基于Aβ神经毒性的脑力健代谢组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默病(Alzheimer disease, AD)是一种原因未明的神经系统的退行性病变,以脑的广泛神经细胞凋亡、胞外老年斑(senile plague, SP)沉积、胞内神经原纤维缠结(neuro fibrillary tangles, NFT)以及皮层和海马神经细胞减少为主要病理改变。根据AD“肾虚毒损”的病机拟定的中药复方脑力健具有补肾健脑、解毒益智的功效。β淀粉样蛋白(amyloid β-protein, Aβ)神经毒性是AD发生发展过程中的重要因素,也是近年来中药抗AD研究的热点标靶。代谢组学是对中药复方整体效应评价的有效方法之一。本研究主要进行了脑力健对Aβ诱导的AD大鼠学习记忆能力、海马形态学、海马神经毒性的影响,以及对AD大鼠代谢组学的影响。
     目的:探讨脑力健对AD大鼠A β神经毒性的改善作用及其机制,初步揭示AD大鼠的体内物质变化和代谢途径变化以及脑力健对AD大鼠代谢途径的干预作用。
     方法:用聚集状态的Aβ25-35大鼠双侧海马注射建立AD模型,药物干预后,Morris水迷宫观察脑力健对AD大鼠学习记忆能力的影响,病理观察脑力健对AD大鼠脑形态学的影响,用免疫组化的方法检测大鼠海马IDE、cdk5、GSK-3、SYN的表达和平均光密度,收集代谢产物后经过样本处理、测试、数据处理等步骤观察脑力健对AD大鼠代谢组学的影响。
     结果:
     1.脑力健对AD大鼠学习记忆功能的影响定位航行实验显示,模型对照组大鼠的逃避潜伏期均显著延长;给药各组与模型组比较,大鼠逃避潜伏期均显著缩短,有显著统计学意义(P<0.05)。空间探索实验显示模型组在第一象限时间和平台停留时间显著缩短,经过平台次数显著减少;而给药组第一象限时间和平台停留时间均较模型对照组显著延长、经过平台次数显著增多,有显著的统计学意义(P<0.05)。
     2.脑力健对A β海马注射痴呆模型脑病理形态学的影响结果显示,模型纽多数病例不同程度神经细胞减少,神经元凋亡及胶质细胞增生;给药组较模型对照组其神经细胞凋亡、CA1区水肿、胶质细胞增生等情况均显著减轻。
     3.脑力健对A β海马注射痴呆模型Aβ降解酶IDE表达的影响研究表明,模型对照组IDE阳性免疫反应产物呈显著低表达,脑力健高、中剂量组较模型对照组阳性表达显著增高。模型对照组海马区IDE平均光密度值较空白对照组显著降低(P<0.01),脑力健各剂量组与模型对照组比较则显著增高(P<0.05)
     4.脑力健对A β注射痴呆鼠海马区CDK5表达的影响研究表明,模型组较假手术组其cdk5有显著高表达,脑力健各组cdk5的表达均明显低于模型组。模型组海马区的cdk5平均光密度值较空白对照组显著增高(P<0.01),脑力健各给药组与模型对照组比较显著降低,有显著的统计学意义(P<0.05)。
     5.脑力健对A β注射痴呆鼠海马区GSK-3表达的影响研究显示,A β海马注射后各组大鼠海马CA1区均可见GSK-3的阳性反应物,模型组GSK-3表达较假手术组明显增多,脑力健各剂量组染色结果与假手术组相似,表达显著减少;模型对照组海马区平均光密度值较空白对照组显著增高(P<0.01),提示模型组海马GSK-3活性显著增强;脑力健各组与模型对照组GSK-3的平均光密度比较则显著降低(P<0.01),但组间无显著差异(P>0.05)
     6.脑力健对A β注射痴呆鼠海马区SYN表达的影响研究显示,假手术组的SYN表达高于模型组,差异具有显著性(P<0.05);脑力健各给药组海马区突出素的表达均明显高于模型组(P<0.01)。模型对照组海马区SYN平均光密度值较假手术组显著降低(P<0.01),脑力键高、中、低剂量组与模型对照组比较,平均光密度值显著增高(P<0.05)。
     7.脑力健对A β注射痴呆鼠代谢组学的影响研究显示,造模后线粒体与生物膜出现了较显著的改变,相应的代谢标志物在尿液中含量有所改变。阳性药物组有一定的回调作用,但脑力健各治疗组回调能力总体较差,但总体有一定的治疗作用。
     结论:
     1.脑力健具有改善A β海马注射痴呆模型学习记忆的作用,提示其具有良好的益智作用。
     2.脑力健对A β海马注射导致的脑病理形态学改变具有保护作用。
     3.脑力健有增强IDE活性的作用。
     4.脑力健对模型cdk5和GSK-3的高表达有良好的抑制,提示其对痴呆tau蛋白过度或异常磷酸化形成神经元纤维缠结有抑制和/或拮抗作用;脑力健对模型海马突触素异常低表达有拮抗作用,可以提高海马CAl区突触素的表达水平,提示其具有促进神经突触重塑的作用。
     5.AD损伤的过程包含了能量代谢与脂膜结构的异常,脑力健各治疗组回调能力总体较差,但有一定的治疗作用。
Alzheimer's disease(AD) is a degenerative diseases of the nervous system which is unknown reason, it's main pathological changes consist of the extensive nerve cells apoptosis, SP depositing, NFT and the nerve cells reducing. TCM compound NaoLiJian is protocoled according to the AD's pathogenesis of "ShenXuDuSun", and it has the effect of "BuShenJianNao, JieDuYiZhi". A β's neurotoxicity is a important factor in the happening and developing process of AD, and is also a hot target in the research of TCM resisting to AD in recent years. Metabolomics is one of the effective ways to evaluate the overall effect of TCM compound. This research has mainly studied that NaoLiJian how to influence the AD rats's learning and memory capacity, hippocampus morphology, hippocampus neurotoxicity and metabonomics, etc.
     Objetive:
     To explore NaoLiJian's relieving function to Aβ's neurotoxicity and it's mechanism, to reveals preliminarily the internal material and metabolic pathways change in the AD rats'body and NaoLiJian's intervention to the metabolic pathways.
     Methods:
     Using the agglomerate state of Aβ25-35to establish AD model by injecting in the rats'bilateral hippocampal. After drug intervening, using the Morris water maze to observe NaoLiJian's influence on the learning and memory capacity of AD rats, using pathological ways to watch it's influence on the brain morphology, using immunohistochemistry method to test IDE, cdk5, GSK-3, SYN expression and their average optical density in the hippocampal. Collecting metabolic product, after the steps of sample processing, testing, data processing, then to observe it's influence on the metabonomics.
     Results:
     1. Effects on function of learning and memory of AD rats
     Place navigation show that the escape latency of the model group are significantly extended, and the latency of the drug groups are significantly shorter than the model group (P<0.05). Spatial probe test show that the stating in the first quadrant time and platform retention time of the model group shorten significantly, and the number of passing platform reduce remarkably; while the time of the drug groups spending are longer and the number are more than the model group (P<0.05)
     2. Effects on brain pathology morphology
     The results show that the most cases of the model group have appeared to nerve cells reduce in different degree, neuronal apoptosis and gliocytes hyperplasia, but the situation of the drug groups are significantly better than the model group.
     3. Effects on IDE expression
     The results show that the products of IDE positive immune response are strikingly low expression in the model control group, while the expression of NaoLiJian each dose groups are elevatory, medium dose group are obviously higher than the model group. The IDE average optic density of the model group are significantly lower than the blank control group (P<0.01), while its in treatment groups are significantly increased (P<0.05).
     4. Effects on CDK5expression
     The results show that the cdk5expression of the model group are obviously higher than the sham operation group, while NaoLiJian each dose groups are significantly lower than the model group. The cdk5average optic density in hippocampus of the model group are remarkably higher than the blank control group (P<0.01), while its in NaoLiJian each dose groups are significantly lower than the model group (P<0.05).
     5. Effects on GSK-3expression
     The results show that the products of GSK-3positive response can be seen in hippocampus CA1area after A β injecting, the GSK-3expression of the model group are strikingly more than the blank control group, while the expression both of NaoLiJian each dose groups and the sham operation group are significantly reduced. The average optic density of the model control group are obviously higher than the blank control group (P<0.01) this suggests that the GSK-3activity of the model group markedly enhanced; while its in NaoLiJian each dose groups are significantly reduced (P<0.01), but no significant differences between groups (P>0.05)
     6. Effects on SYN expression
     The results show that the SYN expression of the model group are remarkably lower than the sham operation group(P<0.05); while the all SYN expression of NaoLiJian groups are obviously higher than the model group (P<0.01). The average optic density of the model group are significantly lower than the sham operation group (P<0.01), while the all average optic density of NaoLiJian groups are markedly higher than the model group (P<0.05)
     7. Effects on metabonomics
     The results show that the mitochondria and biological membrane of AD rats have appeared significant change after establishing model, the content of corresponding metabolic markers in the urine have changed also. The positive drug group have certain callback function, but the callback ability of NaoLiJian groups are poor overall, total have certain curative effect merely.
     Conclusion:
     1. NaoLiJian has effect on improving AD rats'the capacity of learning and memory, this suggests that NaoLiJian can increase intelligence.
     2. Aβcan induce brain pathology morphological change, while NaoLiJian has protective function on it.
     3. NaoLijian has effect on enhancing IDE activity.
     4. NaoLiJian has good suppressive effect on cdk5and GSK-3high expression of AD model, this prompt that it can inhibit and/or antagonize excessive or abnormal tau protein phosphorylation which can form neurons fiber tangles; NaoLiJian can improve the low expression level of SYN in the hippocampus, this prompt that it has the function on stimulating nerve synapsis remodeling.
     5. The process of AD's damage include abnormal energy metabolism and lipid membrane structure, NaoLiJian's callback ability overall to these is poor, but it has certain curative effect.
引文
[1]Alzheimer's Association.2008 Alzheimer's disease facts and figures. Alzheimers Dement.2008;4(2):110-133;
    [2]Wimo A, Winblad B, Jonsson L. An estimate of the world-wide prevalence and direct costs of dementia in 2005. Dementia Geriatr Cogn Disord.2006:21:175-181
    [3]田金洲.阿尔茨海默病的诊断与治疗.人民卫生出版社.北京(第1版).2009:16-18
    [4]Caccamo A,Oddo S, Sugarman MC,et al. Age-and region-dependent alterations inAbeta-degrading enzymes:implications for Abeta-induced disorders. Neurebiol Aging,2005,26(5):645-654.
    [5]Eckman EA, Reed DK, EckmanCB. Dergadation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme [J]. J Biol Chem,2001,276(27):24540-24548.
    [6]Eckman EA, Watson M,Marlow L, et al. Alzheimer's disease beta amyloid peptideis increased in mice deficient in end othelin-converting enzyme[J]. JBiolChem,2003,278(4):2081-2084.
    [7]Zhang ZX, Zahner GEP, Rom6n GC, et al. Dementia Subtypes in China: Prevalence in Beijing, Xian, Shanghai and Chengdu [J]. Arch Neuro,2005, 62:447-453.
    [8]Alzheimer's Association.2008 Alzheimer's disease facts and figures[J]. Alzheimers Dement,2008,4(2):110-133.
    [9]Wimo A, Jonsson L, Winblad B. Anestimate of the world-wide prevalence and direct costs of dementiain 2003[J]. Dementia Geriatr Cog n Disor d, 2006,21(3):175-181.
    [10]黄克维.神经病理学[M].北京:人民卫生出版社,1989:183—185Huang Kewei. Neuropathology [M]. Beijing:People's Medical PublishingHouse, 1989:183-185.
    [11]McPhie D L, Coopersmith R, Hines Peralta A, et al. DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3[J]. J Neurosci,2003,23(17):6914-6927.
    [12]Loo DT, Copani A, Pike CJ。 et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons[J]. Proc Natl Acad Sci USA, 1993,90(17):7951-7955.
    [13]Muyllaert D, Krcmer A, Jaworski T, et al. Glycogen synthase kinase-3beta or a link between amyloid and tan pathology?[J]. Genes Brain Behav,2008, 7(1):57-66.
    [14]Bellucci A, Luccarini I, Scalic C,et al. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice[J]. Neurobiol Dis.2006.23(2):260.272.
    [15]Galindo MF, Ikuta I, Zhu X, et al. Mitochondrial biology in Alzheimer's disease pathogenesis[J]. J Neuroehem,2010,114(4):933-945.
    [16]Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzbeimer's disease [J]. Neurobiol Aging,2003,21(3):383-421.
    [17]Sondag CM, Combs CK. Amyloid precursor protein cross-linking stimulates β-amyloid production and pro-inflammatory cytokine release in monocytic lineage cells[J]. Neurochem Stry,2006,97(2):449-461.
    [18]Sayre LM, Zagorski MG, Surewicz WK, et al. Mechanisms of neurotoxicity associated with amyloid beta deposition and the role of free radicals in the pathogenesis of Alzheimer's disease:acritical appraisal. Chem Res Toxicol,1997,10:518-526.
    [19]Nelson Arispe, Juan C. Diaz, Olga Simakova. A β ion channels. Prospects for treating Alzheimer's disease with Aβ channel blockers, Biochimica et Biophysica Acta,2007,1768:1952-1965.
    [20]Rani Dhavant and Li-Huei Tsai. A decade of cdk-5. Nature Reviews, 2001,2:749-759
    [21]Ishigu ro K, Takamatsu M, Tomizawa K, et al. Tau protein kinase I convaents normal tau protein into Aβ-like component of paired helical filaments. J Biol Chem,1992,267(15):10897-10901.
    [22]Eldar-Finkelman H, Ilouz R. Challenges and opportunities with glycogen synthase kinese-3 inhibitors for insulin resistantce and type 2 diabetes treatment. Expert Opin lnvestig Drugs,2003,12:1511-1519.
    [23]褚文政,钱采韵.阿尔茨海默病与胰岛素信号紊乱及脑能量代谢障碍.中国临床康复,2005,9(13):32-34.
    [24]黄天文,陈晓春,张静.钙蛋白酶-细胞周期依赖性蛋白激酶5通路参与p淀粉样蛋白25-35诱导的tau蛋白过度磷酸化.中华神经科杂志,2006,39(7)477-480
    [25]段立晖,周国庆,夏树开,等.β淀粉样蛋白诱导大鼠海马神经元Tan蛋F1异常磷酸化及雌激素的保护作用[J].医学研究生学报,2008,21(5):486-489.
    [26]姚柏春,邓兆宏,孙天敏,等.Aβ1-40诱导大鼠海马突触体素和突触数量的变化[J].中国现代医学杂志,2007,17(2):153-156.
    [27]Mukherjee A, Song E, Kihiko-Ehmann M, et al. Insulin hydrolyzes amyloid heptide to products that are neither neurotoxic nor deposit on amyloid plaques. J Neurosci,2000,20(23):8745-9.
    [28]李泽良,谢瑶,许晓伍,等.当归芍药散抑制β-淀粉样肽1-42聚集和纤维形成.解剖学研究,2005,27(4):263-265.
    [29]刘星,耿杰峰,卜宪章,等.姜黄素及其衍生物对Aβ42引起神经元损伤的保护作用.中国老年学杂志,2011,31(13):2522-2524.
    [30]安红梅,胡兵,邢三丽,等.地黄益智方对老年性痴呆模型大鼠细胞周期蛋白异常表达的影响.中国中医药信息杂志,2012,19(1):47-49.
    [31]李强,胡长林,王景周.地黄益知浸膏对老年性痴呆大鼠海马磷酸化CREB、 GSK-3β表达的影响.中国老年学杂志,2008,28(3):539-532.
    [32]曾克武,王学美,富宏,等.加味五子衍宗方对A β 25-35所致的PC12细胞tau蛋白高度磷酸化的抑制作用及机制.中国实验方剂学杂志,2011,17(9): 159-163.
    [33]周妍妍,姚辛敏,何秀丽,等.地黄饮子对A β诱导的PC12细胞SODmRNA表达影响的研究.中西医结合心脑血管病杂志,2011,9(6):704-706.
    [34]邱昕,陈国华,汪弢,等.黄连解毒汤对APP/PS1双转基因阿尔茨海默病小鼠自由基代谢及海马区病理形态学影响.中国中西医结合杂志,2011,31(10):1379-1382.
    [35]杨戈,金红姝,郁志华,等.调心方有效部位和达纳康对类AD大鼠脑组织IL-1 β IL-6和APPmRNA表达的影响.辽宁中医杂志,2006,33(5):530-533.
    [36]朱曼迪,崔家鹏,王彩霞.独活对阿尔茨海默病模型大鼠免疫损伤干预作用的实验研究.辽宁中医杂志,2011,38(10):2085-2086.
    [37]李强,胡长林,王景周.地黄益知浸膏对老年性痴呆大鼠行为学及中枢胆碱能系统的影响.中成药,2008,30(1):38-42.
    [38]楚晋,叶翠飞,李林,等.二苯乙烯苷对β-淀粉样肽致痴呆模型小鼠行为及胆碱能功能的影响.基础医学与临床,2006,26(2):197-198.
    [39]刘垣、田金洲.老年人认知水平与中医证候的相关性研究.中国老年学杂志,2003;24(6):347-348
    [40]杨承芝,朱爱华,钟剑,等.轻度认知损害患者的中医证候规律探讨.中医药信息.2009;26(6):1-4
    [41]Nicholson JK, Lindon JC, Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiolocal stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica,1999,29(11):1181-1189.
    [42]Fiehn 0, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol,2000,18(11):1157-1161.
    [43]Nicholson JK, Connelly. J, IAn don JC. et al. Metabonomics:aplatform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov, 2002,1(2):153-161.
    [44]Julian R. Marchesi, Elmne Holmes, Fatima Khan, et al. Rapid and noninvasive metabonomic characterization inflammatory, bowel disease [J]. Proteom Res,2007,6:546-551.
    [45]Velenzuela M J, Sachdev P. Magnetic resonance spectroscopy in AD[J]. Neurology,2001,56(5):592-598.
    [46]Garcias J M, Gavrila D, ANTUNEZ C,et al. Magnetic resonance spectroscopy performance for detection of dementia, Alzheimer's disease and mild cognitive impairment in a community-based survey[J]. Dement Geriatr Cogn Disord,2008,26(1):15-25.
    [47]Huang W, Alecander GE, Chang L, et al. Brain metabolite concentration and dementia severity in Aizheimer's disease. A'H-MRS study[J]. Neurology, 2001,57(4):626-632.
    [48]唐翠松,李文彬,邓敏.轻度认知障碍和Alzheimer病的H-MRS分析[J].中国临床医学影像杂志,2008,19(9):612-615.
    [49]Kantarci K, Weigand S D, Petersen R C, et al. Longitudinal (1)H MRS changes in mild cognitive impairment Alzheimer's disease[J]. Neurobiol Aging,2007,28:1330-1339.
    [50]Watanabe T, Shiino A, Akiguchi I. Absolute quantification in proton magnetic resonance spectroscopy is superior to relative ratio to discriminate Alzheimer's disease from binswanger's disease[J]. Dement Geriatr Cogn Disord,2008,26(1):89-100.
    [51]Onerg J, Spenger c, Wang F H. ct al. Age related changes in brain metabolites observed by(1)H MRSin APP/PSI mice[J]. Neurobiol Aging, 2007,29(9):1423-1433.
    [52]Rupsingh R, Borrie M, Smith M, et al. Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging (2009)doi:10.1016/ j. neurobiolaging.2009.05.002.
    [53]黄爱明,谢林珠,秦素平.阿尔茨海默病和血管性痴呆患者血脂代谢异常的研究.实用老年医学,2009,,23(5):388-390.
    [54]Lane RM, Farlow MR. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer's disease [J]. J Lipid Res,2005, 46(5):949.
    [55]ARAI H. TERAJIMA M, MIURAM. Mol Chem Neuropathol,1995,38 (4):649-652. [12]KUMAR A, NEWBERG A, AIVIA, etal. Proc Natl Acad Sci USA,1993,90(15): 7019-7024.
    [56]周明眉,刘平,贾伟,等.基于代谢网络变化的中药整体效应评价方法研究[J].世界科学技术-中医药现代化,2006,8(6):113-119.
    [57]Fuentealba RA, Farias G, Scbeu J. et al. Signal transduction during amyloid-β-peptide neurotoxicity:role in Alzheimer disease. Brain Res。 2004; 47:275-289.
    [58]Gonzalo-Ruiz A, Perez JL, Sanz JM. et al. Effects of lipids and aging on the neurotoxicity and neuronal loss caused by intracerebral injections of the amyloid-β peptide'in the rat. Exp Neural,2006; 197:41-55.
    [59]杨杰,刘勇,钱亦华,等.β-淀粉样蛋白诱导大鼠海马S100β表达的作用及机制[J].西安交通大学学报(医学版),2004,8(5):322—325.
    [60]彭小松,陈晓春,黄俊山,等.Aβ25-35注射诱导大鼠海马神经元tau蛋白异常磷酸化.中华神经科杂志,2004,37(6):533-537
    [61]郭宗君,金丽英,郭云良,等.三种化学物质诱发大鼠认知障碍:优化阿尔茨海默病模型的研究.中国临床康复,2004,8(25):5266-5268
    [62]李萍.阿尔茨海默氏病大鼠模型的建立及行为学评价.宁波大学学报(理工版),2004.24(2):103-106
    [63]刘茂林,刘田福,王志平,等.老年大鼠脑室注射β-淀粉样肽制作阿尔茨海默病模型的实验研究.山西医药杂志,2008,37(4):238-239
    [64]徐学君,徐德琴,汪骏.多奈哌齐的药理作用及其临床应用研究进展[J].安徽医药,2009,13(4):352-354.
    [65]李曼,杜小平,杨期东,等.何首乌对海人藻酸致大鼠脑ACh能神经元及纤维损伤的保护作用.卒中与神经疾病,2002:9(5):299-302.
    [66]侯德仁,杨期东.何首乌对阿尔茨海默病模型大鼠能量代谢的影响的实验研究.中国药理通讯,2007,24(2):56-57.
    [67]侯德仁,王艳,薛俐,等.何首乌对Aβ1-40诱导的AD大鼠海马线粒体膜流 动性及COX活性的影响.中南大学学报(医学版),2008,33(11):988-992.
    [68]侯德仁,杨期东,周琳,等.何首乌对Alzhemer病模型大鼠学习记忆的影响及其机制的研究.中国医师杂志,2004,6(3):347-349.
    [69]姚谦明,蒋宇刚,何启.何首乌对脑细胞bc1-2基因表达的影响实验性研究.现代临床医学生物工程学杂志,2002,8(2):83-86.
    [70]张兰,李林,李雅莉.何首乌有效成分二苯乙烯甙对神经细胞保护作用的机制.中国临床康复,2004,8(1):118-120.
    [71]孙芳玲,李林.何首乌二苯乙烯苷对神经突触的影响及作用机制研究.中国药理通讯,2011,28(2):23-24.
    [72]艾厚喜,叶翠飞,张兰,等.何首乌有效成分二苯乙烯苷对两种拟老年性痴呆模型动物Morris水迷宫作业的影响.中国药理通讯,2004,21(2):28.
    [73]杨小燕.制何首乌多糖对痴呆模型小鼠学习记忆能力及脑内酶活性的影响.药学进展,2005,29(12):557-559.
    [74]刘卉,谭盛.黄芪提取物对Aβ损伤神经的保护作用研究[J].中华神经医学杂志,2009,8(5):452-454.
    [75]刘卉,刘亚杰,刘振华.黄芪提取物的神经营养作用研究.实用医学杂志,2010,26(14):2480-2482.
    [76]黄茸茸,明亮,曹曦,等.黄芪提取物对大鼠局灶性脑缺血再灌注损伤炎症反应的影响[J].安徽医科大学学报,2005,40(6):508-11.
    [77]李静,明亮,黄茸茸,等.黄芪提取物对大鼠全脑缺血再灌注后lL-1β、TNF-a和IL-6表达的影响[J].安徽医科大学学报,2005,40(6):512-4.
    [78]刘东梅,李卫平,姚余有,等.黄芪提取物保护Aβ致海马神经元损伤[J].中国药理学通报,2007,23(4):54:3.
    [79]张云玲,刘东梅,吴庆四,等.黄芪提取物对Aβ25-35所致阿尔茨海默病模型大鼠的学习记忆能力及海马神经元Bcl-2和Bcl-xl表达的影响.安徽医科大学学报,2007,42(3):299-302.
    [80]王瑞婷,申兴斌,左彦珍.黄芩茎叶总黄酮对AD模型大鼠学习、记忆能力及神经元损伤的影响.山东医药,2008,48(44):30-32.
    [81]叶红,王瑞婷,左彦珍,等.黄芩茎叶总黄酮对Aβ引起痴呆大鼠学习记忆 的影响.时珍国医国药,2009,20(4):879-880.
    [82]蔡振岭,赖光辉,雷永惠.黄芩茎叶总黄酮治疗铝毒痴呆模型小鼠的实验研究.中国老年学杂志,2005,25(8):945-946.
    [83]Wang SY, Wang HH, Chi CW, et al. Efects of baicalein on beta-amyloid peptide-(25-35)-induced amnesia in mice[J]. EurJPharmacol,2004,506(1): 55-61.
    [84]Heo H J, Kim D 0, Choi S J, etal. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid beta protein-induced neurotoxicity[J]. J Agrie Food Chem,2004,52(13):4128-32.
    [85]张春,王世真,左萍萍,等.川芎嗪对D-半乳糖损伤模型小鼠学习记忆及胆碱能系统的影响.中国医学科学院学报,2003,25(5):553-556.
    [86]张春,王世真,王铁.川芎嗪对AD模型小鼠海马胆碱能系统的影响.首都医科大学学报,2008,29(1):15-18.
    [87]袁树民,曹兴水,高翔,等.川芎嗪对痴呆小鼠模型学习记忆能力的影响.中国比较医学杂志,2010,20(5):46-49.
    [88]肖成云,刘军涛.川芎嗪对大鼠脑缺血再灌注Bcl-2.c-fos. caspase-3的影响[J].河南中医学院学报,2007,22(4):28-29.
    [89]芮菁.中药治疗老年痴呆的研究概况[J].天津药学,2003,15(1):57-60.
    [90]闫恩志,金英,范莹,等.阿魏酸钠对淀粉样β蛋白片段1-40引起的大鼠海马MAP激酶信号传导通路及凋亡蛋白表达的影响.中国药理学与毒理学杂志,2007,21(5):385-392.
    [91]Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, et al. Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid[J]. Br J Pharmacof,2001,133(1):89-96.
    [92]Ono K, Hirohata M, Yamada M. Ferulic acid destabilizes preformed beta-amyloid fibrils in vitro [J]. Biochem Biophys Res Commun,2005,336 (2): 444-449.
    [93]戴晓莉,马玉奎.姜黄素对三氯化铝致老年性痴呆模型大鼠的作用.食品与药品,2011,13(7):257-259.
    [94]谢赛,董军,余启贵,等.姜黄素对IL-6损伤的大鼠海马神经元的功能性保护作用及机制.暨南大学学报(医学版),2010,31(4):352-356.
    [95]廖涛,王飞,张占军,等.姜黄素对痴呆模型小鼠学习记忆能力的改善作用及对细胞凋亡的影响.中国药理学通报.2009,25(10):1359-1363.
    [96]盛树立.老年性痴呆及相关疾病.科学技术文献出版社.2006,第一版
    [97]徐武华,徐俊,苏江,等.阿尔茨海默病患者的临床病理研究.中国神经精神疾病杂志,2003,29(1):48-49.
    [98]段立晖,周国庆,孙芳,等.β-淀粉样蛋白对大鼠学习记忆、病理及tau蛋白磷酸化的影响.东南国防医药,2009,11(5):389-393.
    [99]宋焱,祁吉,尹建忠.AD大鼠模型的MRI及MR体积测量与病理对照研究.放射学实践,2005,20(9):814-817.
    [100]邱昕,陈国华,冯佩,等.黄连解毒汤对APP/PS1双转基因AD小鼠海马区病理形态学及脑内β-APP基因mRNA的影响.神经损伤与功能重建,2010,5(6):404-408.
    [101]李广强,王小洁,元小冬,等.益脑胶囊治疗阿尔茨海默病大鼠模型病理改变的研究.河北医药,2009,31(14):1724-1726.
    [102]Llovera RE,de Tullio M, Alonso LG, et al.The catalytic domain of insulin-degrading enzyme forms a denaturant-resistant complex with amyloidβ peptide:implications for Alzheimer disease pathogenesis. J Biol
    [103]Authier F, Posner BI, Bergeron JJM. Insulin degrading enzyme [J]. Clin Invest Med,1996,19(3):149-160.
    [104]Kurochkin IV, Goto S.Alzheimer' s β-amyloid peptide specially interacts with and is degraded by insulin degrading enzyme. FEBS Lett,1994,23;345(1):33-37.
    [105]Kurochkin IV.Insulin-degrading enzyme:embarking on amyloid destruction[J]. Trends Biochem Sci,2001,26(7):421-425.
    [106]Mukherjee A, Song E, Kihiko-Ehmann M, et al. Insulin hydrolyzes amyloid heptide to products that are neither neurotoxic nor deposit on amyloid plaques. J Neurosci,2000,20(23):8745-8749.
    [107]Qiu WQ, Folstein MF. Insulin, insulin-degrading enzyme and amyloid-peptide in Alzheimer's disease:review and hypothesis. Neurobiol Aging,2006,27(2):190-198.
    [108]Marlowe L,Peilab R, Benke KS, et al. Insulin-degrading enzyme haplotypes affect in insulin levels but not dementia risk. Neurodegener Dis,2006,3(6):320-326.
    [109]Edbauer D, Willem M, Lammich S, et al. Insulin degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain(AICD). J Biol Chem,2002,277(16)13389-93.
    [110]Miller BC, Eckman EA, Sambamurti K, et al. Amyloid-β peptide levels in brain are inversely correlated with insulsin activity levels in vivo. Proc Natl Acad Sci USA,2003,100 (10):6221-6226.
    [111]Farris W,Mansourian S, Chang Y, et al.Insulin degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA,2003,100(7):4162-4167.
    [112]Zhao Z, Xiang ZM. Insulin degrading enzyme activity selectively decreases in the hippocampal formation of cases at high risk to develop Alzheimer's disease. Neurobiol Aging,2007,28(6):824-830.
    [113]Caccamo A, Oddo S, Sugarman MC, et al. Age-and region-dependent alterations in Aβ-degrading enzymes:implications for Aβ-induced disorders. Neurobiol Aging,2005,26(5):645-654.
    [114]Hong M, Lee VM-Y. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem,1997,272(31):19547-53.
    [115]Cross DA, Watt PW, Shaw M, et al. Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen svnthase by rapamycin sensitive pathways in skeletal muscle and adipose tissue. FEBS Lett,1997,406(1-2):211-5.
    [116]Wang ZF, Li HL, Li XC, et al. Efects of endogenous β-amyloid overproduction on tau phosphorylation in cell culture. J Neurochem,2006,98(4):1167-75.
    [117]杨成居,梅祥云.阿尔茨海默病的中医病机及治疗法则探讨.中国中医急症.2005,14(8):754-755.
    [118]Arriagada P V, Growdon J H, Hedley-Whyte E T, et al. Neurof ibrillary tan gles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology,1992,42(3pt1):631-639.
    [119]Khatoon S, Grundke-Iqbal I, Iqbal K. Brain levels of microtubule-associated protein tau are elevated in Alzheimer disease:a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem,1992,59:750-753.
    [120]Alonso A del C, Zaidi T, Grundke-Iqbal I, etⅡf. Role of abnormally phosphorylated T in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA,1994,91(12):5562-5566.
    [121]Iqbal K, Alonso A Del C, Chen S, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta,2005,1739 (2-3): 198-210.
    [122]陈娟,李宏莲,王建枝.cdk-5过度表达对Tau蛋白磷酸化的影响.中国组织化学与细胞化学杂志,2004,13(2):174-179.
    [123]Chen Huang T, Zhang J, et al (2008)Involvement of calpaln and p25 of CDK5 pathway in nsenoside Rbl's attenuation of beta-amyloid p ptide25-35-induced Tau hyperphosphorylation in eoaical neurons. Brain Res 12.99-106.
    [124]Jope RS, Yuskaitis CJ, Beural E. Glycogen synthase kinase-3: in. flammation, diseases, and therapeutics [J]. Neurochem Res,2007,32 (4_5): 577-595.
    [125]Phiel C J, Wilson C A, Lee V M, Klein P S. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides[J]. Nature, 2003,423(6938):435-9.
    [126]Phiel CJ, Wilson CA, Lee VM, et al. GSK-3β regulates preduetion of Alzheimer's disease amyloid-peptides[J]. Nature,2003,423(6938): 435-439.
    [127]Bhat R V, Shanley J, Correl M P, et al. Regulation and localization of tyrosine 216 phosphorylation of glycogen synthase kinase-3beta in celular and animal models of neuronal degeneration[J]. Proc Natl Acad Sci USA,2000,97(20):11074-9.
    [128]Koh SH, Noh MY, Kim SY. Amyloid-beta induced neurotoxieity is reduced by inhibition of glycogen synthase kinase-3[J]. Brain Res,2008,1188(1): 254,262.
    [129]刘飞,施建华,丁绍红.糖元合成酶激酶3β对微管相关蛋白tau的磷酸化作用.生物化学与生物物理进展,2007,34(9):945-951.
    [130]Yu Y, Run XQ, Liang ZH. Developmental regulation of tau phOB. phorylation, tau kinases and tau phosphatases[J]. J Neurochem, 2009,108(6):1480-1494.
    [131]Lucas J J, Hemandez F, Gomez Ramos P, et al. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegnneration in GSK-3beta conditional transgenic mice [J]. EMBO J,2001,20(1-2):27-39.
    [132]Engel T, Oliver PG, Lucas JJ, Avila j, Hernandez F. Chronic lithium administration to FTDP-17 tau and GSK-3β Verexpressing mice prevents tau hyperphosphOrylatiOn and neurof ibrillary tangle formation, but preformed neurof ibrillary tangles do not revert. J Neurochem 2006,99(6):1451-1455.
    [133]Jahn R, Schiebler W, Ouimet C, et al. A 38,000-dalton membrane protein (p38) present in synaptic vesicles [J]. Proc Natl Acad Sci USA,1985,82(12): 4137-4141.
    [134]Wiedenmarm B, Franke w. Identification and localization of synaptophysin, all integral membl' ane glycopmtein of Mr 38,000 characteristic of presynaptic vesicles[J]. Cell,1985,41(7):107-128.
    [135]Lauri SE, Lamsa K, Pavlov I. Activity blockade increases the num ber of functional synapses in the bippocam pus of newborn rats[J]. Mol Cell Neurosci,2003,22(1):107-171.
    [136]Daly C, su mori M, Moreira JE, et al. Synaptophysin regulate-elathrin-independent endocytosis of synaptic vesicles[J]. Proc Natl Acad Sci USA,2000,97(11):6120-6125.
    [137]Tarsa L, Coda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons[J]. Proc Natl Aead Sci USA, 2002,99(2):1012-1016
    [138]J Masliah E, Terry RD, DeTeresa R, et al. Immunohisto chemical quantific. Tion of the synapse-related protein synaptophysin in Alzheimer's disease[J]. Neurosci Lett.1989,103(2):234.
    [139]姚柏春,邓兆宏,孙天敏,等.Aβ1-40诱导大鼠海马突触体素和突触数量的变化[J].中国现代医学杂志,2007,17(2):153-156.
    [140]于胜波,隋鸿锦,宫瑾,等.蝎毒耐热蛋白对外源性Aβ1-40神经突触毒性的抑制作用[J].解剖科学进展,2008,14(3):225-227.
    [141]许国旺,路鑫,杨胜利.代谢组学研究进展.中国医学科学院学报,2007,29(6):701—711;
    [142]Robertson DG, Reily MD, Baker JD. Metabonomies in pharmaceutical discovery and development[J]. J Proteome Res,2007,6(2):526-539.
    [143]Keun HC. Metabonomie modeling of drug toxicity [J]. Pharmaeol 3"her, 2006,109(1-2):92-106.
    [144]Kel DB. Systems biology, metabolic modelling and metabolomies in drug discovery and development[J]. Drug Discov Today,2006,11(23-24): 1085-1092.
    [145]Lindon JC, Holmes E, Nieholson Jk Metabonomies and its role in drug development and disease diagnosis[J]. Expert Rev Mol Diagn,2004,4(2): 189-199.
    [146]唐雷,韦勇,江文字,等.胆固醇24S-羟化酶基因与晚发性阿尔茨海默病的关联[J].中华老年医学杂志,2007,26(1):13.
    [147]Cardoso SM, Proenca MT, Santos S, et al. Cytochrome eoxidase is deereases in alzheimer s disease platelets[J]. Neurobiol Aging,2004, 25(1):105-110.
    [148]Ehebah R, Keller P, Haass C, et al. Amyloidogenic processing of the alzheimer beta-amyloid precursor protein depends on lipid rafts[J]. J Cell Biol 2003,160:113-123.
    [149]Andreas K. Functional neuroimaging in Alzheimer's type dementia. J Neurol Sci,2002,203:247-251.
    [150]陈雯,马云川,单保慈,等.不同程度阿尔茨海默病PET脑代谢减低的SPM研究.中华核医学杂志,2008,28(1):10-13.
    [151]Niknulina SE, Ciarahti TP, Mudaliar s. et al. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes.2002,51:2190-2198.
    [152]Cook DG, Leverenz JB, McMillan PJ, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-e4 allele. Am J Pathol, 2003,162(1):313-9.
    [1]Zimei B, Yuan S,Callaway DJE, et al. Molecular alignment within beta-sheets in A beta 14-23 fibrils:solid-state NMR experiments and theoretical predictions[J]. Biophysical Jounal,2007,92(2):594-602.
    [2]Loo DT, Copani A, Pike CJ, et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons[J]. Proc Natl Acad Sci USA, 1993,90(17):7951-7955.
    [3]高曲文,陈俊抛,田时雨,等.β淀粉样蛋白诱导脑内神经元凋亡的研究[J].中风与神经疾病杂志,2000,17(2):79—81.
    [4]白燕,屈秋民,石捷.A β 25-35诱导PC-12细胞凋亡及AD细胞模型建立.内蒙古中医药,2011,11:98-99.
    [5]苏心,张文治.β-淀粉样蛋白对培养胎鼠大脑神经干细胞作用的研究[J].中国生物学文摘,2006,20(6):18.
    [6]胥显民,牛勃,王廷杰等.β-淀粉样蛋白对神经干细胞致凋亡作用研究[J].中国药物与临床。2004,4(1):31-33.
    [7]Laeor PN, Buniel MC, Fudow PW, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease[J]. J Neuresci.2007; 27(4):796-807.
    [8]Wrisht S, Malinin NL, Powell KA. et al. Alpha2betal and alpha Vbetal integrin signaling pathways mediate amyloid-beta-induced neurotoxicity [J]. Neurobiol Aging,2007; 28(2):226-37.
    [9]Sigurdsson EM, Lorens SA, Hejna MJ, et al. Local and distant histopathological effects of unilateral amyloid-beta 25-35 injectionsinto the amygdala of young F344 rats. Neurobiol Aging.1996.17: 893-901.
    [10]洪道俊,孙凤艳,朱粹青,等.杏仁核注射Ap25后大鼠脑内细胞周期蛋白、tau蛋白和Bax蛋白的异常表达.生理学报.2003,55:142—146.
    [11]彭小松,陈晓春,黄俊山,等.Ap25-35注射诱导大鼠海马神经元tau蛋白异常磷酸化.中华神经科杂志.2004,37(6):533-537.
    [12]邓娟,周华东,李敬诚,等.β淀粉样蛋白对大鼠学习记忆功能及tau蛋白异常磷酸化的影响.神经解剖学杂志.2007,23(4):385-389.
    [13]赵庆霞,刘小转,李博,等.β淀粉样蛋白25-35和人参皂甙Rb1对神经干细胞分化过程中tau蛋白异常磷酸化的影响.中国组织工程与临床康复.2011,15(27):5076-5079.
    [14]Sayre LM, Zagorski MG, Surewicz WK, et al. Mechanisms of neurotoxicity associated with amyloid beta deposition and the role of free radicals in the pathogenesis of Alzheimer's disease:acritical appraisal. Chem Res Toxicol,1997,10:518-526.
    [15]Cras P, Kawai M, Siedlak S, et al. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer's disease. Am J Pathol, 1990,137:241-246.
    [16]Smith MA, Richey Harris PL, Sayre LM, et al. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci,1997, 17:2653-2657.
    [17]Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature,1996,382:685-91.
    [18]Nelson Arispe, Juan C. Diaz, Olga Simakova. Aβ ion channels. Prospects for treating Alzheimer's disease with Aβ channel blockers, Biochimica et Biophysica Acta,2007,1768:1952-1965.
    [18]Cao X, Wei Z, Gabrel GG, et al. Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures:implications for Alzheimer disease-related pathology[J]. BMC Neurosci,2007,8:73.
    [19]GaO X, Tang XC. Huperzine A allenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism[J]. J Neurosci Res,2006,83(6):1048-1057.
    [20]苗建亭,李柱一,林宏,等.A β氧化应激损伤在Alzheimer's病大鼠发病中的作用[J].第四军医大学学报,2001,22(15):1378-1380.
    [21]Rempel A, kusdra L, Pulliam L.Interleukin-1 beta up-regulates expression of neurofilament light in human newronal cells [J]. Neurochem,2001,78 (3):640-045.
    [22]马天才,朱兴族.白介素-6对大鼠海马的神经毒性作用及其作用机理研究[D].上海:中国科学院上海药物研究所,1997.
    [23]Combs CK, Karlo JC, Landreth CF, et al. Beta-amyloid stimulation of miemglia and monocytic results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis, Neuroscience. 2001:21:1179-1188.
    [24]Sondag CM, Combs CK. Amyloid precursor protein cross-linking stimulates β-amyloid production and pro-inflammatory cytokine release in monocytic lineage cells[J]. Neurochem Stry,2006,97(2):449-461.
    [25]Kukar T, Prescott S, Friksen JL, et al. Chronic administration of R-flurbipmfen attenuates learning impairments in lransgenic amyloid precursor protein mice[J]. BMC Neurosci.2007.8(1):54.
    [26]Schorderet M. Alzheimerg disease:fundamental and therapeutic aspects. Experimentia,1995; 51:99.
    [27]Kim HC, Yamada K, Nitta A. et al. Immunocy to chemical evidence that amyloid beta impains endogenous an taoxidant systemsin vivo[J]. Neuroscience,2003,119(2):339.
    [28]Bellucci A, Luccarini I, Scalic C, et al. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice[J]. Neurobiol Dis.2006.23(2):260.272.
    [29]Reyes AE. Chacon MA, Dinamarca MC, et al. Acetylcholinesterase-A beta complexes are more loxic than A beta fibrils in rat hippocampus:effect on rat beta-amyloid aggregation. laminin expression, reactive astmcylosis, and neuronal cell loss[J]. Am J Pathol,2004,164(6) 2163-2174.
    [30]Wilcock GK, Harrold PL. Treatment of Alzheimer's disease:future direction. Acta Neurol Scand,1996; 165(suppl):5128.
    [1]Alzheimer's Association.2008 Alzheimer's disease facts and figures. Alzheimers Dement.2008;4 (2):110-133.
    [2]Wimo A, Winblad B, Jonsson L. An estimate of the world-wide prevalence and direct costs of dementia in 2005. Dementia Geriatr Cogn Disord.2006;21:175-181.
    [3]田金洲.阿尔茨海默病的诊断与治疗.人民卫生出版社.北京(第1版).2009:16-18.
    [4]Eckman EA, Reed DK, EckmanCB. Dergadation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme [J]. J Biol Chem,2001,276(27):24540-24548.
    [5]Eckman EA, Watson M, Marlow L, et al. Alzheimer's disease beta amyloid peptideis increased in mice deficient in endothelin-convertingenzyme[J]. JBiolChem,2003,278(4):2081-2084.
    [6]黄克维.神经病理学[M].北京:人民卫生出版社,1989:183—185Huang Kewei. Neuropathology [M]. Beijing:People's Medical PublishingHouse, 1989:183-185.
    [7]McPhie D L, Coopersmith R, Hines Peralta A, et al. DNA synthesis and neuronal apoptosis caused by familial Alzheimer disease mutants of the amyloid precursor protein are mediated by the p21 activated kinase PAK3[J]. J Neurosci,2003,23(17):6914-6927.
    [8]Loo D T, Copani A, Pike C J。 et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons [J]. Proc Natl Acad Sci USA,1993,90(17):7951-7955.
    [9]Muyllaert D, Krcmer A, Jaworski T, et al. Glycogen synthase kinase-3beta or a link between amyloid and tan pathology[J]. Genes Brain Behav,2008, 7(1):57-66.
    [10]Hoshi M, Tahashirm A, Noguchi K er al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protien kinase I/glycogen synthase kinase 3β in brain. Proc Natl Acad Sci USA,1996,93:2719
    [11]Wu J, Anwyi R, Rowan MJ.!-amyioid seiectiveiy augments NMDA receptor-mediated synaptic transmission in rat hippocampus[J]. NeuroReport 1995,2409.
    [12]Luo X, Weber GA, Zheng J, et al. Clq-ealrcticuhn induced oxidative neurotoxicity:relevance for the neuropathogenesis of Alzheimer's disease [J]. J Neuroimmunol,2003,135(1-2):62-71.
    [13]Galindo MF, Ikuta I, Zhu X, et al. Mitochondrial biology in Alzheimer's disease pathogenesis[J]. J Neuroehem,2010,114(4):933-945,
    [14]Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzbeimer's disease[J]. Neurobiol Aging,2003,21(3):383-421.
    [15]Akama KT, Van Eldik LT. Beta-amyloid stimulation of inducible nitric. oxide synthase in astrocytes is interleukin-1 beta-and tumor necrosis factor-(TNF a)-dependent, and involves a TNF α receptor-associated factor-and NF kappaB-inducing kinase-dependent signaling mechanism [J]. J Biol Chem,2000,275(11):7918-7924.
    [16]李泽良,谢瑶,许晓伍,等.当归芍药散抑制β-淀粉样肽1-42聚集和纤维形成.解剖学研究,2005,27(4):263-265.
    [17]赖世隆,温泽淮,梁伟雄.广州市城区75岁以上老年人痴呆患病率调查[J].中华老年医学杂志,2000,19(6):450.
    [18]张汤敏,孙仁平.老年痴呆中医防治[M].北京:人民军医出版社.2002:1-2.
    [19]吴蕾,陈云波,王奇,等.人参皂苷对Aβ 25-35蛋白诱导的老年性痴呆体外模型NG108-15神经元细胞凋亡的抑制作用.广州中医药大学学报,2007,24(2):126-131.
    [20]李映红,吴正治,吴伟康,等.天然脑活素对A β1-40诱导AD细胞模型神经毒性及突触发生的影响.中国中医药科技,2008,15(5):375-377.
    [21]李华,李忠刚,李霞,等.银杏叶提取物对A β 25-35诱导的神经细胞毒性的防治作用.中国现代医药杂志,2011,13(4):73-75.
    [22]刘星,耿杰峰,卜宪章,等.姜黄素及其衍生物对Aβ42引起神经元损伤的保护作用.中国老年学杂志,2011,31(13):2522-2524.
    [23]周妍妍,谢宁,姚辛敏,等.地黄饮子对p淀粉样蛋白所致PC12细胞损伤的保护作用.中医药学报,2010,38(2):19-21.
    [24]钟振国,刘茂才,赖世隆,等.补肾益智方对由A β片段神经毒性诱导NG108-15细胞老年性痴呆模型神经递质释放影响的研究.中国中西医结合杂志, 2002,22(1):50-53.
    [25]钟振国,刘茂才,赖世隆,等.补肾益智方对老年性痴呆模型大鼠神经递质释放的影响.中国临床康复,2005,9(44):167-170.
    [26]胡玉萍,袁德培.千层塔合剂对AD模型大鼠学习记忆能力及细胞凋亡的影响.陕西中医,2009,30(10):1416-1419.
    [27]代建峰,高建青,方三华.补肾益智方对老年性痴呆大鼠脑组织海马CA1区锥体细胞的影响.浙江中医杂志,2008,43(11):671-672.
    [28]代建峰,高建青,方三华.不同治法对老年性痴呆大鼠脑组织海马CA1区椎体细胞的影响.中国中医药科技,2009,16(4):302-303.
    [29]朱大明,洪岸,林剑.碱性成纤维细胞生长因子与阿尔茨海默病[J].中国病理生理杂志,2002,18(5):588-592.
    [30]周丽莎,朱书秀,王小月.草苁蓉提取物对AD大鼠海马区bFGF及学习记忆的影响.陕西中医,2008,29(10):1431-1434.
    [31]Lonse BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system[J]. Neuron,2002,35:605-23.
    [32]李强,胡长林,王景周.地黄益知浸膏对老年性痴呆大鼠海马磷酸化CREB、 GSK-3β表达的影响.中国老年学杂志,2008,28(3):539-532.
    [33]Herna ndez-Ortega K, Ferrefa P, Arias C. Sequential expression of cell-cycle regulators and Alzheimer's disease-related proteins in entorhinal cortex after hippocampal excitotoxic damage[J]. J Neurosci Res, 2007,85(8):1744-1751.
    [34]安红梅,胡兵,邢三丽,等.地黄益智方对老年性痴呆模型大鼠细胞剧期蛋白异常表达的影响.中国中医药信息杂志,2012,19(1):47—49.
    [35]牛英才,董妙先,周丽,等.加减地黄饮子对老年性痴呆模型大鼠Bax和Bcl-2mRNA表达的影响.上海中医药杂志,2007,41(10):72—74。
    [36]张晓杰,牛英才,周丽,等.通络救脑口服液对AD模型大鼠Bax和Bcl-2mRNA的影响.中华中医药学刊,2007,25(5):926-928.
    [37]王芝兰,王荣田,冯涛,等.益脑灵对老年性痴呆模型大鼠脑组织bcl-2、 bax影响的研究.中医药信息,2006,23(2):58—60.
    [38]刘业松,李雪梅,王英杰,等.养血清脑颗粒对阿尔茨海默病模型大鼠海马神经细胞凋亡的影响.陕西中医,2011,32(10):1419-1421.
    [39]杨戈,林水淼,赵伟康,等.调心方有效部位对类AD大鼠大脑神经生长因子及其受体p75的影响.中华现代中西医杂志,2005,3(18):1633-1636.
    [40]廉洁,张海燕,刘天宝,等.复方地黄汤对老年性痴呆大鼠海马神经元细胞凋亡和Cyt-C的影响.医学研究杂志,2011,40(4):86-87.
    [41]徐意,田金洲,盛树力,等.金思维对老年性痴呆模型大鼠突触后致密区蛋白的影响.中国中西医结合杂志,2006,26(1):54-57.
    [42]胡利.疏肝解郁法对老年性痴呆模型神经细胞凋亡的机理研究.中医药导报,2010,16(7):1-3.
    [43]Sigurdsson EM, Lorens SA, Hejna MJ, et al. Local and distant histopathological effects of unilateral amyloid-beta 25-35 injectionsinto the amygdala of young F344 rats. Neurobiol Aging.1996.17: 893-901.
    [44]赵庆霞,刘小转,李博,等.β-淀粉样蛋白25-35和人参皂苷Rbl对神经干细胞分化过程中tau蛋白磷酸化水平的影响.中国組织工程研究与临床康复,2011,15(27):5076-79.
    [45]周妍妍,姚辛敏,何秀丽,等.地黄饮子对老年性痴呆神经保护作用的实验研究.中医药学报,2011,39(2):58-61.
    [46]曾克武,王学美,富宏,等.加味五子衍宗方对Aβ25-35所致的PC12细胞tau蛋白高度磷酸化的抑制作用及机制.中国实验方剂学杂志,2011,17(9):159-163.
    [47]黄德弘,刘孟渊,闫小峰.白芍总苷对Aβ42沉积诱导脑内炎症因子及CD45、磷酸化tau蛋白表达的影响.中药药理与临床,2011,27(4):36-39.
    [48]周妍妍,姚辛敏,何秀丽,等.地黄饮子对A β诱导的PC12细胞SODmRNA表达影响的研究.中西医结合心脑血管病杂志,2011,9(6):704-706.
    [49]邱昕,陈国华,汪弢,等.黄连解毒汤对APP/PS1双转基因阿尔茨海默病小鼠自由基代谢及海马区病理形态学影响.中国中西医结合杂志,2011,31(10)1379-1382.
    [50]王芝兰,王荣田,郭立新,等.益脑灵对老年性痴呆模型大鼠学习记忆力及海马细胞超微结构的影响.中医药学报,2005,33(3):50-52.
    [51]单铁英,袁征,王雪丹,等.芪归健脑颗粒抑制老年性痴呆大鼠脑海马组织COX-2和iNOS基因表达.时珍国医国药,2011,22(5):1167-1168.
    [52]胡玉萍,袁德培.千层塔合剂对AD模型大鼠海马区C-FOS表达的影响.时珍国医国药,2011,22(1):111-112.
    [53]桑锋,周春祥.苓桂术甘汤对阿尔茨海默病(AD)发病机制的实验研究.中医学报,2011.26(6):686-688.
    [54]江励华,黄臻,段金廒,等.华佗健聪汤对Aβ诱导BV-2细胞释放IL-1β抑制作用的研究.中国中医药科技,2010,17(1):57-58.
    [55]周忠光,韩玉生,姜国华.补气活血方对多因素损伤AD大鼠血清β淀粉样蛋白细胞因子的影响.中医药学报,2007,35(2):16-18.
    [56]韩玉生,周忠光,姜国华.补气活血方对多因素损伤老年痴呆大鼠血清β淀粉样蛋白及生长因子水平的影响.中国中医药信息杂志,2008,15(8):30-31.
    [57]宋琳,安平,朴钟源,等.地黄饮子对老年性痴呆模型大鼠的学习记忆及炎性反应的影响.时珍国医国药,2007,18(7):1654-1656.
    [58]杨戈,张钦传,郁志华,等.调心方有效部位对类老年痴呆大鼠的影响.中国中医药信息杂志,2006,13(6):27-30.
    [59]杨戈,金红姝,郁志华,等.调心方有效部位和达纳康对类AD大鼠脑组织IL-1βIL-6和APPmRNA表达的影响.辽宁中医杂志,2006,33(5):530-533.
    [60]朱曼迪,崔家鹏,王彩霞.独活对阿尔茨海默病模型大鼠免疫损伤干预作用的实验研究.辽宁中医杂志,2011,38(10):2085-2086.
    [61]李振华,承欧梅,蒋青松,等.黄芩苷抑制beta淀粉样蛋白诱导的海马COX-2蛋白表达.中国中西医结合杂志,2011,31(5):676-679.
    [62]姜波,严妍,吴娟,等.芪归健脑颗粒对老年性痴呆大鼠学习记忆及脑组织nNOS、 COX-2蛋白表达的影响.江苏大学学报(医学版),2009,19(5):383-386.
    [63]李林,张兰,赵玲,等.中药参乌胶囊及其有效成分二苯乙烯苷治疗老年性痴呆的实验研究.中国药理通讯,2007,24(3):22-23.
    [64]Schorderet M. Alzheimerg disease:fundamental and therapeutic aspects. Experimentia,1995; 51:99.
    [65]Kim HC, Yamada K, Nitta A. et al. Immunocy to chemical evidence that amyloid beta impains endogenous an taoxidant systemsin vivo[J]. Neuroscience,2003,119(2):339.
    [66]张英博,李雪岩,张晓杰,等.A β 1-42诱导的模型大鼠海马区AChE、 ChAT的表达及七福饮的干预研究.齐齐哈尔医学院学报,2010,31(14):505-507.
    [67]楚晋,叶翠飞,李林,等.二苯乙烯苷对β-淀粉样肽致痴呆模型小鼠行为及胆碱能功能的影响.基础医学与临床,2006,26(2):197-198.
    [68]周丽莎,朱书秀,张雯娟,等.核桃仁提取物对AD模型大鼠海马和皮质区ChAT、 AchE活性的影响.江汉大学学报(自然科学版),2011,39(2):70-72.
    [69]胡海燕,米金霞,朱未名,等.清心开窍方对老年性痴呆模型大鼠学习记忆能力的影响研究.浙江中医杂志,2008,43(2):104-106.
    [70]兴桂华,牛英才,张晓杰,等.通络救脑口服液对老年性痴呆模型大鼠海马区生长抑素、胆碱乙酰化酶表达的影响.中华中医药杂志,2008,23(4):364-366.
    [71]李强,胡长林,王景周.地黄益知浸膏对老年性痴呆大鼠行为学及中枢胆碱能系统的影响.中成药,2008,30(1):38-42.
    [72]张雅丽,张树明.益髓健脑胶囊对痴呆小鼠记忆功能影响的研究.中国中医药科技,2011,18(3):219-220.
    [73]宋琳,谢宁,朴钟源,等.地黄饮子对AD模型大鼠的学习记忆及胆碱能损害的影响.中华中医药学刊,2007,25(7):1370-1372.
    [74]孔明望,王平,陈刚,等.醒脑益智方拆方对AD模型大鼠学习记忆及胆碱能系统的影响.中国行为医学科学,2007,16(9):786-788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700