八面体中3d~1离子的自旋哈密顿参量的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3d~1离子(如V~(4+)、Ti~(3+)等)是非常重要的过渡金属离子,人们对掺杂3d~1离子物质的电子顺磁共振谱(EPR)进行了大量研究,积累了丰富的实验数据。但是,对这些EPR实验结果的理论解释则不太令人满意。例如,大多数工作都采用粗糙的g因子和超精细结构常数二阶微扰公式,其中只考虑了中心离子旋轨耦合作用对自旋哈密顿参量的贡献,而忽略了配体轨道及配体旋轨耦合作用的贡献,因而对一些实验结果难以给出合理的解释。此外,尚有部分实验数据至今未有理论上的分析。为了克服前人工作中的不足,本文基于离子簇模型,采用Marcfarlane强场微扰法得到四角和斜方畸变的压缩八面体中3d~1离子的g因子和超精细结构常数的三阶微扰公式,并将这些公式应用于(NH_4)_2SbCl_5中的四角VO~(2+)中心、锐钛矿填隙位置的四角、V~(4+)中心、金红石系列晶体中的斜方、V~(4+)中心等体系,满意地解释了EPR实验结果,并获得了掺杂离子的局部结构信息。
     (1)对于(NH_4)_2SbCl_5中四角VO~(2+)中心,考虑了配体轨道及旋轨耦合作用的贡献。同时确定了前人实验未给出的超精细结构常数A因子的符号。
     (2)对于锐钛矿中填隙、V~(4+)中心,克服了前人采用较多的调节参量,忽略配体轨道及旋轨耦合作用对自旋哈密顿参量贡献的不足,同时给出了超精细结构常数A的定量解释。
     (3)对于金红石中填隙、V~(4+)中心,发现当V~(4+)离子占据填隙位后,原来的压缩八面体环境会略微伸长即平行方向键长伸长0.28(?)(R_∥(?)1.95(?)),垂直方向键长缩收0.14(?)(R_x(?)2.09(?)),显然此时的局部环境仍是压缩八面体。
     (4)对于金红石型MO_2(M=Ti、Ge、Sn)晶体替位、V~(4+)中心,研究发现,由于Jahn-Teller效应,配体多面体由母体时的伸长八面体变成杂质中心的压缩八面体。另外,由于体系具有较强的共价性,配体轨道和旋轨耦合作用的贡献不能忽略。
As important model systems, 3d~1 ions (Ti~(3+), V~(4+), Cr~(5+)) have been extensivelyinvestigated by means of electron paramagnetic resonance (EPR), and manyexperimental data for spin Hamiltonian parameters g factors and the hyperfine structureconstants were also measured. As for the theoretical analyses, some experimental resultsfor 3d~1 ions in tetragonally and rhombically compressed octahedra were not been treated,and some others were not satisfasctorily interpreted. The weakness of the previousstudies lies in (ⅰ) adoption of the simple second-order perturbation formulas of the gfactors and (ⅱ) neglecting of the contributions from the ligand orbits and spin-orbitcoupling coefficients. In order to make further investigations on the spin Hamiltonianparameters for the above 3d~1 centers, they are quantitatively analyzed from theirhigh-order perturbation formulas for a 3d~1 ion in tetragonally and rhombicallycompressed octahedra. In these formulas, the contributions to the spin Hamiltonianparameters from the s- and p-orbital as well as the spin-orbit coupling of ligands aretaken into account based on the cluster approach. In addition, the information about thedefect structures of the 3d~1 impurity centers can be connected with the low symmetricaldistortions and thus the spin Hamiltonian parameters.
     (1) For the tetragonal VO~(2+) in (NH_4)_2SbCl_5, the contributions to the spin Hamiltonianparameters from the s- and p-orbital as well as the spin-orbit coupling of ligands arefound to be significant and cannot be neglected, and the signs of the experimentalhyperfine structure constants are also theoretically determined.
     (2) For the interstitial V~(4+) in anatase (TiO_2), the above contributions to the spinHamiltonian parameters are also taken into account and the quantitative interpretation tothe hyperfine structures A_i factors are carried out.
     (3) For the interstitial V~(4+) in rutile (TiO_2), stretching and contraction of the parallel andperpendicular bonding lengthes by about 0.28(?) and 0.14(?) compare to those in thehost is obtained for the impurity.
     (4) For the substitutional V~(4+) centers in rutile type MO_2(M=Ti,Ge,Sn), the (VO_6)~(8-)clusters change from elongation in the hosts to compression in the impurity centers due to the Jahn-Teller effect. In additon, the contributions from the ligand orbital andspin-orbit coupling contributions are not negligible because of the significant covalencyof the systems.and the liand ions become significant, because of the high valence stateof the impurity V~(4+). So contributions from the s- and p-orbital as well as the spin-orbitcoupling of ligands must be consider in theoretical studies on Spin Hamiltonianparameters of 3d~1 impurity centers. The second, local distortion octahedron consisted ofV~(4+) and ligands usually are compressed because of the Jahn-Teller effect and the groundstate is orbital singlet ~2B_(2g).
引文
[1] Nishikawa T, Nakajima T, Shinohara Y. An exploratory study on effect of the isomorphic replacement of Ti~(4+) ions by various metal ions on the light absorption character of TiO_2. J. Mol. Structure-THEOCHEM, 2001,545: 67-74
    [2] Guo Q, Lee S, Goodman D W. Vanadium oxides thin films grown on futile TiO_2(110)-(1×1) and (1×2) surfaces. Surf. Sci., 1999,437(1-2): 38-48
    [3] Sanati M, Wallenberg L R, Andersson A, et al. Vanadia catalysts on anatase, futile, and TiO_2 (B) for the ammoxidation of toluene: An ESR and high-resolution electron microscopy characterization. J. Catal., 1991,132(1):128-144
    [4] Rowan L G. Microwave Dielectric Loss of V~(+4)-Doped TiO_2 at Low Temperatures. Phys. Rev. B, 1972,5(5):1675-1677
    [5] Camargo A C, Igualada J A, Beltran A, et al. An Ab Initio perturbed ion study of structural properties of TiO_2 SnO_2 and GeO_2 futile lattices. Chem. Phys, 1996,212(2-3): 381-391
    [6] Rao K S, Sastry M D, Electron Paramagnetic Resonance Studies of VO~(2+) in Nitrate Single Crystals Ⅱ NH_4NO_2,NaNO_3 and Ba(NO_2)_2. J. Chem. Phys, 1970,52(8):4035-4040
    [7] Rao K S, Sastry M D. Electron Paramagnetic Resonance Studies of VO~(2+) ion doped in Methyl Ammonium Gallium Alum Single Crystals. J. Chem. Phys., 1969,51(2):812-815
    [8] Dearmond K, Barry B G, Gutowsky H S. Paramagnetic Resonance Studies of Bonding in Vanadyl and Molybdenyl Metal Complexes. J. Chem. Phys., 1965,42(3):1019-1025
    [9] Flower J M, Hempel J C, Haffield W E, et al. An EPR shtudy of VO~(2+) and Cr~(3+) in (NH4)_2SbCl_5. J. Chem. Phys., 1973,58(4):1479-1486
    [10] Padiyan D P, Muthukrishnan C, Murugesan R. EPR of VO~(2+) in calcium (picrate)_2 (2,2'-bipyridyl)_2: studies on molecular orbital coefficients. J. Mol. Struct., 2003,648(1):1-8
    [11] Biyik R, Tapramaz R. EPR and Optical Absorption Studies of VO~(2+) Doped KH_2PO_4 and KH_3C_4O_8·2H_2O Single Crystals. Z. Naturforsch, 2006,61a(1):171-179
    [12] Biyik R, Tapramaz R, Karabulut B. EPR Study of Cu~(2+) and VO~(2+) Ions in [NH_4H_3(C_2O_4)_2]·2H_2O Single Crystals. Z. Naturforsch. A., 2003,58a(9):499-502
    [13] Karabulut B, Ilkin L, Tapramaz R. EPR and Optical Absorption Studies of VO~(2+) Doped Trisodium Citrate Dihydrate Single Crystals. Z. Naturforsch. A., 2005,60a(1):95-100
    [14] Tapramaz R, Karabulut B, Koksal F. EPR spectra of VO~(2+) and Cu~(2+) ions in di-ammonium d-tartrate single crystals. J. Phys. Chem. Solids., 2000,61(9):1367-1372
    [15] Misra S K, Wang C. EPR of VO~(2+) in Cd(COO)_2·3H_2O single crystal: Superhyperfine interaction with ligand protons. Physica B, 1989,159(3):321-329
    [16] Narasimhulu K V, Rao J L A single crystal EPR study of VO~(2+) ions doped in Cs_2Co(SO_4)_2.6H_2O Tutton salt. Spectrochim. Acta A., 1997,53(14):2605-2613
    [17] Flowers J M, Hempel J C, Hatfield W E, et al. An EPR study of VO~(2+) and Cr~(3+) in (NH_4)_2SbCl_5. J.Chem.Phys., 1973,58(4):1479-1486
    [18] Bally A R, Korobeinikova E N, Schmid P E. Structural and electrical properties of Fe-doped TiO2 thin films. Phys. D: Appl. Phys., 1998,31(10):1149-1154
    [19] Jian Bo Yin, Xiao Peng Zhao. Electrorheological Effects of Cerium-Doped TiO_2. Chinese Phys. Lett, 2001, 18(8):1144-1146
    [20] Yunxia Jin, Guanghai Li, Yong Zhang, et al. Photoluminescence of anatase TiO_2 thin films achieved by the addition of ZnFe_2O_4. J. Phys: Condens. Matter, 2001,13(44):Lg13-L918
    [21] Gallay R, Van J J, Moser J. EPR study vanadium(4+) in the anatase and rutile phases of TiO_2. Phys. Rev,. B, 1986,34 (5):3060-3068
    [22] Kubec F, Sroubek Z. Paramagnetic Resonance of Intersitial V~(4+) in TiO_2. J. Chem. Phys., 1972, 57(4): 1660-1663
    [23] MontgoLfier P D, Boudeville Y. g tensor and ground state of substitutional (nd~1) ions in rutile like hosts. Chemical Physics Letters, 1976,37(1):97-99
    [24] Frederikse H P. Recent Studies on Rutile (TiO_2). J. Appl. Phys., 1961,32(10):2211-2215
    [25] Madacsi D P, Bartram R H. Hyperfine Superhypeffine and Quadrupole Interactions for V~(4+) in Tetragonal GeO_2. Phys. Rev. B, 1973,7(5):1817-1825
    [26] Kikuchi C, Chen I, Dorain P B. Spin Resonance of SnO_2: V and the Vanadium 3d Electron Orbital. J. Chem. Phys., 1965,42(1):181-185
    [27] VanVleck J H. The Theoery of Electric and Magnetic Susceptibilities. London: Oxford Unin. Press. 1932, 134-138
    [28] Sugano S, Tsujilawa I. Absorption spectra of Cr~(3+) in Al_2O_3. J. Phys. Soc. Japan., 1958, 13: 899-910
    [29] Sugano S, Tanabe Y, et al. Multiplets of transition metal ions in crystal. NewYork and London: Academic Press, 1970,121-128
    [30] Ballhausen C J. Introduction to Ligand Field theory. NewYork: McGrawHill, 1962,88-97
    [31] Griffith J S. Theory of Transition Metalions. London: Cambridge University Press, 1961, 56-64
    [32] Burns R G. Mineralogical Applications of Crystal Field.Theory. London:Cambridge University Press,1993,234-236
    [33] Figgis B N, Hitchman M A. Ligand Field Theory. New YorK: John Wiley Inc Press,1999, 78-90
    [34] Griffith J S. The Theory of Transition Metal Ions. London:Cambridge University press, 1964,37-43
    [35] Ering H, Walter J, Kimbar G E. Quatum Chemistry. New YorK:John Wiley Inc.Press, 1958, 112-116
    [36] Ballhausen C J, Gray H B. Molecular Orbital Theory. New York:Benjamin Press, 1965,67-72
    [37] Ballhausen C J. Semiempirical Method of Electronic Structure Calculation In Seqal G A(Ed). Modem Theoretical Chemistry, New York:Plemum Press, 1977,87-93
    [38] 裘祖文.电子自旋共振波普.北京:科学出版社,1980,258
    [39] Burns R G. Mineralogical Applications of Crystal Field Theory. London: Cambridge University Press, 1993, 103-106
    [40] Abragam A, Bleanely B. Electron Paramagnetic Resonance of Transition Ions. London: Oxford University Press, 1970,89-96
    [41] Konig E, Schnakig R. Zero-field splitting of 6S(d~5)ions tetrahonal and rhombic symmetry. Phys.Status. solidi., 1976,77:657-663
    [42] Yu W L, Zhang X M, Yang L X, et al. Spectroscopic properties of Cr~(3+) ions at the defect site in cubic fluorperovskite crystals, phys. Rev. B, 1994,50:6856-6864
    [43] 赵敏光.晶体场理论-不可约张量算符法.成都:四川教育出版社,1988,229-232
    [44] Biedenhavn L C, Louck J D. The Racah-Wigner Algebra in Quantum Mechanics. London: Addison-Wesley Educational Publisher, 1981,45-54
    [45] Kibler M R. Recent Advances in Group Theory and The Application to Spectroscopy (edited by Donini J C). New York: Ponum Press, 1979,23-33
    [46] Sorin L A, Vlasova M V. Electron Spin Resonance of Paramagnetic Crystals (Translated from Russian by Gluck P). New York: Plenum Press, 1973,112-115
    [47] Altshuler S A, Kozyrev B M. Electron paramagnetic resonance in compounds of Transition Elements. (Translated from Russian by A.Barouch). New York: John Wiley Inc.Press, 1972,104-109
    [48] Abragam A, Bleanely B. Electron Paramagnetic Resonance of Transition Ions. London: Oxford University Press, 1970,145-153
    [49] Du Maolu, Rudowicz C. Gyromagnetic factors and zero-field splitting of t_2~3 terms of Cr~(3+) clusters with trigonal symmetry: Al_2O_3, CsMgCl_3, and CsMgBr_3. Phys. Rev. B, 1992,46: 8974-8977
    [50] 赵敏光.晶体场和电子顺磁共振理论.北京:科学出版社,100-122
    [51] Gao Xiuying, Shao Yiwu, Wei Wanghe, et al. Theoretical Atudy of the spin Hamiltonian parameters of Vanadium ions V~(2+) in CsMgX_3(X=Cl,Br,I).Z.Naturaforsch.A, 2005,60a:145-148
    [52] Mulliken R S. Self-Consistent Field Atomic and Molecular Orbitals and Their Approximations as Linear Combinations of Slater-Type Orbitals. Rev. Mod. Phys., 1960,32(2):232-238
    [53] Kilty P A, Nieholls D. The preparation and spectral properties of complex oxochlorov anadates(Ⅳ). J. Chem. Soc. A., 1966, 1175-1179
    [54] Siegel I. Paramagnetic Resonance of Vanadium in Amorphous and Polycrystalline GeO_2. Phys. Rev., 1964, 134(1A):A193-A197
    [55] Chakravarty A S. Introduction to the Magnetic Properties of solids. New York: A Wiley-inte irscienc Publication, 1980,655
    [56] Abragam A, Bleaney B. Electron Paramagnetic Resonance of Transition Ions. London: Oxford University Press, 1970, 253-255
    [57] Newman D J, Ng B. The superposition model of crystal fields. Rep. Prog. Phys., 1989,52: 699-762
    [58] Yu W L. Spectroscopic properties of Cr~(3+) ions at the defect sites in cubic fluoroperovskite crystals. Phys. Rev. B, 1994,50(10):6756-6764
    [59] Newman D J, Pryce D C, Runciman W A. Superposition model analysis of the near infrared spectrum of iron(2+) in pyrope-almandine garnets. American. Mineralogist. 1978,63 (11):1278-1281
    [60] Edgar A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts. J. Phys. C: Solid State Physics. 1976,9(23):4303-4316
    [61] Yang Z Y. An investigation of the EPR zero-field splitting of Cr~(3+) ions at the tetragonal site and the Cd~(2+) vacancy in RbCdF_3:Cr~(3+) crystals. J. Phys.: Condens. Matter, 2000,12(17):4091-4096
    [62] Lever A B P. Inorganic Electronic Spectroscopy. Elsevier Science Publishers, Amsterdam, 1984:315-316
    [63] Weast R C. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 1989,187
    [64] Moreno M, Barriuso M T, Aramburu J A. Impurity-ligand distances derived from magnetic resonance and optical parameters. Appl. Magn. Reson., 1992,3(2):283-304
    [65] Dong H N. Theoretical Studies on the Gyromagnetic Factors and the Hyperfine Structure Constants for the Tetragonal Copper Center in KTaO_3. Z.Naturforsch.A, 2005,60(7):615-618
    [66] Clementi E, Raimondi D L. Atomic Screening Constants from SCF Functions. J. Chem. Phys., 38(11):2686-2689.
    [67] Clementi E, Raimondi D L, Reinhardt W P. Atomic Screening Constants from SCF Functions. Ⅱ. Atoms with 37 to 86 Electrons. J. Chem. Phys., 1967,47(4):1300-1307
    [68] McPerson G L, Kach R C, StuckyG D. Electron spin resonance spectra of V~(2+), Mn~(2+), and Ni~(2+) in single crystals of CsMgBr_3 and CsMgI_3. J. Chem. Phys., 1974,60(4):1424-1431
    [69] McGarvey B R. The isotropic hyperfine interaction. J.Phys. Chem., 1967,71(1):51-78
    [70] Kaufmann U, Bauber A, Schneider J. EPR of Ti~(3+) in CuAlS_2. J. Phys. C, 1975,8(18): L381-L383
    [71] Gourier D, Colle L, Lejus A M, et al. Electron-spin resonance and fluorescence investigation of LaMgAl_(11)O_(19):Ti~(3+) a potential tunable laser material. J. Appl. Phys., 1988,63(4):1144-1151
    [72] Lever A B P. Inorganic Electronic Spectroscopy. Elsevier Science Publishers, Amsterdam, 1984:211
    [73] Dearmond K, Garrett B B, Gutowsky H S. Paramagnetic Resonance Studies of Bonding in Vanadyl and Molybdenyl Metal Complexes. J. Chem. Phys., 1965,42(3):1019-1025
    [74] Hitchman M A, Belfold R L. Electron magnetic resonance of oriented vanadyl ions in single crystal of palladium trans-bis(benzoylacetonate) and zinc cis-bis(benzoylacetonate) ethanolate. Inorg. Chem., 1969,8(4):958-965
    [75] Borchers R H, Kikuchi C,.VO~(2+) and X-Ray Produced V~(2+) in Tutton Salt. J. Chem. Phys. 1964, 40(8):2270-2275
    [76] Vanhaelst M, Matthys P, Boesman E. Covalency effects in vanadium doped alkalihalides. Solid State Commun, 1977,23(8):535-537
    [77] Wyckoff R W. Crystal Strcutrues. New York: Interscience Press, 1951:Vol. 1.255-256
    [78] Abragam A, Bleanely B. Electron Paramagnetic Resonance of Transition Ions. London: Oxford University Press, 1970,381-385
    [79] Newman D J, Ng B. The superposition model of crystal field. Rep. Prog. Phys., 1989, 52(3): 699-763
    [80] Gerritsen H J, Sabisky E S. Paramagnetic Resonance of Ni~(2+) and Ni~(3+) in TiO_2. Phys. Rev., 1962,125(6):1853-1859
    [81] Zhao M G. Giant Quenching of Spin-Orbit Interaction of Ga 1-x V x P Crystals. Chin. Phys. Lett., 2003,20(12):2229-2230
    [82] Zhao M G. Microscopic origin of the high-pressure-induced spectral shifts in ruby. J. Chem. Phys., 1998,109(18):8003-8009
    [83] Zhao M G, Lei Y. Unified explanation for optical and electron paramagnetic resonance spectra of Cr~(3+) ions in LiNbO_3 crystals. J. Phys: Condens Matter, 1997,9(2):529-539
    [84] Yablokov Yu V, Ivanova T A. The labile magnetic structure of JT copper and nickel complexes in the layered oxides. Coordination Chemistry Reviews, 1999,190:1255-1267
    [85] Graham S O, White R L. EPR study of the Jahn-Teller effect on Cu~(+2) in CsCdCl_5. Phys. Rev. B, 1974,10(11):4505-4509
    [86] Ham F S. Effect of Linear Jahn-Teller Coupling on Paramagnetic Resonance in a ~2E State. Phys. Rev., 1968,166(2):307-321
    [87] Lever A B P. Inorganic Electronic Spectroscopy. Elsevier Science Publishers, Amsterdam, 1984: 219
    [88] Gerritsen H J. Fine Structure, Hyperfine Structure, and Relaxation Times of Cr~(3+) in TiO_2(Rutile). Phys. Rev. Lett, 1959,2(4):153-155
    [89] Gerritsen H J, Harrison S E, Lewis H R. Chromium-Doped Titania as a Maser Material. J. Appl. Phys., 1960,31(9):1566-1571
    [90] Gerritsen H J, Lewis H R. Paramagnetic Resonance of V~(4+) in TiO_2. Phys. Rev., 1960,119(3): 1010-1012
    [91] Gerritsen H J. Paramagnetic Resonance of Ni~(2+) and Ni~(3+) in TiO_2. Phys. Rev., 1962,125(6):1853-1859
    [92] Kassai P H. g -tensor of an 3d electron in a rutile structure. Phys. Lett., 1963, 7(1):5-6
    [93] Kikuchi C, Inan Chen, William H. Spin Resonance of SnO_2:V and the Vanadium 3d Electron Orbital. J. Chem. Phys., 1965,42(1):181-185
    [94] Montgolfier P D, boudeville Y. g tensor and ground state of substitutional (nd)1 ions in rutile like hosts. Chem. Phys. Lett., 1976,37(1):97-99
    [95] Griffith J S. The Theory of Transition-Metal Ions. London: Cambridge University Press, 1964,385
    [96] Hikita H, Takeda K, Kimura Y. Analytical determination of the local oxygen structure around Cr~(3+) in SnO_2 rutile-type crystals by use of electron paramagnetic resonance. Phys. Rev. B, 1992,46 (22):14381-14386
    [97] Montgolfier P D, Meriaudeau P, Boudeville Y, et al. Hyperfine and superhyperfine interactions for Mo~(5+) in SnO_2. Phys. Rev. B,1976,14(5):1788-1795
    [98] 范应娟.3d~1(Ti~(3+)、V~(4+))离子在八面体四角晶场中EPR参量的理论研究:[硕士学位论文].成都:四川大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700