稀土掺杂光学增益器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率光纤放大器在工业加工、材料处理、国防军工等方面都有着非常广泛的应用,同时它也正在成为后惯性约束核聚变(后ICF)升级换代的首选技术,得到了越来越多研究人员的青睐。但随着光纤放大器输出功率的不断提高,工作光纤的能量密度也在不断增大,由此产生的非线性光学效应有可能会对光纤造成损伤,严重地制约了光纤放大器向更高功率发展的进程。增益导引-折射率反导引(Gain-Guided Index-Antiguided, GG-IAG)光纤由于其大的模场面积和稳定的单模输出特性为解决上述问题提供了一种可能性,因而一经提出就倍受关注。
     本论文第一部分着重研究了GG-IAG光纤和GG-IAG光纤放大器的基础特性。
     绪论部分介绍了几种不同实现大功率光纤激光器、放大器的思路和方法,通过简单介绍和比较不同方法的优、缺点,确定了本文的研究重点:GG-IAG光纤。然后详述了GG-IAG光纤的结构特性和基本工作原理,最后回顾了它在国内外理论和实验研究方面的进展。
     GG-IAG光纤中纤芯-包层折射率负梯度的存在破坏了传统光纤用来约束光的全反射原理,这必然会对泵浦光的吸收效率产生影响。在对比了2维平面分析法和3维光线追迹法的优、缺点之后,我们决定使用3维光线追迹方法对GG-IAG光纤的吸收特性做系统的分析。首先,利用3维模型研究Yb离子掺杂GG-IAG光纤对泵浦光的吸收特性,再以本研究小组自行拉制的GG-IAG光纤作为实验对象,利用截断法测量光纤的吸收系数从而检验模拟计算的正确性。在模拟结果和实验结果吻合的情况下,应用模式耦合理论对GG-IAG光纤的吸收特性进行了分析解释。
     在系统介绍了Yb离子的能级和跃迁之后,测量了Yb离子掺杂材料的透过光谱,并根据透过光谱计算出Yb离子的吸收截面和发射截面积,同时也对Yb离子掺杂材料的荧光寿命进行了测量。在以上实验数据的基础上,我们选择简化的Yb离子二能级速率方程模型对Yb离子掺杂双包层GG-IAG光纤放大器的工作特性进行研究,最后对各种泵浦方式的优、缺点做了分析比较。
     由于Yb离子掺杂GG-IAG光纤泵浦光吸收系数较大、工作光纤长度较短,在大功率工作条件下必然会带来比较严峻的热学问题。在比较了不同热学模型的特点之后,我们选择以3维热传导模型为基础,结合GG-IAG光纤放大器的工作特性,分析GG-IAG光纤放大器的热学特性。研究了GG-IAG光纤放大器中纵向热传导对其温度分布的影响,并对不同的泵浦方式、散热条件、包层直径和负折射率梯度对温度分布产生的影响进行了研究,为GG-IAG光纤的设计优化和制作工艺的改进提供理论基础和依据。
     硫系玻璃材料由于自身在光学方面的特殊性质而被广泛应用于光学器件中,基于硫系玻璃材料制成的高非线性波导器件已经在全光信号处理和信号通讯领域显示出非常大的优势,其中铒掺杂硫系玻璃薄膜更是由于它在1550nm处杰出的发光特性而备受关注。
     本文第二部分着重研究了用于无损非线性集成光学器件的Er离子掺杂GeAsSe玻璃薄膜的物理、结构和光学特性。实验中通过模拟选择恰当的离子注入参数,将不同浓度的Er离子(3.741*10~(19)cm~(-3)、7.48*10~(19)cm~(-3)、1.36*10~(20)cm~(-3))注入到GeAsSe薄膜中,然后将样品在高真空环境中(~10-5Pa)进行退火。最后对薄膜的表面形态、物理性质、光学性质和薄膜结构进行研究,同时也研究了热退火对上述特性的影响。
As a new approach of achieving large mode area and stable signal mode, whichis essential in high power fiber lasers and amplifiers that has shown wide use inindustry manufacturing, material processing and national defence, gain-guidedindex-antiguided (GG-IAG) fiber has attracted lots of attentions since this conceptionwas proposed.
     In the first part of this work, we focused on properties of this novel configurationand studied the performance of GG-IAG fiber amplifiers.
     By comparing several different technologys to achieve high power fiberlasers/amplifiers, attention was focused on GG-IAG fiber, then the basic principles ofthis fiber was illustrated and the developments on this fiber was reviewed.
     The absorption characteristics are the important parameters for fibers, it showsthe ability how much pumped light is absorbed by the doped fiber core. In lasermanufacturing, the absorption characteristics are very desired for both fiber laser andamplifier design and optimization, also it sheds light on fiber design. The absorptioncharacteristics of this novel double-clad Gain-guided and index-antiguided (GG-IAG)fiber are investigated with3D-ray-trace method. And the simulated correctnesscompared with real data were carried out by measuring GG-IAG fiber. A couplingmodel was introduced to explain the absorption phenomenon during the rayspropagating in the fiber as well.
     Transparent spectrum, absorption cross-section, emission cross-section andlifetime of our Yb doped material were measured (calculated). Based on these data theGG-IAG fiber amplifier is investigated with a rate equation model. Meanwhile, theinfluence of negative index step on gain characteristic has also been studied, as wellas the output characteristics of a GG-IAG fiber amplifier with different pump ways.
     A3-D heat analytical model was established, and simulations of the temperaturefield in GG-IAG fiber amplifier are performed based on the rate equations. With thismethod we compared the temperature field distribution with and without longitudinal heat flow under natural convection cooling. Meanwhile, the influence of differentpump directions, cooling methods, cladding radius, negative refractive index step onthe temperature distribution has been studied as well.
     All of these researches may give some suggestions on design and optimization ofthe GG-IAG fiber.
     Chalcogenide glasses (ChGs) have attracted a lot of attentions not only for theirunique properties like good glass-forming ability, large transmission window, lowphonon energy, large values of refractive index, but also for their ability to dissolve upto few atomic percent of rare-earth (RE) which makes them highly promising as REhost materials for optical amplifier applications where high doped concentration ofRE is required urgently for the reduced length of integrated optical amplifiers. Amongvarious glasses available, heavily doped with Er3+ions glasses are prospectivematerials for the1.54μm emission arising from4I4
     13/2→I15/2transition.
     In the second part of this work, the properties of Ge_(11.5)As_(24)Se_(64.5)chalcogenidethin films into which Er atoms were ion implanted at energies of2.25MeV up to aconcentration of0.4mol%were studied. The effect of post implant annealing wasinvestigated on the luminescence from4I~413/2→I15/2transition of Er as well as on thephysical properties of the films.
引文
1. J. Nilsson, and D. N. Payne,"High-Power Fiber Lasers," Science332,921-922(2011).
    2. H. R. Muller, J. Kirchhof, V. Reichel, and S. Unger,"Fibers for high-powerlasers and amplifiers," Comptes Rendus Physique7,154-162(2006).
    3. D. J. Richardson, J. Nilsson, and W. A. Clarkson,"High power fiber lasers:current status and future perspectives," Journal of the Optical Society ofAmerica B-Optical Physics27, B63-B92(2010).
    4. V. Sudesh, T. Mccomb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E.Siegman,"Diode-pumped200μm diameter core, gain-guided,index-antiguided single mode fiber laser," Applied Physics B-Lasers andOptics90,369-372(2008).
    5. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson,"Ytterbium-dopedlarge-core fiber laser with1.36kW continuous-wave output power," OpticsExpress12,6088-6092(2004).
    6. J. Limpert, O. Schmidt, J. Rothhardt, F. Roser, T. Schreiber, A. Tunnermann, S.Ermeneux, P. Yvernault, and F. Salin,"Extended single-mode photonic crystalfiber lasers," Optics Express14,2715-2720(2006).
    7. C. D. Brooks, and F. Di Teodoro,"Multimegawatt peak-power,single-transverse-mode operation of a100μm core diameter, Yb-dopedrodlike photonic crystal fiber amplifier,"Applied Physics Letters89(2006).
    8. A. Galvanauskas,"Mode-scalable fiber-based chirped pulse amplificationsystems," Ieee Journal of Selected Topics in Quantum Electronics7,504-517(2001).
    9. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong,"Breaking the limit ofmaximum effective area for robust single-mode propagation in optical fibers,"Optics Letters30,2855-2857(2005).
    10. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg,and F. V. Dimarcello,"Light propagation with ultralarge modal areas in opticalfibers," Optics Letters31,1797-1799(2006).
    11. J. P. Koplow, D. A. V. Kliner, and L. Goldberg,"Single-mode operation of acoiled multimode fiber amplifier," Optics Letters25,442-444(2000).
    12. G. C. Chi-Hung Liu, Natasha Litchinister, Doug Guertin, Nick Jacobson,Kanishka Tankala, and Almantas Galvanauskas,"Chirally Coupled CoreFibers at1550-nm and1064-nm for Effectively Single-Mode Core SizeScaling," Conference on Lasers and Electro-Optics (CLEO), CTuBB3(2007).
    13. C.-H. L. Michael Craig. Swan, Doug Guertin, Nick Jacobsen, KanishkaTankala, and Almantas Galvanauskas,"33μm Core Effectively Single-ModeChirally-Coupled-Core Fiber Laser at1064-nm," Optical FiberCommunication Conference (OFC), OWU2(2008).
    14. G. C. Chi-Hung Liu, Natasha Litchinitser, Almantas Galvanauskas, DougGuertin, Nick Jabobson, and Kanishka Tankala,"Effectively Single-ModeChirally-Coupled Core Fiber," Advanced Solid-State Photonics (ASSP), ME2(2007).
    15. A. E. Siegman,"Propagating modes in gain-guided optical fibers," Journal ofthe Optical Society of America a-Optics Image Science and Vision20,1617-1628(2003).
    16. A. E. Siegman,"Gain-guided, index-antiguided fiber lasers," Journal of theOptical Society ofAmerica B-Optical Physics24,1677-1682(2007).
    17. K. M. Gundu, P. G. Yarandi, and A. Mafi,"Beam-quality factor of single-modegain-guided fiber lasers," Optics Letters35,4124-4126(2010).
    18. C. F. Wang, T. H. Her, L. Zhao, X. Y. Ao, L. W. Casperson, C. H. Lai, and H.C. Chang,"Gain Saturation and Output Characteristics of Index-AntiguidedPlanar Waveguide Amplifiers With Homogeneous Broadening," Journal ofLightwave Technology29,1958-1964(2011).
    19. X. Y. Ao, T. H. Her, and L. W. Casperson,"Gain guiding in large-core Braggfibers," Optics Express17,22666-22672(2009).
    20. H. S. Kim, V. Sudesh, T. S. McComb, and M. C. Richardson,"Investigation ofthe Thermal Characteristics of a Gain-guided, Index-anti-guided Fiber,"Journal of the Korean Physical Society56,209-213(2010).
    21. X. Wen, X. Caidong, W. Xiangru, W. Zhigang, and L. Yuming,"Single-modeparabolic gain-guiding optical fiber with core diameter up to200mu m,"International Journal of Infrared and Millimeter Waves29,406-415(2008).
    22. X. W. X. C.-d. L. Y.-m. W. Xiang-ru,"Analysis of Confinement Factor forSquare-power Gain-guiding Optical Fibers," LASER&INFRARED38,67-69(2008).
    23. X. R. Wang, C. D. Xiong, and J. Y. Luo,"Coupling coefficients evaluation of adirectional coupler using gain guided and index antiguided fibers," OpticsCommunications282,382-386(2009).
    24. X. R. Wang, C. D. Xiong, X. Wen, Q. Qiu, J. Y. Luo, H. Deng, and W. Xie,"New side-pump scheme for large mode area fiber lasers by wrapping polishedfibers conjugate caustic removed," Optics Communications283,44-48(2010).
    25. E. Zhou, B. Zhao, X. Wang, Y. Wang, W. Wei, and B. Peng,"Analysis ofone-end-pumped Yb(3+)-doped gain guided and index antiguided fiber laser,"Applied Physics B-Lasers and Optics99,747-751(2010).
    26. E. Y. Zhou, K. L. Yan, B. Y. Zhao, Y. S. Wang, W. Wei, and B. Peng,"Generalcoupled-mode analysis for gain-guided, index-antiguided fibers, andindex-guided fibers," Optics Communications284,1034-1037(2011).
    27. A. E. Siegman, Y. Chen, V. Sudesh, M. C. Richardson, M. Bass, P. Foy, W.Hawkins, and J. Ballato,"Confined propagation and near single-mode laseroscillation in a gain-guided, index antiguided optical fiber," Applied PhysicsLetters89(2006).
    28. Y. Chen, T. McComb, V. Sudesh, M. Richardson, and M. Bass,"Verylarge-core, single-mode, gain-guided, index-antiguided fiber lasers," OpticsLetters32,2505-2507(2007).
    29. W. Hageman, Y. Chen, X. R. Wang, L. L. Gao, G. U. Kim, M. Richardson, andM. Bass,"Scalable side-pumped, gain-guided index-antiguided fiber laser,"Journal of the Optical Society of America B-Optical Physics27,2451-2459(2010).
    30. W. L. M. Lu, K. Zou, S. Dai, W. Wei and B. Peng,"Yb3+-doped200μmdiameter core, gain guided index-antiguided fiber," APPLIED PHYSICS B:LASERS AND OPTICS98,301-304(2009).
    31. W. N. Li, M. Lu, Z. Yang, H. T. Guo, P. F. Wang, and B. Peng,"Fabricationand characterization of Yb3+-doped gain-guided index-antiguided fiber withD-shaped inner cladding," Journal of the Optical Society of America B-OpticalPhysics28,1498-1501(2011).
    1. H. Po, J. D. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney,R. R. Tricca, and Y. H. Zhang,"High-Power Neodymium-Doped SingleTransverse-Mode Fiber Laser," Electronics Letters29,1500-1501(1993).
    2. A. P. Liu, and K. Ueda,"The absorption characteristics of circular, offset, andrectangular double-clad fibers," Optics Communications132,511-518(1996).
    3. A. E. Siegman,"Gain-guided, index-antiguided fiber lasers," Journal of theOptical Society ofAmerica B-Optical Physics24,1677-1682(2007).
    4. A. E. Siegman,"Propagating modes in gain-guided optical fibers," Journal ofthe Optical Society of America a-Optics Image Science and Vision20,1617-1628(2003).
    5. S. Xu, and H. W. Zi,"Absorption efficiency of graded-index double-cladfiber," Optical Engineering44(2005).
    6. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev,"Supercontinuumself-Q-switched ytterbium fiber laser," Optics Letters22,298-300(1997).
    7. V. Doya, O. Legrand, and F. Mortessagne,"Optimized absorption in a chaoticdouble-clad fiber amplifier," Optics Letters26,872-874(2001).
    8. J. Q. Xu, J. H. Lu, J. R. Lu, and K. Ueda,"Influence of cross-sectional shapeon absorption characteristics of double-clad fiber lasers," Optical Engineering42,2527-2533(2003).
    9. H. R. Muller, J. Kirchhof, V. Reichel, and S. Unger,"Fibers for high-powerlasers and amplifiers," Comptes Rendus Physique7,154-162(2006).
    10. L. A. Whitehead,"Simplified Ray Tracing in Cylindrical Systems," AppliedOptics21,3536-3538(1982).
    11. A. Sharma, D. V. Kumar, and A. K. Ghatak,"Tracing Rays throughGraded-Index Media-a New Method,"Applied Optics21,984-987(1982).
    12. P. Filip, A. Grobelny, and J. S. Witkowski,"Efficiency of active Double-Cladfiber pumping in different types of fibers," Icton2008: Proceedings of200810th Anniversary International Conference on Transparent Optical Networks,Vol4,353-356(2008).
    13. F. Mortessagne, O. Legrand, and D. Sornette,"Role of the AbsorptionDistribution and Generalization of Exponential Reverberation Law in ChaoticRooms," Journal of the Acoustical Society ofAmerica94,154-161(1993).
    14. E. W. Marchand,"Ray Tracing in Gradient-Index Media," Journal of theOptical Society ofAmerica60,1-&(1970).
    15.丁宣浩,蔡如华,"光线方程的数值解与光线追迹,"西南师范大学学报自然科学版30,667-671(2005).
    16.黄战华,程红飞,蔡怀宇,赵海山,张尹馨,"变折射率介质中光线追迹通用算法的研究,"光学学报25,589-592(2005).
    17.王润轩,"一种变折射率光学系统光线追迹的新方法,"激光技术28,664-666(2004).
    18.赵存华,樊仲维,"一种LD侧面抽运固体激光棒光线追迹的数值计算,"激光技术29,404-406(2005).
    19. J. S. Witkowski, and A. Grobelny,"Ray tracing method in a3D analysis offiber-optic elements," Optica Applicata38,281-294(2008).
    20. I. Dritsas, T. Sun, and K. T. V. Grattan,"Numerical simulation basedoptimization of the absorption efficiency in double-clad fibres," Journal ofOptics a-Pure and Applied Optics8,49-61(2006).
    21. A. P. Liu, and K. Ueda,"The absorption characteristics of rare earth dopedcircular double-clad fibers," Optical Review3,276-281(1996).
    22. S. Bedo, W. Luthy, and H. P. Weber,"The Effective Absorption-Coefficient inDouble-Clad Fibers," Optics Communications99,331-335(1993).
    23. W. A. Gambling, D. N. Payne, and H. Matsumura,"Mode ConversionCoefficients in Optical Fibers," Applied Optics14,1538-1542(1975).
    24. V. Ruddy, and G. Shaw,"Mode-Coupling in Large-Diameter Polymer-CladSilica Fibers," Applied Optics34,1003-1006(1995).
    1. I. Kelson, and A. A. Hardy,"Strongly pumped fiber lasers," Ieee Journal ofQuantum Electronics34,1570-1577(1998).
    2.卢秀权,陈绍和,"Yb3+光纤放大器,"中国激光28,209-214(2001).
    3.邵铭,张立文,高明义,"掺Yb3+光纤放大器的速率-传输方程分析,"激光与红外33,356-359(2003).
    4.杨玲珍,王云才,陈国夫,王屹山,赵卫,"超短脉冲掺Yb3+光纤放大器实验研究,"光子学报37,421-424(2008).
    5.尹尔琪,代志勇,刘永智,"掺Yb双包层脉冲光纤放大器的研究,"SCIENCE&TECHNOLOGY INFORMATION14,201-202(2008).
    6. X. Peng, and L. Dong,"Temperature dependence of ytterbium-doped fiberamplifiers," Journal of the Optical Society of America B-Optical Physics25,126-130(2008).
    7. G. T.12442-90,"石英玻璃中羟基含量检验方法[S],"北京:中国建材院石英玻璃研究所(1990).
    8. B. F. Aull, and H. P. Jenssen,"Vibronic Interactions in Nd-Yag Resulting inNonreciprocity of Absorption and Stimulated-Emission Cross-Sections," IeeeJournal of Quantum Electronics18,925-930(1982).
    9. X. Y. Huang, and G. F. Wang,"Conversion of infrared radiation into visibleemission in NaY(WO(4))(2):Yb(3+), Ho(3+) crystal," Journal ofLuminescence130,1702-1707(2010).
    10. W. J. Miniscalco, and R. S. Quimby,"General Procedure for the Analysis ofEr3+Cross-Sections," Optics Letters16,258-260(1991).
    11. D. E. Mccumber,"Einstein Relations Connecting Broadband Emission+Absorption Spectra," Physical Review a-General Physics136, A954-&(1964).
    12. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna,"Ytterbium-dopedfiber amplifiers," Ieee Journal of Quantum Electronics33,1049-1056(1997).
    13. A. Hardy,"Signal amplification in strongly pumped fiber amplifiers," IeeeJournal of Quantum Electronics33,307-313(1997).
    14. B. Pedersen, A. Bjarklev, J. H. Povlsen, K. Dybdal, and C. C. Larsen,"TheDesign of Erbium-Doped Fiber Amplifiers," Journal of Lightwave Technology9,1105-1112(1991).
    15.陈婉,董淑福,刘红军,"双泵浦光纤参量放大器光纤长度的选取研究,"光通信研究146,51-53(2008).
    16.李志全,田秀仙,张同,"一种增益可调掺铒光纤放大器的研究,"光学与光电技术6,016-019(2008).
    17.龙青云,吴庭万,"光纤喇曼放大器的阈值探析,"激光技术32,067-070(2008).
    18.汪玉海,马春生,李德禄,郑杰,"掺镱光纤放大器增益特性的理论分析,"光子学报37,855-859(2008).
    19.许党朋,李明中,吕新杰,王建军,林宏奂,黄小东,"高功率掺镱双包层光纤放大器放大特性理论模拟,"强激光与粒子束19,1071-1076(2007).
    20.许党朋,李明中,隋展,"双端泵浦的高功率掺Yb3+双包层光纤激光器,"强激光与粒子束19,1841-1844(2007).
    21.张立文,郑义,"掺镱光纤放大器(YDFA)特性的研究,"激光杂志24,11-13(2003).
    22.赵振宇,段开椋,王建明,赵卫,王屹山,"光子晶体光纤放大器增益特性的实验研究,"强激光与粒子束20,1975-1978(2008).
    23. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad,"AnalyticalModel for Rare-Earth-Doped Fiber Amplifiers and Lasers," Ieee Journal ofQuantum Electronics30,1817-1830(1994).
    24. A. E. Siegman,"Propagating modes in gain-guided optical fibers," Journal ofthe Optical Society of America a-Optics Image Science and Vision20,1617-1628(2003).
    25. A. E. Siegman,"Gain-guided, index-antiguided fiber lasers," Journal of theOptical Society ofAmerica B-Optical Physics24,1677-1682(2007).
    26. C. X. Xiangru Wang, Qi Qiu, and Xia Wen,"Analysis of ytterbium-doped gainguided and index antiguided fiber amplifier," Photonics and OptoelectronicsMeetings (POEM)7278,72780C-72781(2008).
    1. Y. Wang, C. Q. Xu, and H. Po,"Analysis of Raman and thermal effects inkilowatt fiber lasers," Optics Communications242,487-502(2004).
    2.陈子伦,侯朴,姜宗福,"光纤放大器热效应引起的相位噪声理论分析,"红外与激光工程36,816-819(2007).
    3. L. Zenteno,"High-Power Double-Clad Fiber Lasers," Journal of LightwaveTechnology11,1435-1446(1993).
    4.韩旭,冯国英,韩敬华,张秋慧,李尧,张大勇,"高功率掺镱双包层光纤激光器中光纤损伤及其理论分析,"光子学报38,2468-2472(2009).
    5. H. R. Muller, J. Kirchhof, V. Reichel, and S. Unger,"Fibers for high-powerlasers and amplifiers," Comptes Rendus Physique7,154-162(2006).
    6. D. J. Richardson, J. Nilsson, and W. A. Clarkson,"High power fiber lasers:current status and future perspectives," Journal of the Optical Society ofAmerica B-Optical Physics27, B63-B92(2010).
    7. J. Nilsson, and D. N. Payne,"High-Power Fiber Lasers," Science332,921-922(2011).
    8. L. Li, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, and A. Schulzgen,"3-Dimensional thermal analysis and active cooling of short-lengthhigh-power fiber lasers," Optics Express13,3420-3428(2005).
    9. Y. Wang, C. Q. Xu, and H. Po,"Thermal effects in kilowatt fiber lasers," IeeePhotonics Technology Letters16,63-65(2004).
    10. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson,"Ytterbium-dopedlarge-core fiber laser with1.36kW continuous-wave output power," OpticsExpress12,6088-6092(2004).
    11. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson,"A103Werbium-ytterbium co-doped large-core fiber laser," Optics Communications227,159-163(2003).
    12. L. Li, M. Morrell, T. Qiu, V. L. Temyanko, A. Schulzgen, A. Mafi, D.Kouznetsov, J. V. Moloney, T. Luo, S. Jiang, and N. Peyghambarian,"Shortcladding-pumped Er/Yb phosphate fiber laser with1.5W output power,"Applied Physics Letters85,2721-2723(2004).
    13. T. Qiu, L. Li, A. Schulzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V.Moloney, and N. Peyghambarian,"Generation of9.3-W multimode and4-Wsingle-mode output from7-cm short fiber lasers," Ieee Photonics TechnologyLetters16,2592-2594(2004).
    14. A. E. Siegman,"Gain-guided, index-antiguided fiber lasers," Journal of theOptical Society ofAmerica B-Optical Physics24,1677-1682(2007).
    15. A. E. Siegman,"Propagating modes in gain-guided optical fibers," Journal ofthe Optical Society of America a-Optics Image Science and Vision20,1617-1628(2003).
    16. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields,"ThermalModeling of Continuous-Wave End-Pumped Solid-State Lasers," AppliedPhysics Letters56,1831-1833(1990).
    17. Y. S. Huang, H. L. Tsai, and F. L. Chang,"Thermo-optic effects affecting thehigh pump power end pumped solid state lasers: Modeling and analysis,"Optics Communications273,515-525(2007).
    18. A. K. Cousins,"Temperature and Thermal-Stress Scaling in Finite-LengthEnd-Pumped Laser Rods," Ieee Journal of Quantum Electronics28,1057-1069(1992).
    19. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell,"Thermal effects in dopedfibers," Journal of Lightwave Technology16,1013-1023(1998).
    20. D. C. Brown, and H. J. Hoffman,"Thermal, stress, and thermo-optic effects inhigh average power double-clad silica fiber lasers," Ieee Journal of QuantumElectronics37,207-217(2001).
    21. M. Sabaeian, H. Nadgaran, and L. Mousave,"Analytical solution of the heatequation in a longitudinally pumped cubic solid-state laser," Applied Optics47,2317-2325(2008).
    22.陈爽,冯莹,"高功率光子晶体光纤激光器温度分布研究,"光子学报37,1134-1138(2008).
    23.陈子伦,侯静,姜宗福,"高功率掺镱双包层光纤激光器热效应理论研究,"激光技术31,544-550(2007).
    24.李剑峰,段开椋,曹祥杰,王屹山,姚欣,"千瓦级掺Yb3+双包层光纤激光器的热分析,"光子学报37,1921-1927(2008).
    25.薛冬,周军,楼祺洪,帅敏东,"高功率双包层光纤激光器热效应及功率极限,"强激光与粒子束21,1013-1018(2009).
    26.朱洪涛,楼祺洪,周军,漆云凤,董景星,魏运荣,"千瓦级双包层光纤激光器冷却方案设计理论和实验研究,"物理学报57,4966-4971(2008).
    27. M. Gorjan, M. Marincek, and M. Copic,"Pump absorption and temperaturedistribution in erbium-doped double-clad fluoride-glass fibers," OpticsExpress17,19814-19822(2009).
    28. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot,and A. Tunnermann,"Thermo-optical properties of air-clad photonic crystalfiber lasers in high power operation," Optics Express11,2982-2990(2003).
    29. Y. M. Huo, and P. K. Cheo,"Thermomechanical properties of high-power andhigh-energy Yb-doped silica fiber lasers," Ieee Photonics Technology Letters16,759-761(2004).
    30. T. Liu, Z. M. Yang, and S. H. Xu,"3-Dimensional heat analysis in short-lengthEr3+/Yb3+co-doped phosphate fiber laser with upconversion," Optics Express17,235-247(2009).
    31. T. Liu, Z. M. Yang, and S. H. Xu,"Analytical investigation on transientthermal effects in pulse end-pumped short-length fiber laser," Optics Express17,12875-12890(2009).
    1. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler,"ModifiedPreparation Procedure for Laboratory Melting of Multicomponent ChalcogenideGlasses,"JournalofNon-CrystallineSolids139,121-128(1992).
    2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal,"Chalcogenide Glass-Fiber-BasedMid-IR Sources and Applications," Ieee Journal of Selected Topics in QuantumElectronics15,114-119(2009).
    3. M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y.Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton,"Applications ofhighly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signalprocessing," Ieee Journal of Selected Topics in Quantum Electronics14,529-539(2008).
    4. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal,"Maximizingthe bandwidth of supercontinuum generation in As(2)Se(3) chalcogenide fibers,"Opticsexpress18,6722-6739(2010).
    5. K. Shimakawa, A. Kolobov, and S. R. Elliott,"Photoinduced effectsand metastabilityin amorphous semiconductors and insulators," Advances in Physics44,475-588(1995).
    6. K. Tanaka,"Photoinduced structural changes in amorphous semiconductors,"Semiconductors32,861-866(1998).
    7. G. Yang, H. S. Jain, A. T. Ganjoo, D. H. Zhao, Y. S. Xu, H. D. Zeng, and G. R. Chen,"Aphoto-stablechalcogenideglass,"Opticsexpress16,10565-10571(2008).
    8. J. C. Phillips,"TopologyofCovalent Non-Crystalline Solids.1. Short-RangeOrder inChalcogenideAlloys,"JournalofNon-Crystalline Solids34,153-181(1979).
    9. M. F. Thorpe,"Continuous Deformations in Random Networks," Journal ofNon-CrystallineSolids57,355-370(1983).
    10. K. Tanaka,"Structural Phase-Transitions in Chalcogenide Glasses," Physical ReviewB39,1270-1279(1989).
    11. P. Boolchand, D.G.Georgiev,andB. Goodman,"Discoveryofthe intermediatephasein chalcogenide glasses," Journal of Optoelectronics and Advanced Materials3,703-720(2001).
    12. D. A.P.Bulla,R.P. Wang, A.Prasad, A.V.Rode,S.J.Madden,andB. Luther-Davies,"On the properties and stability of thermally evaporated Ge-As-Se thin films,"Applied Physicsa-MaterialsScience&Processing96,615-625(2009).
    13. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies,"Properties of GexAsySe1-x-yglasses for all-optical signal processing," Optics express16,2804-2815(2008).
    14. J.T.Gopinath,M.Soljacic,E.P.Ippen,V.N.Fuflyigin, W. A. King,andM.Shurgalin,"Third order nonlinearities in Ge-As-Se-based glasses for telecommunicationsapplications,"JournalofApplied Physics96,6931-6933(2004).
    15. B. J. Eggleton, B. Luther-Davies, and K. Richardson,"Chalcogenide photonics,"NaturePhotonics5,141-148(2011).
    16. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies,"Dispersionengineered Ge11.5As24Se64.5nanowires with a nonlinear parameter of136W-1m-1at1550nm,"Opticsexpress18,18866-18874(2010).
    17. W. J. Miniscalco,"Erbium-Doped Glasses for Fiber Amplifiers at1500nm," JournalofLightwaveTechnology9,234-250(1991).
    18. G. C. Righini, M. Brenci, G. N. Conti, S. Pelli, M. Ferrari, M. Bettinelli, A. Speghini,and B. J. Chen,"Integrated optical amplifiers based on rare-earth doped (RED) oxideglasses," International Symposium on Photonic Glass (Ispg2002)5061,36-42(2003).
    19. A. Jha, S. X. Shen, L. H. Huang, B. Richards, and J. Lousteau,"Rare-earth dopedglass waveguides for visible, near-IR and mid-IR lasers and amplifiers," Journal ofMaterialsScience-Materials inElectronics18,S315-S320(2007).
    20. E.M.Yeatman, M.M. Ahmad,O.McCarthy, A.Vannucci,P.Gastaldo,D.Barbier,D.Mongardien, and C. Moronvalle,"Optical gain in Er-doped SiO2-TiO2waveguidesfabricated bythesol-geltechnique,"OpticsCommunications164,19-25(1999).
    21. D. A.Turnbull, B.G.Aitken,andS.G.Bishop,"Broad-bandexcitationmechanismforphotoluminescence in Er-doped Ge25Ga1.7As8.3S65glasses," Journal ofNon-CrystallineSolids244,260-266(1999).
    22. A. Tverjanovich, Y. G. Grigoriev, S. V. Degtyarev, A. V. Kurochkin, A. A. Man'shina,T. Y. Ivanova, A. Povolotskiy, and Y. S. Tveryanovich,"Up-conversion luminescenceefficiency in Er-doped chalcogenide glasses," Journal of Non-Crystalline Solids326,311-315(2003).
    23. A. Polman,"Erbium implanted thin film photonic materials," Journal of AppliedPhysics82,1-39(1997).
    24. S. Q. Gu, S. Ramachandran, E. E. Reuter, D. A. Turnbull, J. T. Verdeyen, and S. G.Bishop,"Novel Broad-Band Excitation of Er3+Luminescence in ChalcogenideGlasses,"Applied Physics Letters66,670-672(1995).
    25. S. Ramachandran, and S. G. Bishop,"Excitation of Er3+emission by host glassabsorption in sputtered films of Er-doped Ge10As40Se25S25glass," Applied PhysicsLetters73,3196-3198(1998).
    26. J. Fick, E. J. Knystautus, A. Villeneuve, F. Schiettekatte, S. Roorda, and K. A.Richardson,"High photoluminescence in erbium-doped chalcogenide thin films,"JournalofNon-Crystalline Solids272,200-208(2000).
    27. D. Tonchev, S.O. Kasap, C. J. Haugen, R. G. DeCorby, J. N. McMullin, and T. Allen,"Thermal and photoluminescence properties of Er2S3-doped (As2Se3)90(GaSe)5Ge5glasses,"JournalofMaterialsScience-MaterialsinElectronics14,851-852(2003).
    28. T. W. Allen, M. M. Hawkeye, C. J. Haugen, R. G. DeCorby, J. N. McMullin, D.Tonchev, K. Koughia, and S. O. Kasap,"Photoluminescence measurements ofEr-doped chalcogenide glasses," Journal of Vacuum Science&Technology A22,921-924(2004).
    29. C. Vigreux-Bercovici, A. Pradel, A. Fuchs, and J. Fick,"Effect of annealing on thephotoluminescence in sputtered films ofEr-doped chalcogenide glasses,"Physics andChemistry of Glasses-European Journal of Glass Science and Technology Part B47,162-166(2006).
    30. K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin,and S. O. Kasap,"Photoluminescence in Er-doped Ge-Ga-Se glasses," Journal ofLuminescence112,92-96(2005).
    31. S. Kasap, K. Koughia, G. Soundararajan, and M. G. Brik,"Optical andPhotoluminescence Properties ofErbium-Doped Chalcogenide Glasses (GeGaS:Er),"IeeeJournalofSelectedTopicsinQuantumElectronics14,1353-1360(2008).
    32. V. K. Kudoyarova, S. A. Kozykhin, and K. D. Tsendin,"A study ofphotoluminescence and composition of amorphous AS2Se3films modified withEr(thd)3complex compound," Journal of Optoelectronics and Advanced Materials9,3128-3133(2007).
    33. Z. G. Ivanova, E. Cernoskova, and Z. Cernosek,"Er-doped Ge-S-Ga glasses:photoluminescence and thermal properties," Journal of Physics and Chemistry ofSolids68,1260-1262(2007).
    34. V. V. Halyan, A. H. Kevshyn, Y. M. Kogut, G. Y. Davydyuk, M. V. Shevchuk, V.Kazukauskas, and A. Ziminskij,"Photoluminescence in Er-doped AgGaS2-GeS2glasses,"Physica StatusSolidi C-Current Topics in Solid StatePhysics, Vol6, No126,2810-2813(2009).
    35. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber,"Rare-earthdopedchalcogenideglasslaser,"ElectronicsLetters32,666-667(1996).
    36. Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo,"Fabrication ofPraseodymium-Doped Arsenic Sulfide Chalcogenide Fiber for1.3-Mu-M FiberAmplifiers,"AppliedPhysicsLetters65,13-15(1994).
    37. R. P. Wang, D. Bulla, A. Smith, T. Wang, and B. Luther-Davies,"Structure andphysical properties ofGexAsySe1-x-yglasses withthe same mean coordination numberof2.5,"JournalofApplied Physics109(2011).
    38. D. A. Turnbull, J. S. Sanghera, V. Nguyen, and I. D. Aggarwal,"Fabrication ofwaveguides in sputtered films of GeAsSe glass via photodarkening with abovebandgap light,"Materials Letters58,51-54(2004).
    39. J. M. Laniel, J.M.Menard, K.Turcotte,A.Villeneuve,R. Vallee,C. Lopez,and K. A.Richardson,"Refractive index measurements of planar chalcogenide thin film,"JournalofNon-Crystalline Solids328,183-191(2003).
    40. M. Frumar, B. Frumarova, P. Nemec, T. Wagner, J. Jedelsky, and M. Hrdlicka,"Thinchalcogenide films prepared by pulsed laser deposition-new amorphous materialsapplicable inoptoelectronicsandchemicalsensors,"JournalofNon-Crystalline Solids352,544-561(2006).
    41. R. A. Jarvis, R. P. Wang, A. V. Rode, C. Zha, and B. Luther-Davies,"Thin filmdeposition of Ge33As12Se55by pulsed laser deposition and thermal evaporation:Comparisonofproperties,"JournalofNon-CrystallineSolids353,947-949(2007).
    42. K. Vu, and S. Madden,"Tellurium dioxide Erbium doped planar rib waveguideamplifierswithnet gainand2.8dB/cminternalgain,"Opticsexpress18,19192-19200(2010).
    43. Z. G. Ivanova, V. S. Vassilev, E. Cernoskova, and Z. Cernosek,"Physicochemical,structural and fluorescence properties of Er-doped Ge-S-Ga glasses," Journal ofPhysics and ChemistryofSolids64,107-110(2003).
    44. T. Aoki, D. Saitou, S. Kobayashi, C. Fujihashi, K. Shimakawa, M. Munzar, K.Koughia, and S. O. Kasap,"Slow luminescence from Er3+centers in Er-DopedGeGaSe chalcogenide glasses observed by wideband quadrature frequency-resolvedspectroscopy," Journal of Materials Science-Materials in Electronics18, S97-S101(2007).
    45. C. Koughia, and S.O. Kasap,"Excitationdiffusiondueto photontrapping in GeGaSeglasses heavily doped with Er3+," Journal of Materials Science-Materials inElectronics20,139-143(2009).
    46. K. Maeda, T. Sakai, K. Sakai, T. Ikari, M. Munzar, D. Tonchev, S. O. Kasap, and G.Lucovsky,"Effect of Ga on the structure of Ge-Se-Ga glasses from thermal analysis,Raman and XPS measurements," Journal of Materials Science-Materials inElectronics18,S367-S370(2007).
    47. M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C.Haugen, R.Decorby, and J. N.McMullin,"InfluenceofGaontheopticalandthermalproperties of Er2S3doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,"Physics and ChemistryofGlasses46,215-219(2005).
    48. S. O. Kasap, K. Koughia, M. Munzar, D. Tonchev, D. Saitou, and T. Aoki,"Recentphotoluminescence research on chalcogenide glasses for photonics applications,"JournalofNon-Crystalline Solids353,1364-1371(2007).
    49. P. Nemec, and M. Frumar,"Compositional dependence of spectroscopic parametersofDy3+ionsin Ge-Ga-Seglasses,"MaterialsLetters62,2799-2801(2008).
    50. T. Sakai, K. Maeda, M. Munzar, D. Tonchev, T. Ikari, and S. O. Kasap,"Thermal andoptical analysis of Ge-Ga-Se chalcogenide glasses," Physics and Chemistry ofGlasses-European Journal of Glass Science and Technology Part B47,225-228(2006).
    51. R. P.Wang,A.Smith,A.Prasad,D.Y.Choi,andB.Luther-Davies,"RamanspectraofGexAsySe1-x-yglasses,"JournalofApplied Physics106(2009).
    52. P. Nemec, B. Frumarova, and M. Frumar,"Structure and properties of the pure andPr3+-doped Ge25Ga5Se70and Ge30Ga5Se65glasses," Journal of Non-CrystallineSolids270,137-146(2000).
    53. R. P. Wang, A. Smith, B. Luther-Davies, H. Kokkonen, and I. Jackson,"Observationoftwo elastic thresholds in GexAsySe1-x-y glasses," Journal of Applied Physics105(2009).
    54. S. Mahadevan, and A. Giridhar,"Coexistence ofTopological and Chemical OrderingEffectsin Ge-Ga-SeGlasses,"JournalofNon-CrystallineSolids152,42-49(1993).
    55. P. Nemec, and M. Frumar,"Synthesis and properties of Pr3+-doped Ge-Ga-Seglasses,"JournalofNon-CrystallineSolids299,1018-1022(2002).
    56. D. T. Tonchev, K. V. Koughia, Z. G. Ivanova, and S. O. Kasap,"Thermal and opticalproperties of erbium doped (GeS2)(75)(Ga2S3)(25) glasses," Journal ofOptoelectronicsandAdvancedMaterials9,337-340(2007).
    57. C. Koughia, and S. O. Kasap,"Excitation diffusion in GeGaSe and GeGaS glassesheavilydopedwithEr3+,"OpticsExpress16,7709-7714(2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700