吸力式基础三维极限分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为近海结构新型基础形式——吸力式基础,由于具有承载力高、能适应复杂环境、可重复使用等优点,被广泛应用于实际工程。论文在国家自然科学基金(50679035)和清华大学基础研究基金(JCxx2005067)的支持下,基于已完成的离心模型试验结果,应用水利水电科学研究院开发的极限分析方法,针对水平荷载和弯矩作用下的吸力式基础进行了二维和三维极限分析,主要成果如下:
     1)张力腿平台吸力式基础承受较大的水平荷载和弯矩联合作用,这与边坡和地基主要承受竖向受压荷载有较大区别。试验模型中水平荷载距离地基表面6.4 m和18.4 m,极限分析中将地基表面到水平荷载作用点之间考虑为一层容重为零的虚土,以处理水平荷载与弯矩联合作用问题。虚土层不提供抗剪强度。基于离心模型试验结果,假设地基基础的破坏模式,建立了极限分析数值模型。
     2)对极限水平荷载作用下饱和粉砂地基中单桶基础和三桶基础分别进行了二维极限分析,获得极限荷载下桶基系统的安全系数。分析表明,二维方法可以模拟离心模型试验结果,得到的最危险滑裂面与朗肯土压力理论符合较好,桶两侧土体基本可以划分为主动和被动两个区;计算得到的极限荷载比模型试验的偏小。对于非二维的桶基结构,二维方法有一定局限性。
     3)对极限水平荷载作用下的单桶基础和三桶基础进行了三维极限分析,分别考察了椭球形滑裂面和任意形状滑裂面两种破坏模式。三维分析得到三种模型的安全系数变化范围为0.7~1.2,大部分计算得到的安全系数比较合理;任意形状滑裂面比椭球形滑裂面能更合理地反映基础的破坏模式。
     4)针对滑裂面控制点参数进行了一定的参数敏感性分析,并对计算结果进行了分析比较。分析表明控制点参数对安全系数影响较大,其中桶基主动区的控制点变化对安全系数的影响尤其明显。
     5)三维极限分析合理地模拟了地基-基础-荷载系统在几何与荷载条件方面的三维特征。采用虚土设置可以较好地处理水平荷载和弯矩的联合作用。与承受竖向受压荷载的边坡和地基相比,本文对吸力式基础的三维极限分析做了一定的探索。
Suction bucket foundation, being an innovative foundation, is more and more commonly used for a variety of coastal and offshore structures, due to its high bearing capacity under extreme environmental conditions, and cost effectiveness of being recycled and so on. The dissertation presents a study of 2- and 3-dimensional (2-D and 3-D) limit analyses of two single-bucket foundations and a three-bucket foundation under the join action of lateral load and moment, using an upper bound limit analysis method developed by the Institute of Water Conservancy and Hydroelectric Power Research. The research work is based on previous centrifuge modeling, and is supported by National Natural Science Foundation of China (50679035) and Tsinghua Basic Research Foundation (Project No. JCxx2005067). The main achievements are as follows.
     1) Suction bucket foundation of a tension leg platform is under the combined action of large lateral load and moment, creating loading conditions much different from slopes and inland foundations which are commonly under vertical loads. In the centrifuge tests, the lateral loading points are respectively 6.4m and 18.4m above the ground surface of a saturated silty sand. A virtual soil layer was assumed overlying the silty sand with a thickness equal to the vertical distance between the loading point and foundation surface. The unit weight and shear strength of the virtual soil is set to be zero. By doing so, the combined action of lateral load and moment is applied to the foundations. The failure modes of the foundation are deduced from the centrifuge study. Finally, numerical models of the suction bucket foundation are established for both 2- and 3- dimensional limit analysis.
     2) The two-dimensional limit analysis is performed on the two single-bucket and three-bucket foundations in saturate silty sand, under the limit lateral load. The factors of safety are obtained. The results show that the failure surfaces determined by optimization agree well with Rankine’s theory regarding failure patterns of soils behind a retaining wall. The soil surrounding the bucket is primarily divided into an active zone and a positive zone. The limit load calculated by 2-D limit analysis is smaller than that from the centrifuge model tests. The 2-D limit analysis can be used for preliminary analysis of quick identifying potential failure of the foundation. Since the soil-foundation structure is not a two dimensional system, the 2-D limit analysis method has its limitation associated with the simulations of geometry and geological conditions.
     3) The three-dimensional limit analysis is performed also on the two single-buckets and three-bucket foundations in saturate silty sand, under the limit lateral static load. For the soil-foundation system subjected to lateral load, the failure mass is approximated by a series of prisms having rectangular side faces forming two different basal surfaces: a partly elliptical failure surface and an artificial defined failure surface. The factors of safety calculated by the 3-D limit analysis vary from 0.7 to 1.2, most of which are reasonable. Additionally, the results also show that the artificial defined failure surface may provide more reasonable predictions of the stability of the foundation than the partly elliptical failure surface, with respect to the results from centrifuge modeling.
     4) A parametric study associated with the controlling points on the basal failure surface is performed to assess the effects of the failure mechanism on the stability of the foundation. The results show that the assumption of the controlling points has great effect on the stability of the foundation, especially controlling points in the active zone.
     5) The three-dimensional limit analysis method, based on upper bound plastic limit theory, can be used in the stability analysis of suction bucket foundation under combined action of lateral static load and moment, based on reasonable assumptions of the failure mechanism. Since it is a multi-variable dependent problem, further investigation is needed for searching the critical failure mechanism and corresponding factor of safety.
引文
[1] Eltaher A, Rajapaksa Y, Chang K.-T. Industry trends for design of anchoring systems for deepwater offshore. Offshore Technology Conference, OTC15265, 2003: 1~11
    [2] 孙国亮. 冰荷载作用下吸力式基础承载特性的离心模型试验研究: [硕士学位论文]. 北京: 清华大学水利系, 2005
    [3] 林小静. 吸力式基础承载特性的离心模型试验研究: [硕士学位论文]. 北京: 清华大学水利系, 2006
    [4] Zhang, J.H., Zhang, L.M., and Lu, X.B. Centrifuge Modeling of Suction Bucket Foundations under Ice-sheet Induced Cyclic Lateral Loadings. Ocean Engineering, 2007, 34(8-9): 1069~1079
    [5] Tjelta.T I. Geotechnical experience from installation of the Europipe jacket with bucket foundations. OTC7795, 1995: 897~908
    [6] Senpere, D., Auvergne, G.A. Suction anchor piles- a proven alternative to driving and drilling. Proc. 14th offshore Technology Conference, OTC., 1982, Houston: 483~493
    [7] 张建红,孙国亮,严冬,鲁晓兵. 海洋平台吸力式基础的土工离心模拟研究与分析. 海洋工程,2004,22(2): 90~96
    [8] Templeton, J.S. The role of finite elements in suction foundation design analysis. Offshore Technology Conference, OTC14235, 2002: 1~9
    [9] Donald, I., Chen, Z. Y. Slope stability analysis by an upper bound plasticity method. Canadian Geotechnical Journal, December. 1997. 34: 853~862
    [10] Chen, Z., Wang, X, Haberfield, C, Yin, J, Wang, Y. A Three-dimensional Slope Stability Analysis Method Using the Upper Bound Theorem, Part I: Theory and Methods. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 369~378
    [11] Chen, Z., Wang, J., Yin, J, Wang, J., Haberfield, C, A Three-dimensional Slope Stability Analysis Method Using the Upper Bound Theorem, Part II: Numerical approaches, applications and extensions. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 379~397
    [12] Erbrich, C.T., Tjelta, T.L. Installation of Bucket Foundations and Suction Caisson in Sand-Geotechnical Performance. Offshore Technology Conference, 10990, 1999: 725~735
    [13] 张士华,杨树耕. 海上桶形基础平台负压沉贯渗流场有限元分析. 黄渤海海洋,2000,18(4): 1~5
    [14] E.C. Clukey. Suction caisson soil displacement during installation. In: Gourvenec, Cassidy, eds. International Symposium Frontiers in offshore Geotechnics, ISFOG2005: 229~234
    [15] Tran Manh N., Randolph Mark F., Airey David W. Study of Seepage Flow and Sand Plug Loosening in Installation of Suction Caissons in sand. International Offshore and Polar Engineering Conference, Seoul, Korea, June 2005: 516~521
    [16] J Du, HY Ding, PY Zhang, C Zhang. Numerical Analysis of Soil Plug inside Suction Foundations during Suction Penetration by Discrete Element Method. Transactions of Tianjin University, 2006, 12(1): 61~65
    [17] Andersen, K.H., Jostad, H.P. Shear Strength Along Outside Wall of Suction Anchors in Clay After Installation. Proceedings of 12th International Offshore and Polar Engineering Conference, Kitayushu, Japan, ISOPE, 2002, 2: 785~794
    [18] Clukey E C, Morrison M J. A centrifuge and analytical study to evaluate suction caissons for TLP application in the Gulf of Mexico. Proc. ASCE Conference on Foundations, Dallas, TX. 1993: 141~156
    [19] Bang, S. Cho, Y. Analytical performance study of suction piles in sand. 9th. Int. Offshore and Polar Engineering Conference, ISOPE99, 1999, 1: 90~93
    [20] Allersma H G B, Kirstein A A, Brinkgreve R B J. Centrifuge and numerical modeling of horizontally loaded suction piles. 9th. Int. Offshore and Polar Engineering Conference, ISOPE99, 1999, 1: 711~717
    [21] Sukumaran B, McCarron WO, Jeanjean P, Abouseeda H. Efficient finite element techniques for limit analysis of suction caissons under lateral loads. COMPUTERS AND GEOTECHNICS, 1999, 24 (2): 89~107
    [22] Allersma HGB, Brinkgreve RBJ, Simon T, Kirstein AA. Centrifuge and Numerical Modelling of Horizontally Loaded Suction Piles. International Journal of Offshore and Polar Engineering, 2000, 10(3): 222~228
    [23] 肖熙,王秀勇. 桶型基础结构与土壤相互作用的有限元-无限元-接触元耦合线性分析. 海洋工程,2001,19(3): 25~31
    [24] 刘振纹,王建华,袁中立,陈国祥, 等. 负压桶型基础地基竖向承载力研究. 岩土工程学报,2001,16(2):1~6
    [25] 薛万东. 浅海桶型基础平台抗拔力与抗倾稳定分析. 黄渤海海洋,2001,19(3):87~92
    [26] 杨家岭,王书法, 等. 桶形基础采油平台三维有限元稳定性计算分析. 岩土力学,2002,23(5): 640~644
    [27] Cao, JC. Centrifuge modeling and numerical analysis of the behavior of suction caissons in clay: [Ph.D. Thesis]. Memorial University of Newfoundland, St. John’s Newfoundland, Canada. 2003
    [28] 钱荣, 周锡礽, 孙克俐, 张伟. 桶形基础平台三维有限元稳定性分析. 海洋技术,2003, 22(4): 49~53
    [29] Chairat Supachawarote, Mark Randolph, Susan Gourvenec. Inclined Pull-out Capacity of Suction Caissons. Paper No.2004-MFB-04
    [30] 林小静,张建红,孙国亮. 张力腿平台吸力式基础承载力有限元分析. 第十二届中国海岸工程学术讨论会,昆明, 2005(46):571~575
    [31] J. Cao, J.M.E. Audibert. Validation of the use of finite element method for suction cassion design. In: Gourvenec, Cassidy, eds. International Symposium Frontiers in offshore Geotechnics: ISFOG2005: 333~339
    [32] 张宏祥, 张伟. 滩海桶形基础承载力三维弹塑性有限元仿真. 地震工程与工程振动, 2006, 26(4): P127~131
    [33] Wang Dong, Jin Xia. Finite element analysis of laterally loaded suction caisson in anisotropic clay. CHINA OCEAN ENGINEERING, 2006, 20 (4): 665~672
    [34] 施晓春. 水平荷载作用下桶形基础的性状[D]. 浙江: 浙江大学, 2000
    [35] 刘振纹, 王建华等. 负压桶形基础地基水平承载力研究. 岩土工程学报, 2000, 22(6): 691~695
    [36] Ayman Eltaher, Yatendra Rajapaksa, Kuan-Tao Chang. Industry Trends for Design of Anchoring Systems for Deepwater Offshore Structures. Offshore Technology Conference, 15265, 2003
    [37] 张伟,周锡礽, 余建星. 滩海桶形基础极限水平承载力研究. 中国海洋平台,2004, 19(3): 14~16
    [38] 吴梦喜,时钟明. 桶形基础承载力计算的极限反力法. 中国海洋平台, 2004, 19(4): 22~25
    [39] 吴梦喜, 王梅, 楼志刚. 吸力式沉箱的水平极限承载力计算. 中国海洋平台,2001, 16(4): 12~15
    [40] 王庚荪,孔令伟,杨家岭,孙东昌,王泉. 水平载荷作用下土体与桶形基础的相互作用. 工程力学,2004, 21(2): 107~113
    [41] Aubeny Charles, Murff J. Donald. Simplified Limit Solutions for Undrained Capacity of Suction Anchors. Deepwater Mooring Systems, 2003: 76~90
    [42] Aubeny Charles, Han Seung-Woon, Murff James D. Suction Caisson Capacity in Anisotropic, Purely Cohesive Soil. International Journal of Geomechanics, 2003: 225~235
    [43] Aubeny CP, Han SW, Murff JD. Inclined load capacity of suction caissons. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27 (14): 1235~1254
    [44] Clukey, Edward C., Murff, James D. Comparison of Analytical and Centrifuge Model Tests for Suction Caissons Subjected to Combined Loads. Journal of Offshore Mechanics & Arctic Engineering, 2004, 126(4): 364~367
    [45] Aubeny C, Murff JD. Simplified limit solutions for the capacity of suction anchors under undrained conditions [J]. OCEAN ENGINEERING, 2005, 32 (7): 864~877
    [46] Luan, Mao-Tian, Fan, Qing-Lai. Numerical Analyses of Bearing Capacity of Deep-Embedded Large-Diameter Cylindrical Structure on Soft ground against lateral loads. China Ocean Engineering, 2006, 20(4): 623~634
    [47] S. Bang, K. Jones, et al. Vertical Pullout Capacity of Embedded Suction Anchors in Sand. Proceedings of the 16th(2006) International Offshore and Polar Engineering Conference, San Francisco, USA, 2006: 469~474
    [48] 张建红,李凤. 水平荷载作用下桶型基础三维极限分析. 2006 年度海洋工程学术会议,广西南宁, 《中国造船》增刊, 2006, 47: 318~322
    [49] 陈祖煜, 等. 土质边坡稳定分析-—原理.方法.程序. 北京:中国水利水电出版社,2003
    [50] 陈祖煜, 等. 岩质边坡稳定分析——原理、方法、程序. 北京:中国水利水电出版社,2005
    [51] 弥宏亮. 边坡稳定三维极限平衡分析——方法、推广、应用: [博士学位论文]. 北京:清华大学水利系, 2003
    [52] 孙平. 基于非相关联流动法则的三维边坡稳定极限分析: [博士学位论文]. 北京:中国水利水电科学研究院, 2005
    [53] 张建红,孙国亮,鲁晓兵. 离心机中动冰荷载的模拟. 岩土工程学报,2005,27(4): 474~477
    [54] 张建红,鲁晓兵. 冰荷载作用下海洋平台桶基的离心模拟. 2005 年度海洋工程学术会议,云南昆明,《中国造船》增刊,2005, 第 46 卷: 78~83
    [55] 鲁晓兵,王义华,张建红,孙国亮,时忠民. 水平动载下桶型基础变形的离心机实验研究. 岩土工程学报,2005,27(7): 789~791
    [56] 张建红,林小静,鲁晓兵. 水平荷载作用下张力腿平台吸力式基础的物理模拟. 岩土工程学报, 2007, 29(1): 77~81
    [57] 陈祖煜. 岩质高边坡稳定分析和软件系统——边坡稳定分析程序“EMU”使用手册. 中国水利水电科学研究院, 1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700