mL,最大反应速率Vmax=48.08nmol/min;对氯氰菊酯的米氏常数为Km=372.00nmol/mL,最大反应速率Vmax=63.29nmol/min。该酶与底物作用20min,对浓度分别为50mg/L联苯菊酯、甲氰菊酯、氯氰菊酯的降解率分别为75%、58%、78%。该酶通过硫酸铵沉淀、凝胶过滤、离子交换柱层析等多步纯化;就联苯菊酯而言,降解酶比活力达到125.7U/mg,纯化了6.37倍,回收率为91.7%。经SDS—聚丙烯酰胺凝胶电泳测定,蛋白染色呈现一条主带,该降解酶的分子量约为65K D。等电聚焦测得的酶的等电点约为6.8。冻干后的酶保存于4℃冰箱中一个月后,对联苯菊酯的降解活力剩余70%。
In this study, the HP6890 Gas Chromatography (GC) was used to measure the recovery rates of bifenthrin, mecthrin and cypermethrin in water. The concentration of bifenthrin, mecthrin and cypermethrin were set at 1mg/ L, 10 mg/ L, 100 mg/ L respectively with water. The recovery rates of 3 pesticides were between 95. 47% and 103. 21%, and the coefficient ranged from 2. 21% to 4. 72%.
    From the soil contaminated by pesticides, an E. cloacae strain wlOjl5 was isolated. This microorganism could use bifenthrin, mecthrin and cypermethrin as its unique carbon source. The best growth conditions for wlOjl5 was pH=7. 0, at 30 C . The degradation rates to bifenthrin, mecthrin and cypermethrin were 52.57%, 50.13%, 54.31% respectively. After 72 hours, the microorganism had the highest enzyme product and the highest enzyme activity of roughly 8U/mL (I) refers to mg/min).
    The enzyme has the highest degradation rate at pH=7. 5 and 40 C . Bifenthrin, mecthrin and cypermethrin could be degraded 75%, 58% and 78% respectively. The enzyme has
    Km=440. 58nmol/mL and Vmax=50. 25nmol/min for bifenthrin;
    Km=332.23nmol/mL and Vmax=48. 08nmol/min for mecthrin and
    Km=372.00nmol/mL and Vmax=63. 29nmol/min for cypermethrino
    As far as biphenthrin is concerned, through the procedure of the ammonium sulfate precipitation, the gel gum filter and the ion exchange, the enzyme attains the specific ratio of 125.7U/mg, the purified ratio of 6.37, and the recovery rate of 91.7%. With the SDS-PAGE electrophoresis, the protein presented as a dark line. Compared with the protein marker, the molecular weight of the enzyme is roughly 65 KD. The IEF-PAGE measurement showed pI of the enzyme was 6. 8. The enzyme has 70% of the total degradation activity after one month restoration at 4C.
引文
Alexander M.. Recalcitrant molecules[M]. Biodegradation and Bioremediation, 1994,272-286
    Anderson T.A., Coats J.R.. Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor[J]. Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants and Agricultural Wastes (USA), B30(4): 1995,473-484
    Aronstein B.N., Alexander M.. Effect of non-ionic surfactant added to soil surface on the biodegradation of aromatic hydrocarbons within the soil[J].Applied Microbiology and Biotechnology, 1993,39(3): 386-390
    Barooah A.K., Borthakur M.C.. Residues of alphamethrin in tea and its potential daily intake[J]. Pesticide Research Journal (India), 1994, 6(2): 161-166
    Borow HS. Biological cleanup of extensive pesticide contamination in soil and groundwater[M]. Biotreatment: the use of microorganisms in the treatment of hazardous materials and hazardous wastes: Proceedings of the 2nd National Conference November 27-29, 1989, Washington, D.C. : 1989,51-56
    Boschkova K., Marudov G..Effect of starter cultures on the degradation of organochlorine pesticides[M]. Proceedings: 38th International Congress of Meat Science and Technology: August 23-28, 1992, Clerrnont-Ferrand, France: volume 4:627-629
    Boyle A.W., Silvin C.J., Hassett J.P.,et al. Bacterial PCB biodegradation[J]. Biodegradation, 1992,3(2-3): 285-298
    Briggs J.A., Riley M.B., Whitwell T.. Quantification and remediation of pesticides in runoff water from containerized plant production[J] .Journal of Environmental Quality (USA), 1998,27(4): 814-820
    Chakravartee J., Kakoty N.N.. An approach towards residue free pest control in tea[J]. Two and a Bud, 1992,39(1):2
    Cork D.J., Khalil A.. Detection, isolation, and stability of megaplasmid-encoded
    
    chloroaromatic herbicide-degrading genes within Pseudomonas species[J].Advances in Applied Microbiology (USA), 1995,40:289-321
    Dec J., Bollag J.M.. Dehalogenation of chlorinated phenols during binding to humus[M]. Bioremediation through Rhizosphere Technology, 1994,102-111
    Dejonckheere W., Steurbaut W., Drieghe S., et al. Monitoring of pesticide residues in fresh vegetables, fruits, an other selected food items in Belgium, 1991-1993[J]. Joumal of AOAC International (USA), 1996,79(1): 97-110
    Dick R.E., Quinn J.P.. Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation[J].Applied Microbiology and Biotechnology, 1995,43(3): 545-550
    Diels L., Dong Q.H., Lelie D-van-der, et al. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals[J]. Journal of Industrial Microbiology, 1995,14(2): 142-153
    Fang Ling. Residual dynamics and evaluation of chlorinated hydrocarbon insecticides in tea and its environments[J]. Journal of Fujian Agricultural University, 1998,27(2) :211-215
    Fava F., Armenante P.M., Katkewitz D.. Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain[J]. Letters in Applied Microbiology (United Kingdom), 1995,21(5):307-312
    Feidieker D., Kampfer P., Dott W.. Microbiological and chemical evaluation of a site contaminated with chlorinated aromatic compounds and hexachlorocyclohexanes[J]. FEMS Microbiology Ecology, 1994,15(3-4): 265-278
    Felsot A.S., Mitchell J.K., Dzantor E.K.. Remediation of herbicide-contaminated soil by combinations of landfarming and biostimulation. Bioremediation : science and applications. Madison, Wis. (USA) [J]. Soil Science Society of America : American Society of
    
    Agronomy : Crop Science ofAmerica1995,(2):37-257
    Fernandez N., Sierra M., Garcia J.J., et al. Organochlorine pesticide residues in black tea, camomile, and linden[J]. Bulletin of Environmental Contamination and Toxicology, 1993,50(4), 479-485
    Ferro A.M., Sims R.C., Bugbee B.. Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil[J]. Journal of Environmental Quality (USA), 1994,23(2):272-279
    Frederick R.J., Egan M.. Environmentally compatible applications of biotechnology. Using living organisms to minimize harmful human impact on the environment[J]. BioScience, 1994,44(8): 529
    Frolian Gonzalez J., Hu W.S.. Pentachlorophenol biodegradation: simple models[J]. Environmental Technology (United Kingdom), 1995,16(3): 287-293
    Funk S.B., Crawford D.L., Crawford R.L., et al. Full-scale anaerobic biroemediation of trinitrotoluene (TNT) contaminated soil: a US EPA site program demonstration[J]. Applied Biochemistry and Biotechnology Part A: Enzyme Engineering and Biotechnology,(51-52): 1995,625-633
    Gajbhiye V.T., Agnihotri N.P., Jain H.K.. Cypermethrin residues on tea[J]. Pesticide Research Journal, 1989,1(2) 83-87
    Garg N., Garg K.L., Mukerji K.G.,et al. Microbial degradation of environmental pollutants[M]. Recent Advances in Biodeterioration and Biodegradation: volume 2: Biodeterioration and Biodegradation of Natural and Synthetic Products, 1994,327-362
    Gianfreda L., Bollag J.M.. Effect of soils on the behavior of immobilized enzymes[J]. Soil Science Society of America (USA), 1994,58(6): 1672-1681
    Golovleva L.A.. Microbial methods for the decontamination of soil and ground water[J]. Biotekhnologiya, 1992,8(5):60-64
    Gope B., Borthakur M.. Long term effects of herbicides on nematode population in tea soil[J]. Two and a Bud, 1991,38(1-2): 37-38
    
    
    Grigg B.C., Bischoff M., Turco R.F.. Cocontaminant effects on degradation of triazine herbicides by a mixed microbial culture[J]. Journal of Agricultural and Food Chemistry (USA), 1997,45(3): 995-100
    Havens P.L., Rase H.F.. Reusable immobilized enzyme/polyurethane sponge for removal and detoxification of localized organophosphate pesticide spills[J]. Industrial and Engineering Chemistry Research, 1993,32(10): 2254-2258
    Hirahara Y., Tsumura Y., Nakamura Y., et al. Analysis of phenothrin and its metabolite 3-phenoxybenzoic acid (PBA) in agricultural products by GC and ion-trap GC/MS[J]. Journal of Food Protection (USA), 1997,60(3): 305-309
    Inoue M., Yamamoto A.. An analytical method of bensultap residues in crops and soils[J]. Journal of Pesticide Science, 1986,11(4): 547-555
    Kaake R.H., Roberts D.J., Stevens T.O., et al. Bioremediation of soils contaminated with the herbicide 2-sec-butyl-4,6-dinitrophenol (dinoseb) [J]. Applied and Environmental Microbiology, 1992,58(5): 1683-1689
    Karns J.S., Hapeman C.J., Mulbry W.W., et al. Biotechnology for the elimination of agrochemical wastes[J]. HortScience: a Publication of the American Society for Horticultural Science (USA), 1998,33(4): 626-631
    Karns J.S., Hapeman C.J., Mulbry W.W.,et al. Biotechnology for the elimination of agrochemical wastes[J]. HortScience:a Publication of the American Society for Horticultural Science (USA), 1998,33(4):626-631
    Katayama A., Uchida S., Kuwatsuka S.. Degradation of white-rot fungi under nutrient-rich conditions[J]. Journal of Pesticide Science, 1992,17(4): 279-281
    Kawano M., Ramesh A., Thao V.D.,et al. Persistent organochlorine insecticide residues in some paddy, upland and urban soils of India[J]. International Journal of Environmental Analytical Chemistry, 1992,48(3-4), 163-174
    Kumar S., Mukerji K.G., Lal R.. Molecular aspects of pesticide degradation by microorganisms[J]. Critical Reviews in Microbiology (USA),
    
    1996,22(1) :1-26
    Kuritz T., Wolk C.P.. Use of filamentous cyanobacteria for biodegradation of organic pollutants[J]. Applied and Environmental Microbiology (USA), 1995,61(1): 234-238
    Lamar R.T., Schoenike B., Wymelenberg A.,et al. Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil[J]. Applied and Environmental Microbiology (USA),61 (6): 1995,2122-2126
    Lambert M., Kremer S., Anke H.. Antimicrobial, phytotoxic, nematicidal, cytotoxic, and mutagenic activities of 1-hydroxyprene, the initial metabolite in pyrene metabolism by the basidiomycete Crinipellis stipitaria[J]. Bulletin of Environmental Contamination and Toxicology (USA), 1995,55(2) :251-257
    Lou Ming, Zhong ShaoHua, Cai ShengNing, et al. Determination of buprofezin residues in tea and soil by HPLC[J]. Pesticide-China, 1994,33(2): 18-19
    Mandelbaum R.T., Allan D.L., Wackett L.P.. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine[J]. Applied and Environmental Microbiology (USA), 1995,61 (4): 1451-1457
    Martani E., Seto M.. Degradation of 2,4-dichlorophenol in the microbial community of groundwater sample by bacterial isolate E-6[J].Journal of Pesticide Science, 1991,16(3): 429-434
    Martin Alexander.污染物的生物降解[J].微生物学杂志,1999,19(4):58-62
    Mulbry W., Kearney P.C.. Degradation of pesticides by micro-organisms and the potential for genetic manipnlation[J]. Crop Protection, 1991,10(5):334-346
    Muraleedharan N.. Pesticide residues in India in tea. Problems and prospectives[J]. Planters'-Chronicle (India),89(9) : 1994, 371-375
    Nanny M.A., Bortiatynski J.M., Tien M.,et al. Investigations of enzymatic alterations of 2,4-dichlorophenol using 13C-nuclear magnetic resonance combination with site-specific 13C-labeling: understanding the
    
    environmental fate of this pollutant[J]. Environmental Toxicology and Chemistry (USA), 1996,15(11): 1857-1864
    Norwood V.M., Randolph M.E.. A literature review of biological treatment and bioremediation technologies which may be applicable at fertilizer/agrichemical dealer sites[M].TVA Fertilizer Publications, 1990,Y-215:37
    Otte M.P., Gagnon J., Comeau Y.,et al. Activation of an indigenous microbial consortium for bioaugmentation of pentachlorophenol\creosote contaminated soils[J]. Applied Microbiology and Biotechnology, 1994,40(6): 926-932
    Phukan I., George U.. The effect of commonly used herbicides on activity of microbes from a tea soil[J]. Two and a Bud, 1992,39(1) :34-37
    Phukan I., George U.. The impact of prolonged use of weedicides on tea soil microbiota[J]. Two and a Bud, 1991,38(1/2): 31-34
    Radosevich M., Traina S.J., TuovinenO.H.. Degradation of binary and ternary mixtures of s-triazines by a soil bacterial isolate[J]. Journal of Environmental Science and Health PartB: Pesticides, Food Contaminants, and Agricultural Wastes (USA), B30(4): 1995,457-471
    Rao N., Grethlein H.E., Reddy C.A.. Mineralization of atrazine during composting with untreated and pretreated lignocellulosic substrates[J]. Compost Science and Utilization, 1995,3(3):38-46
    Sato K.. Effect of nutrients on interaction between pesticide pentachlorophenol and microorganisms in soil[M].Bioremediation through Rhizosphere Technology:American Chemical Society, 1994,43-55
    Sendra B., Panadero S., Eremin S.,et al. Kinetic determination of atrazine in foods based on stopped-flow fluorescence polarization immunoassay[J]. Talanta Oxford(United Kingdom), 1998,47(1):153-160
    Shao Z.Q., Behkj R.. Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains[J].Applied and Environmental Microbiology (USA), 1996,62(2):
    
    403-407
    Silver S., Rossmoore H.W.. Resistance systems and detoxification of toxic heavy metals[J]. Biodeterioration and Biodegradation, 1991,(8):308-339
    Struthers J.K., Jayachandran K., Moorman T.B.. Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil[J]. Applied and Environmental Microbiology (USA), 1998,64(9): 3368-3375
    Sumardiyono C. Residue of copper fungicides on tea[J]. Jurnal Perlindungan Tanaman Indonesia (Indonesia), 1996, 2(2): 1-3
    Tao Siming. Prediction on the photodegradative rate of pesticides on tea leaves[J]. Acta Scientiae Circumstantiae (China), 1994,14(1): 64-71
    Top E., Forney L.J.. The significance of degradative plasmids in soil bioremediation[J].Mededelingen-Faculteit-Landbouwkundige-en-Toegep aste-Biologische-Wetenschappen-Universiteit-Gent (Belgium), 1994,59(4a): 1847-1855
    Topalova J., Dimkov R., Kozuharov D., et al. Feasibility study of bioremediation potential of activated sludge towards PCP [pentachlorophenol]: integrated approach[J]. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent (Belgium), 64(5a): 1999,211-214
    Tuomela M., Lyytikainen M., Oivanen P., et al. Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor[J]. Soil Biology and Biochemistry (United Kingdom), 1999,31(1): 65-74
    Wagner S.C., Zablotowicz R.M.. Effect of organic amendments on the bioremediation of cyanazine and fluometuron in soil[J].Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes (USA), 1997,B32(1):37-54
    Wall A.J.,Stratton G.W.. Copper toxicity towards a pentachlorophenol-degrading flavobacterium sp. [J].Bulletin of Environmental Contamination and
    
    toxicology (USA), 1994,52(4): 590-597
    Weekers F., Jacques P., Springael D.,et al. Effect of drying on bioremediation bacteria properties[J]. Applied Biochemistry and Biotechnology (USA), 1998,70/72:311-322
    Whyte L.G.; Inniss W.E.. Transformation of a psychrotrophie bacterium with a plasmid from a mesophile[J]. Current-Microbiology, 1992,25(6): 331-334.
    Xia H.L., Wang Y.G., Wan H.B., et al. Growth dilution by tea plants during the degradation of pesticides in tea plants[J].Journal of Tea Science, 1992,12(1):1-6
    Yang P.Y., See T.S.. Packed entrapped mixed microbial cell process for treatment of pesticide wastes/water[M].Agricultural and Food Processing Waste: Proceedings of the 6th International Symposium on Agricultural and Food Processing Wastes, December 17-18, 1990, Chicago, USA, 1990,376-384
    Young C.S., Burns R.G.. Detection, survival, and activity of bacteria added to soil[J]. Soil Biochemistry, 1993, (8): 1-63
    Zablotowicz R.M., Hoagland R.E., Locke M.A.. Glutathione S-transferase activity in rhizosphere bacteria and the potential for herbicide detoxification[M].Bioremediation through Rhizosphere Technology. Washington, DC (USA). American Chemical Society, 1994,184-198
    Zaborina O., Baskunov B., Baryshnikova L.,et al. Degradation of pentachlorophenol in soil by Streptomyces rochei 303[J], Journal of Environmental Science and Health Part B: Pesticides, Food Contaminants, and Agricultural Wastes (USA), 1997,32(1) :55-70
    Zhang C.G., Xu H.X., Jiang J.N.,et al. Microbial ecology in water area polluted by high concentrations of Cd and Pb[J]. Chinese Journal of Applied Ecology, 1993,4(4):423-429
    Zhou Biqing. Study on the remain degradation of buprofezin in tea by gas chromatography[J]. Journal of Fujian Agricultural University, 1995,24(2): 243-246
    
    
    Zongmao C., Haibin W.. Degradation of pesticides on plant surfaces and its prediction: a case study on tea plant[J]. Environmental Monitoring and Assessment (Netherlands), 1997,44(1-3): 303-313
    曹洁萍.简述出口茶叶中农残含量问题[J]茶叶通报,1999,24(3):23-24,28
    曹志方,王银善.甲胺磷农药的微生物降解[J].环境科学进展,1996,4(6):32-35
    钞亚鹏,赵永芳,刘斌斌,等.甲基营养菌WB-1 甲胺磷降解酶的产生、部分纯化及性质[J].微生物学报,2000,40(5):523-527
    陈常颂,王秀萍.我国有机茶发展现状与展望[J].茶叶科学技术,2001,(2):29,31
    陈大霓,邱先华.茶叶的乐果生物解毒研究[J].蚕桑茶叶通讯,1991,(1):4-6
    陈华才,陈宗懋.赛丹在茶叶中的残留降解动态研究[J].农药,2000,39(3):25,27
    陈万义,薛振祥,王能武.新农药研究与开发[M].北京:化学工业出版社,1999
    陈雪芬.茶园常用农药简介(二)[M].中国茶叶,1991,(2):35
    陈勇,郑向群,张从,等.降解菌对堆肥中多环芳烃降解作用的初步研究[J].农业环境保护,2000,19(1):53-55
    陈勇生,庄源益,戴树桂,等.2,4-二氯酚降解菌的分离及其特性[J].环境科学学报,1999,19(1):28-32
    陈玉成,龚杰.福安市降低茶叶农残的措施与成效[J].福建茶叶,2001,(2):31
    陈宗懋,陈雪芬.新编无公害茶园农药使用手册[M].北京:人民出版社,2000,79
    陈宗懋.我国茶叶卫生质量面临的问题和对策[J].茶业通报,2001,23(1):7-10
    陈宗懋.乌龙茶和花茶中的农药残留问题[J].福建茶叶,2000,(4):2-4
    陈宗懋.迎接茶叶农药残留国际检测的新挑战[J].植保技术与推广,1995,(4):8-9
    程国锋,李顺鹏,沈标,等.微生物降解蔬菜残留农药研究[J].应用与环境生物学报,1998,4(1):81-84
    程暄生,殷先友,叶亚辉.拟除虫菊酯类杀虫剂及增效剂品种手册[M].江苏:江苏省农科院印刷厂印刷,1992,36
    
    
    崔中利,李顺鹏.化学农药的微生物降解及机制[J].江苏环境科技,1998,11(3):1-5
    邓吉生,张雪燕.云南省茶叶受农药污染情况调查[J].云南农业科技,1990,(4):22-23
    董德贤,王镇恒.21世纪茶叶产销趋势及我国茶叶发展之路[J].福建茶叶,1999,(11):42-43
    方玲.降解有机氯农药的微生物菌株分离筛选及应用效果[J].应用生态学报,2000,11(2):249-252
    冯秀琼.农药残留分析技术进展概况[J].农药,1998,37(2):8-10
    傅明,胡宇东,陈新焕.关于茶叶中铅含量测定方法的初步探讨[J].茶叶,2001,27(1):56-57
    郭杰炎,蔡武城.微生物酶[M].北京:科学技术出版社.1986
    华小梅,单正军.我国农药的生产,使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33-45
    黄财标,董丽清.福建茶叶铜含量现状及初制过程污染的探讨[J].福建茶叶,2001,(1):16-19
    黄亚辉.农药在绿色化茶叶生产中的使用[J].茶业通报,1998,20(4):16-17
    江昌俊,李卓民,徐玲,等.茶树品种与水溶性农药残留量关系初探[J].安徽农业科学,1999,27(1):78-79
    姜含春,赵红鹰.绿色消费需求与无公害茶营销[J].茶叶科学,2001,21(1): 17-20
    李春美,谢笔钧.儿茶素氧化聚合产物药理作用研究概况[J].茶叶,2001,27(1):28-34
    李淑彬,周仁超,刘玉焕,等,曲霉M-2降解有机磷农药(甲胺磷)的研究[J].微生物学通报,1999,26(1):27-30
    李旭玫.茶叶中的矿质元素对人体健康的作用[J].中国茶叶,2002,24(2): 30-31
    李湛江,韦朝海,任源,等.硝基苯降解菌生长特性及其降解活性[J].环境科学,1999,20(5):20-24
    梁智群,粟桂娇,李湘萍等.细菌3-脱氧葡糖醛酮代谢酶的纯化及性质研究[J].
    
    生物化学与生物物理进展,2000,27(2):192-196
    林睦芳.绿茶防癌治癌见成效[J].茶叶通讯,2001,(1):12-13
    林学茂,林乃铨.茶叶农残与茶树病虫的科学治理[J].福建茶叶,1998,(1):33-35
    林智,庄丽莲,胡一秀,等.乌龙茶减肥功效的研究现状[J].茶叶科学,2001,21(1):1-3
    林稚兰,黄秀梨.现代微生物学与实验技术[M].北京:科学出版社,2000
    刘芳,钟英长.假单胞菌中乐果降解酶的纯化及其特性的研究[M].硕士论文,1999
    刘光明,黄雅俊.茶叶中溴氟菊酯残留降解动态的研究[J].中国茶叶,1999,21(3)18-19
    刘新,尤民生,魏英智,等.木霉Y对毒死蜱和甲胺磷的降解作用[J].福建农林大学学报,2002,31(4):455-458
    刘玉焕,钟英长.真菌的有机磷农药降解酶产酶条件和一般性质[J].微生物学通报,2000,27(3):162-165
    刘志培,杨惠芳,周培瑾,等.苯胺降解菌的分离和特性研究[J].环境科学学报,1999,19(2):174-179
    吕泽勋,P.Oriel.杀草剂2,4-D降解菌BR316的分离及其质粒的初步研究[J].工业微生物,1993,23(3):17-19
    罗凡,何志强.浅谈茶园用药存在的问题及对策[J].四川农业科技,1998,(6): 17-18
    罗建中,温桂照,陈敏,等.氯代芳香族化合物高效降解菌的驯化与筛选[J].城市环境与城市生态,2001,14(3):24-26
    罗明,庞峻峰,李叙勇等.新疆天山云杉林区森林土壤微生物学特性及酶活性[J].生态学杂志,1997,16(1):26-30
    马梦瑞,王健鹏,韩东等.饲用复合酶制剂的研究——酶的提取工艺条件试验研究[J].饲料工业,1997,18(10):17-19
    买光熙,刘潇威,陈勇等.毛细管气相色谱法同时测定苹果,梨中氯氰菊酯,联苯菊酯和氟氯氰菊酯的残留量[J].农业环境保护,2002,21(3): 260-262,275
    苗雪霞,李喜梅,王金荣等.根霉植酸酶的分离纯化和酶学性质研究[J].南京农
    
    业大学学报,1998,21(3):53-58
    倪皖莉.浅析农药防治茶树害虫的问题及对策[J].茶业通报,1998,20(4): 18-19
    朴宰日,杨贤强.茶叶防癌作用研究进展[J].福建茶叶,2001,(1):42-43
    齐淑华,刘宇红.农药降解的GM(1,1)模型[J].标准化报道,2000,21(1):36-37
    沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1999
    盛小禹,王曦,高静波等.嗜热细菌的碱性磷酸酯酶的研究[J].生物化学杂志,1997,13(6):672-676
    石春华.无公害茶生产的植保技术[J].茶叶,2001,27(2):48-50
    石元值.我国茶叶中铅含量与思考[J].中国茶叶,2001,23(4):18-19
    宋建华,宋冬林,陈涛,等.五氯酚(PCP)高效解菌Pseudomonas sp.CS5的研究[J].应用与环境生物学报,2000,6(6):586-592
    苏峰.浅谈如何降低茶叶产品中的农药残留量[J].福建茶叶,1995,(2):33
    孙威江,蔡建明,黄斌.茶园土壤和茶树叶片农药残留量规律的探讨[J].福建农业大学学报,1997,26(1):39-43
    孙威江,袁弟顺.农艺措施对茶叶农药残留成分降解的作用[J].福建农业大学学报,1998,27(3):307-311
    谭济才,邓欣.茶园合理使用农药的知识问答[J].茶叶通讯,2001,(1):14-18
    田雷,白云玲,钟建江.微生物降解有机污染物的研究进展[J].工业微生物,2000,30(2):46-50
    童小麟,张杰.加入WTO之后湖南茶业的发展对策[J].茶叶通讯,2001,(1): 3-7
    汪玲平.茶叶中农残含量逐年上升的原因分析与对策[J].茶业通报,2001,23(1):36-37
    王永杰,李顺鹏,沈标,等.有机磷农药广谱活性降解菌的分离及其生理特性研究[J].南京农业大学学报,1999,22(2):42-45
    王运浩,万海滨,夏会龙.拟除虫菊酯农药在茶叶中应用的安全性评价[J].中国环境科学,1997,17(2):176-179
    王增辉,吴坤.一种等时距的农药降解模型[J].农业环境保护,1997,16(3)126-128
    
    
    王兆守,林淦,尤民生,等.拟除虫菊酯类农药降解菌的紫外线诱变[J].华东昆虫学报,2003,12(2):82-86
    王兆守,林淦,尤民生,等.拟除虫菊酯降解菌的分离、筛选及鉴定[J].福建农林大学学报(自然科学版),2003,32(2):176-180
    韦朝海,任源,吴超飞.Ochrobactrum anthropi对苯胺的降解特性[J].环境科学,1998,19(5):22-24
    吴树良.茶饲料与茶兽药的开发利用[J].茶叶,2001,27(1):48-51
    夏会龙,万海滨,陈宗懋.气相色谱法检测茶叶及茶园土壤中优乐得的残留[J].中国茶叶,1993,15(2):9
    肖华胜,王银善.假单胞菌WS-5的分离及降解甲胺磷某些性质的研究[J].中国环境科学,1995,15(6):464-469
    谢序宾,王方伟.四川省主要茶区茶叶农药残留量的现状及初步分析[J].四川农业大学学报,1993,11(2):238-241
    谢志攀,陈加勇.安溪县茶叶农残降解十大措施[J].福建茶叶,2001,(2):32
    徐飙.加入WTO对福建茶业影响与对策[J].福建茶叶,2001,(1)29-30
    薛震役,尹光琳.L-山梨糖脱氢酶的纯化及性质的研究[J].微生物学通报,2000,27(2):89-92
    杨安纲,毛积芳,药立波.生物化学与分子生物学实验技术[M].北京:高等教育出版社,2001
    杨志博,松井阳吉,庄丽莲,等.乌龙茶的生物活性成分咖啡因[J].福建茶叶,2001,(2):42-44
    殷坤山.茶园常用农药简介(一)[M].中国茶叶,1991,(1):39
    于观亭.谈谈中国茶业发展趋势[J].茶业通报,2001,23(1):4-6
    余文权.面临WTO我省茶叶商品的市场营销[J].茶叶科学技术,2001,(1):1-4
    虞云龙,陈鹤鑫,樊德方,等.拟除虫菊酯类杀虫剂的酶促降解[J].环境科学,1998,19(3):66-69
    虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略[J].环境科学进展,1996,4(3):28-36
    虞云龙,盛国英,傅家谟.杀灭菊酯的微生物降解及酶促降解[J].环境科学,
    
    1997,18(2):5-8
    张汉鹄,韩宝瑜.茶园污染与无公害茶叶生产[J].中国茶叶,1999,21(3):4-5
    张凌云,陈瑞鸿,曹顺爱,等.茶叶中氟的研究进展[J].茶叶,2002,28(2): 11—13
    张树政,孟广震,何忠效.酶学研究技术[M],北京:科学出版社,1987
    张星海,沈生荣,杨贤强.茶多酚对前列腺癌作用的研究进展[J].福建茶叶,2002,2: 28-30
    张一宾.农药[M].北京:中国物资出版社,1997,18
    张勇帆.建立有机茶园的生产技术措施[J].茶叶科学技术,2001,(2):30-31
    郑善良,胡宝龙,盛宗斗等.微生物学基础[M].北京:化学工业出版社,1992
    周军英,林玉锁,徐亦钢,等.杀虫单降解菌的筛选分离及降解特性研究[J].应用与环境生物学报,2001,7(1):69-71
    周乐民.浅谈有机杀虫剂的微生物降解[J].广西植保,1999,12(1):33-35
    周理飞,郑立盛.建瓯茶叶卫生质量现状与对策[J].茶叶科学技术,2001,(1): 19-20,7
    周理飞.关于茶园科学合理用药的几点意见[J].茶叶科学技术,1999,(4): 44-45
    朱俊庆.坚持安全合理用药,促进茶叶优质高产[J].茶叶,1996,22(1):30-32
    朱鲁生,张玉凤,樊德方.辛硫磷、甲氰菊酯及其混剂对土壤微生物的影响研究[J].农业环境保护,1999,18(1):25-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700