用户名: 密码: 验证码:
黄芪建中丸对TNBS诱导的大鼠结肠炎结肠粘膜损伤的修复作用及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探索黄芪建中丸对TNBS诱导的结肠炎大鼠结肠粘膜损伤的修复作用及其机制。
     方法:采用三硝基苯磺酸(2,4,6-trinitrobenzene sulfonic acid, TNBS)复制大鼠溃疡性结肠炎结肠粘膜损伤模型,并用黄芪建中丸(Huang Qi Jian Zhong Pellet(?), HQJZ)干预治疗14天。黄芪建中丸的疗效主要是通过肉眼下观察和组织学检测来进行评价,结肠微循环状态及结肠局部血流量分别通过倒置显微镜及激光多普勒图像仪进行检测。结肠组织匀浆中三磷酸腺苷(adenosine triphosphate,ATP)、二磷酸腺苷(adenosine diphosphate, ADP)、一磷酸腺苷(adenosine monophosphate AMP)、髓过氧化物酶(myeloperoxidase, MPO)、白介素-6(interleukin-6, IL-6)、白介素-10(interleukin-10, IL-10)分别采用酶联免疫吸试验(enzyme linked immunosorbent assay, ELISA)进行检测,同时采用免疫组织化学的方法检测MPO在结肠粘膜的表达。外周血粘附分子CD11b和结肠组织匀浆中肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)分别采用流式细胞数进行分析。F-actin和Occludin在结肠组织中的表达主要采用免疫荧光染色并在荧光研究下进行观察。AMPK活化激酶(AMP-activated protein kinase-α, AMPK-α)磷酸化-AMPK-α(phospho-AMPK-α,p-AMPK-α).ATP5D,RhoA,Rho激酶(Rho kinase-ⅠI, ROCK-Ⅰ),磷酸化肌球蛋白轻链(phospho-myosin light chain,p-MLC),occludin,Rac-1,p21活化激酶(p21-activated kinase-1,PAK-1)均采用蛋白印迹法进行检测分析。
     结果:经过14天的治疗之后,和未经治疗的TNBS诱导的结肠炎大鼠相比较,黄芪建中丸有效地降低结肠重量、结肠重量指数、结肠肉眼下损伤评分和组织学病理损伤评分,恢复结肠长度,较好地改善了结肠微循环障碍,表现在升高了结肠血流量和毛细血管密度,抑制了结肠粘膜层和浆膜层的白蛋白渗出白细胞滚动和粘附,而且修复了受损结肠粘膜。黄芪建中丸显著升高了AMPK-α,phospho-AMPK-α和ATP5D活性,其结果导致ATP水平升高,下调了ADP/ATP,AMP/ATP的比值恢复了F-actin的聚合作用。而且黄芪建中丸有效地抑制了TNBS诱导的结肠炎大鼠结肠粘膜损伤区域的RhoA和ROCK-Ⅰ的活性升高,Rac-1和PAK-1低表达,抑制了MLC的磷酸化,进而上调了Occludin的表达,下调了CD11b,MPO, TNF一α和IL-6的表达,增强了IL-10的表达。
     结论:
     结论一:黄芪建中丸可有效缓解TNBS诱导的大鼠结肠炎结肠粘膜损伤。
     结论二:黄芪建中丸有效缓解结肠粘膜损伤主要是通过活化AMPK,调节能量状况和Rho/Rac间平衡,改善结肠微循环障碍,维持结肠上皮完整性来实现的。
Objective:The purpose of the present study was to explore the repair mechanism of Huang Qi Jian Zhong Pellet(?)(HQJZ) against2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colonic mucosal injury in rats.
     Methods:Colonic mucosal injury was induced by TNBS in Sprague-Dawley rats followed by treatment with HQJZ for14days. The therapeutic effects of HQJZ were evaluated by macroscopic observation and histological examination, the status of colonic microcirculation and blood flow were observed by inverted intravital microscopy and Laser-Doppler perfusion imager, respectively. The level of adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and productions of myeloperoxidase (MPO), interleukin-6(IL-6) and interleukin-10(IL-10) were measured by enzyme linked immunosorbent assay (ELISA), while MPO expression in colonic mucosa tissues was stained by immunohistochemistry. Expression of CD11b in blood and tumor necrosis factor-a (TNF-a) in colonic mucosa were assessed by flow cytometry analysis. The immunofluorescence staining of F-actin and Occludin in colon tissues were observed by confocal microscopy. The expression of AMP-activated protein kinase-α (AMPK-α), phospho-AMPK-α (p-AMPK-α), ATP5D, RhoA, Rho kinase-Ⅰ (ROCK-Ⅰ), phospho-myosin light chain (p-MLC), Claudin-5, Occludin, Rac-1, p21-activated kinase-1(PAK-1) proteins were analyzed by Western blotting.
     Results:After treatment for14days, compared with TNBS-induced rats without treatment, HQJZ effectively decreased colonic weight, colonic weight index, macroscopic and histological scores, shortened colonic length, and finely improved colonic microcirculation disturbances, as well as increased colonic blood flow and functional capillary density, inhibited albumin leakage, leukocyte rolling on and adhesion to chorion and mucous layer. Moreover, to restore damaged colonic mucosa, HQJZ remarkably enhanced activity of AMPK-α, phospho-AMPK-α and ATP5D which resulted in increase the level of ATP and decrease of the ratio of ADP/ATP and AMP/ATP, and restored F-actin polymerization in TNBS-induced rats treated by HQJZ. Meanwhile HQJZ effectively inhibited increased activity of RhoA and ROCK-I, decreased expession of Rac-1and PAK-1in damaged colonic mucosa of rats induced by TNBS, and restrained MLC phosphorylation, enhanced expression of Occludin, and decreased productions of CD11b, MPO, TNF-a and IL-6, heighted expression of IL-10.
     Conclusions:The present study demonstrated that HQJZ effectively enhanced ATP level and improved energy status to restore damaged colonic mucosa induced by TNBS, which was attributed to activation of AMPK resulted in balance of Rho/Rac and improvement of colonic microcirculatory disturbances.
引文
[1]Walter E Cromer, J Michael Mathis, Daniel N Granger, et al. Role of the endothelium in infammatory bowel diseases. World J Gastroenterol.2011,17(5): 578-593.
    [2]Cho, J. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol.2008,8:458-466.
    [3]Lukas M, Bortlik M, Maratka Z, What is the rigin of ulcerative colitis still more questions than answers [J]. Postgrad mMJ,2006,82:620-625.
    [4]Kane S, Lu F, Kornbluth A, et al. controversiesin mucosal healing in ulcerative colitis [J]. inflamm Bowel Dis,2009,125:796-800.
    [5]盖雅,唐志鹏,袁雷,等.溃疡性结肠炎黏膜愈合评价的研究进展[J].中国中西医结合消化杂志,2012,20(10):471-474.
    [6]姚丽,高霞.溃疡性结肠炎内镜、病理与中医证型相关性研究[J].中国社区医生2012,14(19):257.
    [7]闫伟,盛剑秋,赵晓军,等.327例溃疡性结肠炎临床特征分析[J].胃肠病学,2007,12(2):83-84.
    [8]王宁,王飙落,王新,等.溃疡性结肠炎患者360例临床特征分析[J].胃肠病学,2012,17(6):371-373.
    [9]向正国,陈旭峰,李科军,等.溃疡性结肠炎的临床及内镜特点[J].临床荟萃,2012,27(17):1534-1544.
    [10]田才林,黄宠强.溃疡性结肠炎的临床特点与治疗[J].求医问药,2012,10(4):536-537.
    [11]潘光花.溃疡性结肠炎的情志因素及其干预[J].山东中医杂志,2012,31(5):311-312.
    [12]古丽尼格尔·克力木.溃疡性结肠炎复发相关因素探讨[J].临床医药实践,2012,21(8):568-570.
    [13]林军,邓长生,易季云,等.表皮生长因子及谷氨酰胺防治鼠乙酸性结肠炎的能量代谢研究[J].胃肠病学和肝病学杂志.1994.3(4):256-258.
    [14]SchmitzH, Barmeyer C, FrommM, et a.l Altered tight junction structure contributes to the mi paired epithelial barrier function in ulcerativecolitis [J]. Gastroenterology,1999.116(2):301.
    [15]BOURLIOUXP. KOLETZKOB. GUARNERF. The intestine and its microfioraare partners for the protection of thehost[J]. Am J Clin Nutr,2003.78:675.
    [16]秦环龙,高志光.肠上皮细胞紧密连接在肠屏障中的作用进展[J].世界华人消化杂志,2005,13(4):443-447.
    [17]Torsten Kucharzik, Shaun V Walsh, Jason Chen, et al. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junctionproteins [J]. American Journal of Pathology,2001,159:2001.
    [18]张文远,姜伟炜.白头翁醇提物对大鼠结肠炎肠黏膜上皮细胞紧密连接蛋白的保护作用.世界华人消化杂志[J].2009,17(30):3134-3139.
    [19]Clarke H, Soler AP, Mullin JM. Protein kinase C activation leads to dephosphorylation of occludin and tight junction permeability increase in LLC-PK1 epithelial cell sheets. J Cell Sci 2000; 113 (Pt 18):3187-3196.
    [20]D Ludwig, S Wiener, A Bruning, K Schwarting, et al. Mesenteric blood flow is related to disease activity and risk of relapse in ulcerative colitis:a prospective follow up study. Gut 1999;45:546-552.
    [21]Martin Kruschewski, Tanja Anderson, Christoph Loddenkemper, et al. Endothelin-1 Receptor Antagonist (LU-135252) Improves the Microcirculation and Course of TNBS Colitis in Rats. Dig Dis Sci (2006) 51:1461-1470.
    [22]MARTIN KRUSCHEWSKI, TANJA ANDERSON, HEINZ J. BUHR, et al. Selective COX-2 Inhibition Reduces Leukocyte Sticking and Improves the Microcirculation in TNBS Colitis. Digestive Diseases and Sciences,2006, 51(4):662-670.
    [23]Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability:implications in infammation. Expert Rev Mol Med 2009; 11:e19.
    [24]Mihaescu A, Santen S, Jeppsson B, Thorlacius H. p38 Mitogen-activated protein kinase signalling regulates vascular infammation and epithelial barrier dysfunction in an experimental model of radiation-induced colitis. Br J Surg 2010; 97:226-234.
    [25]Maya V. Gulubova, Irena M. Manolova, Tatyana I. Vlaykova, et al. Adhesion molecules in chronic ulcerative colitis. Int J Colorectal Dis, (2007) 22:581-589.
    [26]Kaatje Smits, Veronica lannucci, Veronique Stove, et al. Rho GTPase Cdc42 is essential for human T-cell development. Haematologica 2010; 95:367-375.
    [27]Stefanie Rimmelea, Peter Gierschikb, Thomas O. Joos, et al. Bead-based protein-protein interaction assays for the analysis of Rho GTPase signalingy. J. Mol. Recognit.2010; 23:543-550.
    [28]Alessandra B. Pernis. Rho GTPase-mediated pathways in mature CD4+T cells. Autoimmunity Reviews 8 (2009) 199-203.
    [29]Chris Doe, Ross Bentley, David J. Behm, et al. Novel Rho Kinase Inhibitors with Anti-inflammatory and Vasodilatory Activities. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS.2007,320:89-98.
    [30]Cora M. L. Beckers; Victor W. M. van Hinsbergh; Geerten P. van Nieuw Amerongen. Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 2010; 103:40-55.
    [31]Beata Wojciak-Stothard, Anne J. Ridley. Rho GTPases and the regulation of endothelial permeability. Vascular Pharmacology 39 (2003) 187-199.
    [32]Liu, F., Schaphorst, K.L., Verin, A.D., Jacobs, K., Birukova, A., Day, R.M., Bogatcheva, N., Bottaro, D.P., Garcia, J.G. Hepatocyte growth factor enhances endothelial cell barrier function and cortical cytoskeletal rearrangement:potential role of glycogen synthase kinase-3beta. FASEB J.2002,16,950-962.
    [33]WangFJ, WangYM, Turner JR. IFN-gamma-andTNF-alpha-induced epithelial barrier dysfunction is associated with myosin light chain kinase (MLCK) protein upregulation and prevented by sulfasalazine via an NF-kappa B independent mechanism [J].Gastroenterology,2004,126 (4):A538.
    [34]Carbajal JM, SchaefferRC Jr. RhoA inactivation enhances endothelial barrier function [J]. Am J Physiol,1999,277:955-957.
    [35]JEAN-PIERRE SEGAIN, DIANE RAINGEARD DE LA BLE'TIE'RE, et al. Rho Kinase Blockade Prevents Inflammation Via Nuclear Factor-kappa B Inhibition: Evidence in Crohn's Disease and Experimental Colitis. GASTROENTEROLOGY. 2003:124:1180-1187.
    [36]Aishah Al-Jarallah. Islam Khan., Mabayoje A. Oriowo. Role of Ca 2-sensitization in attenuated carbachol-induced contraction of the colon in a rat model of colitis. European Journal of Pharmacology 579 (2008) 365-373.
    [37]郭小桥,林淑贞.燕成成.溃疡性结肠炎的中医辨证与用药规律研究[J].辽宁中医药大学学报,2010,12(1):71-72.
    [38]郑小伟,陆红虎,于纪红.黄芪建中汤配伍特点及临床应用浅析[J].浙江中医杂志,2010,45(9):668.
    [39]陆宇峰,薛育政,刘宗良,等.黄芪建中汤联合西药治疗溃疡性结肠炎的临床疗效[J].江苏医药,2010,36(22):2715-2716.
    [40]虞亚菊.辨证治疗慢性结肠炎110例[J].浙江中医学院学报,2003,27(2):48.
    [41]李明,曾艳.黄芪建中汤为主治疗慢性溃疡性结肠炎60例[J].陕西中医,2011,32(9):1134-1135.
    [42]赵莹.60例溃疡性结肠炎中西医结合治疗临床观察[J].内蒙古中医药,2012,1(3):34-35.
    [43]何家桐.黄芪建中汤合用柳氮磺吡啶、氢化可的松治疗溃疡性结肠炎疗效观察[J].广东医学院学报,2002,20(2):128.
    [44]陆宇峰,薛育政,刘宗良,戴泓,张萍芳,尹群.黄芪建中汤联合西药治疗溃疡性结肠炎的临床疗效[J].广东医学院学报,2010,36(22):2715-2716.
    [45]胡柱佳.中西医结合治疗溃疡性结肠炎60例疗效观察[J].临床医药实践杂志,2007,16(9):916-917.
    [46]陈立东,刘莉.中西医结合治疗溃疡性结肠炎60例临床观察[J].中国中医急症,2007,16(12):1467-1468.
    [47]黄慧荣,张贺林,刘化芝.中西医结合治疗溃疡性结肠炎60例临床观察[J].中国现代医学杂志,2008,18(23):3523-3525.
    [48]徐惠明,朱雄雄,张群雄,等.黄芪建中口服液治疗消化性溃疡PGE2及对EGF的影响[J].中国现代药物应用,2011,5(21):1-2.
    [49]裘秀月,徐珊.黄芪建中汤对功能性消化不良大鼠胃肠动力影响的实验研究[J].中国中医药科技,2008,15(3):176-177.
    [50]陈四清,蒋时红,王琦,吴景兰等.黄芪建中汤对慢性萎缩性胃炎大鼠表皮生长因子及其受体基因mRNA表达的影响[J].陕西中医,2007,28(4):502-503.
    [51]刘旺根,陈四清,冯黎,等.黄芪建中汤对慢性萎缩性胃炎大鼠胃黏膜屏障功能的影响[J].陕西中医.2007,28(3):375-376.
    [52]王红伟,蒋时红,刘旺根.黄芪建中汤对脾虚型慢性萎缩性胃炎大鼠免疫功能的影响[J].河南中医,2006,26(8):25-27.
    [53]蒋时红,刘旺根,王雪萍,王玎玎,吴景兰.黄芪建中汤对脾虚型慢性萎缩性胃炎大鼠胃肠道功能的影响[J].中药药理与临床,2006,22(3-4):5-7.
    [54]樊拖迎,周虎,樊群.加味黄芪建中汤对大鼠乙酸胃溃疡胃黏膜的保护作用[J].现代中西医结合杂志,2011,20(15):1846-1848.
    [55]徐升,马佳铭,杨帆,等.黄芪建中汤对胃黏膜损伤模型大鼠MMP-2及TIMP-1表达的影响[J].中华中医药杂志,2011,26(9):2116-2118.
    [56]徐升,汤丽芬,杨帆,等,黄芪建中汤对胃黏膜损伤模型大鼠MMP-2及TIMP-1表达的影响[J].安徽中医学院学报,2010,29(5):50-52.
    [57]汤丽芬,徐升,许祖建,等.黄芪建中汤对胃黏膜损伤模型大鼠VEGF表达的影响[J].中国中医药科技杂志,2011,18(2):100-103.
    [58]单君康.黄芪建中汤合失笑散对消化性溃疡患者热休克蛋白70三叶因子2及瘦素表达的影响[J].中国中医药科技杂志,2011,18(2):100-103
    [59]李俊飞,费建平.中医药治疗溃疡性结肠炎研究概况[J].辽宁中医药大学学报,2012,14(6):241-243.
    [60]梁玉杰,张元澧,朱立鸣.从肝郁脾虚论治溃疡性结肠炎[J].时珍国医国药,2012,23(7):1768-1769.
    [61]王高峰,黄天生.朱生棵辨证治疗溃疡性结肠炎经验[J].中医杂志2010,51s(1):100-101.
    [62]崔俊峰,王建民,李明.中医药治疗溃疡性结肠炎研究进展[J].中医药临床杂志,2011,23(1):92-93.
    [63]郑小伟,陆红虎,于纪红.黄芪建中汤配伍特点及临床应用浅析[J].浙江中医杂志,2010,45(9):678.
    [64]徐重明,汪自源.黄芪建中汤方论浅析[J].实用中医内科杂志2006,20(3):238.
    [65]冯前进.气、生物能与生物能量医学[J].山西中医学院学报,2006,7(5):9.
    [66]孔喜良.黄芪多糖对大鼠肌组织能量代谢的影响[J].中国全科医学,2009,12(10B):1907-1910.
    [67]马先英,荆兆清.黄芪多糖对大鼠力竭运动后不同时相能量代谢相关酶的影响[J].成都体育学院学报,2009.34(3):62-65.
    [68]田春兰.黄芪多糖APS对大鼠能量代谢相关酶影响的研究[J].山东体育科技,2010.32(1):29-31.
    [69]张晶,王洪新,宋莹,等.黄莨甲苷抑制大鼠心肌肥厚及改善心肌能量代谢的 作用观察[J].中成药,2012.34(5):924-928.
    [70]宋莹,王洪新,张晶,等.黄芪多糖对腹主动脉缩窄致大鼠心肌肥厚能量代谢紊乱的抑制作用[J].中国药理学与毒理学杂志,2012,26(2):177-182.
    [71]黄小平,谭华,刘文龙,等.黄芪总苷和三七总皂苷配伍对小鼠脑缺血再灌注脑组织能量障碍的影响[J].湖南中医药大学学报,2012,32(7):19-23.
    [72]詹春,杨静,詹莉,张琳,张晶.异甘草素对脑缺血再灌注小鼠认知功能障碍及能量代谢的影响[J].中国药理学通报,2005,21(2):213-217.
    [73]王飞,伍文彬,徐世军,等.赤、白芍对血瘀证动物模型内皮功能及血液流变学的影响[J].中药药理与临床,2009,25(4):40-41.
    [74]武彩霞,魏欣冰,丁华.生姜有效部位对实验性高脂血症大鼠血管内皮的保护作用[J].中药材,2006,28(9):810-813.
    [75]刘萍,张丽萍.桂枝化学成分及心血管药理作用研究[J].辽宁中医杂志,2012,39(10):1926-1927.
    [76]LIH B, GEYK, LE Z, et al. Astragaloside Ⅵimproved barrie dysfunction induced byacute high glucose in human umbilica vein endothelial cells [J]. Life Sci,2006, 79(12):1186-1193.
    [77]张小毅,黄宁,马丽娟,等.黄芪多糖组分-A1对甲基异柳磷所致血管内皮功能损伤的保护作用[J].安徽农业科学,2012,40(22):11243-11244,11374.
    [78]罗朝勇,龙海生.黄芪建中汤治疗胰腺外瘘的黄芪建中汤治疗胰腺外瘘的细胞免疫学观察细胞免疫学观察[J].中国中医药现代远程教育,2007,5(6):23-24.
    [79]万幸,刘倩娴,陈妙欢.黄芪建中汤和补中益气汤对脾虚模型小鼠免疫调节作用的实验研究[J].中国实验方剂学杂志,1998,4(5):24-27.
    [80]刘旺根,蒋时红,冯黎,等.黄芪建中汤对脾虚型慢性萎缩性胃炎大鼠免疫功能的影响[J].浙江中医杂志,2007,42(7):387-389.
    [81]王红伟,刘旺根,丁瑞敏.黄芪建中汤对脾虚大鼠血液成分及细胞免疫功能的影响[J].河南中医药学刊,2002,17(6):16-17.
    [82]房宇,刘尧.黄芪的免疫调节作用研究进展[J].亚太传统医药2012,8(7):208-209
    [83]顾恪波,何立丽,王逊,黄芪及其提取物对免疫功能的影响[J].辽宁中医杂志,2012,39(11):2326-2329.
    [83]黄小英,刘端勇,赵海梅.黄芪多糖调节免疫作用研究进展[J].江西中医学院学报2008,20(4):75-77.
    [84]刘端勇,赵海梅,周枫,等.黄茛多糖调节小鼠小肠淋巴细胞因子表达[J].中国中医基础医学杂志.2008,14(9):692-693.
    [85]牛嵩山.黄芪甲苷的药理研究进展[J].国医论坛2012.27(4):53-54.
    [86]于春燕.复方甘草甜素对过敏性紫癜患儿免疫功能的影响[J].右江医学,2011,39(3):266-268.
    [87]李东.复方甘草甜素治疗过敏性紫癜疗效观察[J].中国当代医药,2010,17(18):49-50.
    [88]王佳华,毛薇,王晓华,等.复方甘草酸苷注射液对湿疹患者细胞免疫功能的影响[J].中国现代医生,2011,49(22):70-72.
    [89]张丽.复方甘草酸苷片治疗扁平疣疗效分析免疫功能影响[J].中国美容医学,2012,21(10):17-18.
    [90]闵静,敖敏章,胡菁,等.甘草多糖对小鼠细胞免疫的影响[J].湖北职业技术学院学报,2009,12(2):106-108.
    [91]李发胜,赵珏,池晓峰,等.甘草多糖对小鼠免疫调节作用的影响[J].中国中医药信息杂志,2009,16(6):35-36.
    [92]李晓冰,何小鹃,刘彪,等.甘草多糖对H22荷瘤小鼠的免疫调节作用[J].中西医结合学报,2010,8(4):363-367.
    [93]田莉,曾斌芳,燕雪花.甘草在消化系统和免疫系统的药理作用及临床应用[J].新疆中医药,2009,27(4):91-93.
    [94]朱蕾,魏伟.白芍总苷对大鼠胶原性关节炎及其免疫功能的影响[J].中国药学杂志,2007,42(20):1547-1551.
    [95]贾瑜,雷山川,陈元,等.白芍总营胶囊对慢性荨麻疹T细胞免疫平衡的影响[J].中国药房,2012,23(24):2240-2243.
    [96]马丽,李作孝.白芍总苷的免疫调节功能及其临床应用[J].中国实验方剂学杂志,2010,16(17):244-247.
    [97]刘德义,孙运,顾有方,等.大枣多糖对小鼠红细胞免疫功能的影响[J].新疆中医药,2009,16(3):202-203.
    [98]刘丹丹,郑丰渠,苗明三.大枣多糖对氢化可的松致小鼠免疫抑制模型免疫功能的影响[J].新疆中医药,2011.26(7):809-810.
    [99]王忠成.从瘀论治溃疡性结肠炎[J].山东中医杂志,2011.3(9):680-681.
    [100]杜丽明.从瘀论治溃疡性结肠炎体会[J].河南中医.2011.32(12):1702-1703.
    [101]缪卫华,汪荫华,缪春润.溃疡性结肠炎从瘀论治的再认识[J].河南中医 2011,32(12):1702-1703.
    [102]张国用.中药黄芪的药理作用及其临床应用研究[J].实用心脑肺血管病杂志2012.20(6):1059-1060.
    [103]卞俊,鲍蕾蕾,储智勇,等.黄芪甲苷对家兔血液流变学的影响[J].解放军药学,2005.21(6):456-458.
    [104]许艳,高佩畸,梁庆成,等.黄芪多糖对脑血栓的疗效试验研究[J].中国血液流变学杂志,1999,9(3):133-136.
    [105]刘萍,张丽萍.桂枝化学成分及心血管药理作用研究[J].中国血液流变学杂志,2012,39(10):1926-1927.
    [106]赵菊宏,刘书苑.桂枝的药理作用和临床应用[J].医学信息,2011,4:1575.
    [107]赵建一.桂枝的药理研究及临床新用[J].光明中医,2010,25(8):1546.
    [108]李佰玲.浅析白芍配伍桂枝抗炎的作用[J].光明中医,2012,27(9):1747-1748.
    [109]陈丽平.白芍配合桂枝抗炎作用分析[J].中国现代药物应用2011,5(4):175-176.
    [110]唐菲,於建鹏,张松.白芍配伍桂枝抗炎的药理学作用及机制[J].湖南中医药大学学报,2012,32(2):5-6.
    [111]田连起,黄鹤归,叶晓川,等.桂枝生姜药对SFE-CO2萃取物体外抗甲型流感病毒(H1N1及GC/MS研究[J].中国医院药学杂志,2012,32(14):1100-1104.
    [112]Oladimeji FA, Orafidiya OO, OgunniyiTA, AdewunmiTA. Pedic. ulocidal and scabicidal properties of lippiamultiflora essentialoil[J]. Ethnopharmacol,2000, 72(2):305-311.
    [113]段琦梅,梁宗锁,杨东风,等.黄芪、党参乙醇提取物抗菌活性研究[J].中成药,2012,34(11):2220-2223.
    [114]刘会艳.黄芪及其制剂的药理作用和临床应用[J].内蒙古中医药2012,11:44-45.
    [115]Wang SG, Li JY, Huang H, et al. Anti-hepatitis B virus activities of astragaloside IVisolated from Astragali Radix [J]. Biol Pharm Bull,2009, 32(1):132.
    [116]李晓红,齐云,蔡润兰,等.甘草总皂苷抗炎作用机制研究[J].中国实验方剂学杂志.2010,16(5):110-113.
    [117]张明发.沈雅琴.甘草及其活性成分抗炎与抗炎机制的研究进展[J].现代药物与临床,2011,26(4):261-268.
    [118]沈晓东,黄黛瑛.白芍抗炎镇痛的药理学研究进展[J].中国现代药物应用,2009,3(24):197-200.
    [119]李辉,文莉.白芍总苷的抗炎活性[J].现代药物与临床,2011,31(4):283-286.
    [120]朱路,王贵林,姚观平,等.生姜油抗炎和抗超敏反应作用研究[J].时珍国医国药,2007,18(1):105-106.
    [121]王贵林,朱路.生姜油的抗炎作用[J].中药药理与临床,2006,22(5):26-28.
    [122]Segain JP, Raingeard de la Bletiere D, et al. Rho kinase blockade prevents inflammation via nuclear factor kappa B inhibition:evidence in Crohn's disease and experimental colitis. Gastroenterology.2003; 124(5):1180-7.
    [123]Paris D, Quadros A, Humphrey J, Patel N, Crescentini R, Crawford F, Mullan M. Nilvadipine antagonizes both Abeta vasoactivity in isolated arteries, and the reduced cerebral blood flow in APPsw transgenic mice. Brain Res.2004; 999: 53-61.
    [124]Huang P, Zhou CM, Qin-Hu, Liu YY, Hu BH, Chang X, Zhao XR, Xu XS, Li Q, Wei XH, Mao XW, Wang CS, Fan JY, Han JY. Cerebralcare Granule(?) attenuates blood-brain barrier disruption after middle cerebral artery occlusion in rats. Expeimental Neurology.2012; 237:453-463.
    [125]Butzner JD, Parmar R, Bell CJ, Dalal V. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat[J]. Gut.1996;38(4):568-73.
    [126]Nicole Schmidt, Erik Gonzalez, Alexander Visekruna, et al. Targeting the proteasome:partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis[J]. Gut,2010; 59: 896-906.
    [127]Sun K, Wang CS, Guo J, Liu YY, Wang F, Liu LY, He JG, Fan JY, Han JY. Effect of Panax notoginseng saponins on lipopolysaccharide-induced adhesion of leukocytes in rat mesenteric venules. Clin Hemorheol Microcirc.2006; 34: 103-108.
    [128]Zhao N. Liu YY, Wang F, Hu BH, Sun K, Chang X, Pan CS, Fan JY, Wei XH. Li X, Wang CS, Guo ZX, Han JY. Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am J Physiol Heart Circ Physiol.2010; 298: H1166-H1176.
    [129]Kruschewski M, Foitzik T, Perez-Canto A, Hubotter A, Buhr HJ. Changes of colonic mucosal microcirculation and histology in two colitis models:an experimental study using intravital microscopy and a new histological scoring system. Dig Dis Sci.2001; 46:2336-2343.33.
    [130]Zhao N, Liu YY, Wang F, Hu BH, Sun K. Chang X, Pan CS, Fan JY, Wei XH, Li X, Wang CS, Guo ZX, Han JY. Cardiotonic pills, a compound Chinese medicine, protects ischemia -reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am J Physiol Heart Circ Physiol.2010; 298: H1166-H1176.34.
    [131]Sun K, Hu Q, Zhou CM, Xu XS, Wang F, Hu BH, Zhao XY, Chang X, Chen CH, Huang P, An LH, Liu YY, Fan JY, Wang CS, Yang L, Han JY. Cerebralcare Granule(?), a Chinese herb compound preparation, improves cerebral microcirculatory disorder and hippocampal CA1 neuron injury in gerbils after ischemia-reperfusion. J Ethnopharmacol.2010; 130:398-406.
    [132]Chen X, Zhou C, Guo J, Sun K, Zhao N, Yang J, Sun Y, Liu X, Hibi T, Liu Z, Han J. Effects of dihydroxylphenyl lactic acid on inflammatory responses in spinal cord injury. Brain Res.2011; 1372:160-168.
    [133]37. Zhang B, Liu ZY, Li YY, Luo Y, Liu ML, Dong HY, Wang YX, Liu Y, Zhao PT, Jin FG, Li ZC. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci.2011; 44:573-579.
    [134]伏代刚,甘华田.92例溃疡性结肠炎临床及病理结果分析[J].华西医学,2007,22(2):356-357.
    [135]陈治水,陈宁.溃疡性结肠炎中西医结合研究新进展[J].中国中西医结合杂志,2012,32(4):437-442.
    [136]施听,魏龙富,俞翁非,等.溃疡性结肠炎患者凝血功能的改变[J].中华消化杂志,2002,22(4):202.
    [137]宋锡民.黄芪建中汤临床妙用[J].中国急症医学,2009,18(8):1360-1361.
    [138]张歆.柯晓.溃疡性结肠炎的中医药治疗研究进展[J].长治医学院学报,2012,26(1):77-80.
    [139]Korelitz BI. Mucosal healing as an index of colitis activity:back to histological healing for future indices [J]. Inflamm Bowel Dis,2010,16:1628-1630.
    [140]IACUCCI M, GHOSH S. Looking beyond symptom relief:evolution of mucosal healing in inflammatory bowel disease [J]. Therap Adv Gastroenterol, 2011,04:129-143.
    [141]HIRATA I, MURANO M. Endoscopic diagnosis of refractory ulcerative colitis[J]. Inflammo Pharmacology,2007,15:22-25.
    [142]EADEN JA, ANRAMS KR, MAYBERRY JE. The risk of colorectal cancer in ulcerative colitis:a meta analysis [J]. Gut,2001,48:526-535.
    [143]FRSLIE KF, JAHNSEN J, MOUM BA, et al. Mucosal healing in inflammatory bowel disease:results from a norweigian population based cohort [J]. Gastroenterology,2007,133:412-422.
    [144]ARDIZZONE S, CASSIN OTTI A, DUCA P, et al. Mucosal healing predicts late outcome after the first course of corticosteroids for newly diagnosed ulcerative colitis [J]. Clin Gastroenterol Hepatol,2011,9:483-489.
    [145]SCHOEPFER AM, BELINGER C, STRAUMANN A, et al. Ulcerative colitis: Correlation of the rachmile-with endoscopic activity index with fecal calprotectin, clinical activity C-reactive protein, and blood leukocytes [J]. Inflamm Bowel Dis,2009,15:1851-1858.
    [146]盖雅,唐志鹏,袁雷.溃疡性结肠炎黏膜愈合评价的研究进展[J].中国中西医结合消化杂志,2012,22(10):471-474.
    [147]Katchar K, Kelly CP, Keates S, et al. MIP-3alpha neutralizing monoclonal antibody protects against TNBS-induced colonic injury and inflammation in mice. Am J Physiol Gastrointest Liver Physiol.2007; 292(5):G1263-71.
    [148]Jerkic M, Peter M, Ardelean D, et al. Dextran sulfate sodium leads to chronic colitis and pathological angiogenesis in Endoglin heterozygous mice. Inflamm Bowel Dis.2010; 16(11):1859-70.
    [149]Soucy G, Wang HH, Farraye FA, et al. Clinical and pathological analysis of colonic Crohn's disease, including a subgroup with ulcerative colitis-like features. Mod Pathol.2012; 25(2):295-307.
    [150]Dino J Ravnic, Moritz A Konerding, Akira Tsuda, et al. Structural adaptations in the murine colon microcirculation associated with hapten-induced inflammation. Gut 2007:56:518-523.
    [151]Ludwig D, Wiener S. Bruning A. et al. Mesenteric blood flow is related to disease activity and risk of relapse in ulcerative colitis:a prospective follow up study. Gut.1999; 45(4):546-52.
    [152]Bai A, Ma AG, Yong M, et al. AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis. Biochem Pharmacol.2010; 80(11):1708-17.
    [153]Kameyama J, Narui H, lnui M, et al. Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku J Exp Med.1984; 143(2):253-4.
    [154]Lomer MC. Dietary and nutritional considerations for inflammatory bowel disease. Proc Nutr Soc 2011; 70:329-335.
    [155]Shamir R. Nutritional aspects in inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2009; 48 Suppl 2:S86-S88.
    [156]AI-Awadi FM, Khan. Blood Purine and Energy Status in Rats with Colitis. Dig Dis Sci.2001; 46(2):443-8.
    [157]Kucharzik T, Walsh SV, Chen J, et al. Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol.2001; 159(6):2001-9.
    [158]Oshima T, Laroux FS, Coe LL, et al. Interferon-gamma and interleukin-10 reciprocally regulate endothelial junction integrity and barrier function. Microvasc Res 2001; 61:130-143
    [159]Hering NA, Schulzke JD. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig Dis.2009; 27(4):450-4.
    [160]Laukoetter MG, Nava P, Nusrat A. Role of the intestinal barrier in inflammatory bowel disease. World J Gastroenterol.2008; 14(3):401-7.
    [161]Wojciak-Stothard B, Ridley AJ. Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol.2003; 39(4-5):187-99.
    [162]Segain JP, Raingeard de la Bletiere D, et al. Rho kinase blockade prevents inflammation via nuclear factor kappa B inhibition:evidence in Crohn's disease and experimental colitis. Gastroenterology.2003; 124(5):1180-7.
    [163]Kanazawa I, Yamaguchi T, Yano S. et al. Activation of AMP kinase and inhibition of Rho kinase induce the mineralization of osteoblastic MC3T3-E1 cells through endothelial NOS and BMP-2 expression. Am J Physiol Endocrinol Metab.2009; 296(1):E139-46.
    [164]Yoshida M, Sawada T, Ishii H, et al. Hmg-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological tlow conditions in vitro:involvement of Rho GTPase-dependent mechanism.Arterioscler Thromb Vasc Biol.2001;21(7):1165-71.
    165] Ming Li, Yan Zeng. Effect of Huang Qi Jian Zhong Pellet treated 60 patients of chronic ulcerative colitis. Journal of ShanXi TCM,2011; 32 (9):1134-1135.
    [166]Yu-Feng Lu, Yu-Zheng Xue, Zong-Liang Liu, et al. Therapeutic effect of Huang Qi Jian Zhong Pellet combined with modern medicine on chronic ulcerative colitis. Journal of JiangShu TCM,2010; 6(22):2715-2716.
    [167]Huang XP, Tan H, Chen BY, et al. Astragalus extract alleviates nerve injury after cerebral ischemia by improving energy metabolism and inhibiting apoptosis. Biol Pharm Bull.2012; 35(4):449-54.
    [168]Emerling BM, Weinberg F, Snyder C, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med.2009; 46(10):1386-91.
    [169]Jin X, Malykhina AP, Lupu F, et al. Altered gene expression and increased bursting activity of colonic smooth muscle ATP-sensitive K+ channels in experimental colitis. Am J Physiol Gastrointest Liver Physiol.2004; 287(1): G274-85.
    [170]Kaneider NC, Egger P, Dunzendorfer S, et al. Rho-GTPase-dependent platelet-neutrophil interaction affected by HMG-CoA reductase inhibition with altered adenosine nucleotide release and function.Arterioscler Thromb Vasc Biol.2002; 22(6):1029-35.
    [171]Gonzalez-Mariscal L, Betanzos A, Nava P, et al. Tight junction proteins. Prog Biophys Mol Biol 2003; 81:1-44.
    [172]Ivanov AI, Nusrat A, Parkos CA. Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. Bioessays, 2005; 27:356-365.
    [173]Saito H, Minamiya Y, Kitamura M, et al. Endothelial myosin light chain kinase regulates neutrophil migration across human umbilical vein endothelial cell monolayer. J. Immunol.1998; 161.1533-1540.
    [174]Tinsley J.H, Wu M.H, Ma W. et al. Activated neutrophils induce hyperpermeability and phosphorylation of adherens junction proteins in coronary venular endothelial cells. J. Biol.Chem.1999; 274.24930-24934.
    [175]Tsuji T. Ishizaki T, Okamoto M, et al. ROCK and mDial antagonize in Rho-dependent Rac activation in Swiss 3T3 fibroblasts. J. Cell Biol.2002; 157. 819-830.
    [176]Garcia J.G, Liu F,Verin A.D, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J. Clin. Invest.2001; 108,689-701.
    [1]Ridley, A.J. Rho family proteins:coordinating cell responses. Trends Cell Biol. 2001.11:471-477.
    [2]van Nieuw Amerongen, G.P., van Hinsbergh, V.W. Cytoskeletal effects of rho-like small guanine nucleotide-binding proteins in the vascular system. Arterioscler. Thromb. Vasc. Biol.2001,21,300-311.
    [3]Kaatje Smits, Veronica lannucci, Veronique Stove, et al. Rho GTPase Cdc42 is essential for human T-cell development. Haematologica 2010,95:367-375.
    [4]Bustelo XR, Sauzeau V, Berenjeno IM. GTP-binding proteins of the Rho/Rac family:regulation, effectors and functions in vivo. Bioessays.2007;29(4):356-70.
    [5]Stefanie Rimmelea, Peter Gierschikb, Thomas O. Joos, et al. Bead-based protein-protein interaction assays for the analysis of Rho GTPase signaling. J. Mol. Recognit.2010,23:543-550.
    [6]Rossman KL, Der CJ, Sondek J. GEF means go:turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol.2005;6(2):167-80.
    [7]Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature.2002,420 (6916):629-35.
    [8]Alessandra B. Pernis. Rho GTPase-mediated pathways in mature CD4+T cells. Autoimmunity Reviews 2009,8:199-203.
    [9]Geerten P. van Nieuw Amerongen, Victor W.M. van Hinsbergh. Cytoskeletal Effects of Rho-Like Small Guanine Nucleotide-Binding Proteins in the Vascular System. Arterioscler Thromb Vasc Biol.2001,21;300-311.
    [10]Chris Doe, Ross Bentley, David J. Behm, et al. Novel Rho Kinase Inhibitors with Anti-inflammatory and Vasodilatory Activities. THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS.2007.320:89-98.
    [11]Gervaise Loirand, Patrice Gue'rin, Pierre Pacaud. Rho Kinases in Cardiovascular Physiology and Pathophysiology. Circ. Res.2006.98;322-334.
    [12]Riento K and Ridley AJ ROCKs:multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol.2003,4:446-456.
    [13]Cora M. L. Beckers; Victor W. M. van Hinsbergh; Geerten P. van Nieuw Amerongen. Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 2010,103:40-55.
    [14]Etienne-Manneville S and Hall A. Rho GTPases in cell biology. Nature 2002,420: 629-635.
    [15]Beata Wojciak-Stothard, Anne J. Ridley. Rho GTPases and the regulation of endothelial permeability. Vascular Pharmacology,2008,39:187-199.
    [16]Laufs, U., Endres, M., Stagliano, N., Amin-Hanjani, S., Chui, D.S., Yang, S.X., Simoncini, T., Yamada. M., Rabkin, E., Allen, P.G., Huang, P.L., Bohm, M., Schoen, F.J., Moskowitz, M.A., Liao, J.K., Neuro-protection mediated by changes in the endothelial actin cytoskeleton.J. Clin. Invest.2000,106,:15-24.
    [17]Takemoto, M., Sun, J., Hiroki, J., Shimokawa, H., Liao, J.K Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation,2002,106:57-62.
    [18]Eto M, Barandier C, Rathgeb L, Kozai T, Joch H, Yang Z, Luscher TF. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin converting enzyme-1 expression by distinct pathways:role of Rho/ROCK and mitogen activated protein kinase. Circ Res.2001,89:583-590.
    [19]Liu, F., Schaphorst, K.L., Verin, A.D., Jacobs, K., Birukova, A., Day, R.M., Bogatcheva, N., Bottaro, D.P., Garcia, J.G. Hepatocyte growth factor enhances endothelial cell barrier function and cortical cytoskeletal rearrangement: potential role of glycogen synthase kinase-3beta. FASEB J.2002,16:950-962.
    [20]Wojciak-Stothard, B., Potempa, S., Eichholtz, T., Ridley, A.J. Rho and Rac but not Cdc42 regulate endothelial cell permeability. J. Cell.Sci.2001,114,1343-1355.
    [15]Beata Wojciak-Stothard, Anne J. Ridley. Rho GTPases and the regulation of endothelial permeability. Vascular Pharmacology,2002,39:187-199.
    [21]Qiang Shen, Mack H Wu, Sarah Y Yuan, et al. Endothelial contractile cytoskeleton and microvascular permeability. Cell Health Cytoskelet.2009, (1): 43-50.
    [22]Geerten P. van Nieuw Amerongen, Victor W.M. van Hinsbergh. Cytoskeletal Effects of Rho-Like Small Guanine Nucleotide-Binding Proteins in the Vascular System. Arterioscler Thromb Vasc Biol.2001;21;300-311.
    [23]Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K. Ricks-Cord A, Natarajan V, Alieva I, Garcia JG, Verin AD. Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction:role of Rho-dependent mechanisms. J Cell Physiol.2004, 201:55-70.
    [24]Gorovoy M,Niu J, Bernard O, Profirovic J, Minshall R, Neamu R, VoynoYasenetskaya T. LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J Biol Chem.2005;280: 26533-26542.
    [25]Rolfe BE, Worth NF, World CJ, Campbell JH, Campbell GR. Rho and vascular disease. Atherosclerosis.2005,183:1-16.
    [26]Madjdpour, C., Oertli, B., Ziegler, U., Bonvini, J.M., Pasch, T., Beck-Schimmer B. Lipopolysaccharide induces functional ICAM-1 expression in raalveolar epithelial cells in vitro. Am. J. Physiol., Lung Cell. Mol. Physiol,2000,278, L572-1579.
    [27]Etienne, S., Adamson, P., Greenwood, J., Strosberg, A.D., Cazaubon, S., Couraud, P.O. ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J. Immunol.1998,161,5755-5761.
    [28]Yasuhiro Yagi, Hitomi Otani, Seijitsu Ando. Involvement of Rho signaling in PAR2-mediated regulation of neutrophil adhesion to lung epithelial cells. European Journal of Pharmacology,2006,536:19-27.
    [29]Philip V. LoGrasso, Yangbo Feng. Rho Kinase (ROCK) Inhibitors and Their Application to Inflammatory Disorders. Current Topics in Medicinal Chemistry, 2009,9,704-723.
    [30]Benard V, Bohl BP, Bokoch GM. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPase. J Biol Chem.1999,274:13198-13204.
    [31]Ridley AJ. Rho proteins, PI3-kinases, and monocyte/macrophage motility. FEBS Lett 2001,498:168-171.
    [32]Lara Pizurki, Zongmin Zhou, Konstantinos Glynos, et al. Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. British Journal of Pharmacology.2003,139:329-336.
    [33]Yasuhiro Yagi. Hitomi Otani, Seijitsu Ando. Involvement of Rho signaling in PAR2-mediated regulation of neutrophil adhesion to lung epithelial cells. European Journal of Pharmacology.2006.536:19-27.
    [34]Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration:integrating signals from front to back. Science.2003.302:1704-1709.
    [35]Worthy lake RA, Lemoine S, Watson JM, Burridge K. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol.2001.154: 147-160.
    [36]Worthylake RA. Burridge K. RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem.2003,278:13578-13584.
    [37]Worthylake RA, Burridge K. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr Opin Cell Biol.2001, 13:569-577.
    [38]Qian Zhou, Christoph Gensch, James K. Liao. Rho-associated coiled-coil-forming kinases (ROCKs):potential targets for the treatment of atherosclerosis and vascular disease. Trends in Pharmacological Sciences, March 2011,32, (3):167-173.
    [39]Xu J, Wang F, Van Keymeulen A, et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell.2003, 114:201-214.
    [40]Li Z, Dong X, Wang Z, et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol.2005,7:399-404.
    [41]Kawakami, A., Tanaka, A., Nakajima, K., Shimokado, K., Yoshida, M. Atorvastatin attenuates remnant lipoprotein-induced monocyte adhesion to vascular endothelium under flow conditions. Circ. Res,2002,91,263-271.
    [42]Sinnett-Smith, J., Lunn, J.A., Leopoldt, D., Rozengurt, E. Y-27632, an inhibitor of Rho-associated kinases, prevents tyrosine phosphorylation of focal adhesion kinase and paxillin induced by bombesin:dissociation from tyrosine phosphorylation of p130CAS. Exp Cell Res,2001,266:292-302.
    [43]Roberts AW, Kim C, Zhen L, et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity.1999,10:183-196.
    [44]Glogauer M, Marchal CC, Zhu F, et al. Racl deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol.2003,170:5652-5657.
    [45]Gu Y, Filippi MD. Cancelas JA, et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science.2003,302:445-449.
    [46]Williams DA, Tao W, Yang F, et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood.2000,96:1646-1654.
    [47]Marie-Dominique Filippi, Kathleen Szczur, Chad E. Harris, et al. Rho GTPase Racl is critical for neutrophil migration into the lung. Blood,2007,109: 1257-1264.
    [48]Pestonjamasp KN, Forster C, Sun C et al. Racl links leading edge and uropod events through Rho and myosin activation during chemotaxis. Blood.2006, 108:2814-20.
    [49]Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A.2004,101:7618-7623.
    [50]J. Song, Y.P. Lu, G.H. Luo, et al. Effects of Mycophenolate Mofetil on Chronic Allograft Nephropathy by Affecting RHO/ROCK Signal Pathways. Transplantation Proceedings,2008,40,2790-2794.
    [51]Ridley A. Rho GTPases:integrating integrin signaling. J Cell Biol.2000,150(4): F107-F109.
    [52]Geerten P. van Nieuw Amerongen, Victor W.M. van Hinsbergh. Cytoskeletal Effects of Rho-Like Small Guanine Nucleotide-Binding Proteins in the Vascular System. Arterioscler Thromb Vasc Biol.2001,21;300-311.
    [53]Zhao D, Keates AC, Kuhnt-Moore S, Moyer MP, Kelly CP, and Pothoulakis C. Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J Biol Chem.2001,276:44464-44471.
    [54]Cammarano MS and Minden A. Dbl and the Rho GTPases activate NFκB by IκB kinase (IKK)-dependent and IKK-independent pathways. J Biol Chem,2001,276: 25876-25882.
    [55]Giuseppe Penna, Benedetta Fibbi, Susana Amuchastegui, et al. The Vitamin D Receptor Agonist Elocalcito I Inhibits IL-8-Dependent Benign Prostatic Hyperplasia Stromal Cell Proliferation and Inflammatory Response by T argeting the RhoA/Rho Kinase and NF-kB Pathways. The Prostate, 2009,69:480-493.
    [56]Dezheng Zhao.Sabina Kuhnt-Moore.Huiyan Zeng, et al. Neurotensin stimulates IL-8 expression in human colonicepithelial cells through Rho GTPase-mediated NF-KB pathways. Am J Physiol Cell Physiol,2003, 284:C1397-C1404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700