镍钛合金表面银基复合镀层的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍钛合金以其独特的形状记忆与超弹性、良好的生物相容性等成为独具特色的生物医用金属材料;而金属银具有很好的柔韧性和延展性,较好的化学稳定性,优异的导电性能,很强的杀菌能力。本论文的研究目的是在生物医用镍钛合金基体表面进行电镀银,以期改变镍钛合金在生物体内的医用功能,提高镍钛合金在生物体内的抗腐蚀能力;为推动镍钛合金在生物医学中的进一步应用,通过复合镀技术在其表面沉积Ag/PTFE复合镀层,提高了镀银层的耐腐蚀性能和耐磨性能;同时,采用该技术在镍钛合金表面制备Ag/TiO_2复合镀层,研究了复合镀层的耐腐蚀性能、血液相容性和抗菌性能。
     本文首先优化了在镍钛合金表面电镀银的工艺,确定其电解液的基本组成及工艺条件为:磺基水杨酸120g/L,氢氧化钾10g/L,硝酸银30g/L,乙酸铵50g/L,氨水55ml/L,pH为9,搅拌速度为250r/min,镀液温度25°C,电流密度为0.4A/dm~2,电镀时间为1h。考察了电流密度和电镀时间对镀银层性能的影响。利用SEM、EDS、XRD等表征了镀层的表面形貌、组成及结构,同时采用开路电位-时间曲线、Tafel极化曲线、电化学交流阻抗法等手段对其耐腐蚀性能进行评价。镀银镍钛合金表面较平整,沉积速率较大,耐腐蚀性能较好。
     在电镀银的基础上,往电解液中添加了表面活性剂包覆的PTFE粉末,制备了Ag/PTFE复合镀层。研究了三种类型表面活性剂及其复配制备的复合镀层的耐腐蚀性能,结果表明:添加非离子表面活性剂OP-10为1g/L时制备的复合镀层耐腐蚀性能最佳。在此基础上,研究电镀时间及PTFE的添加量对镀层性能的影响。结果表明:电镀时间为1h制备的镀层较均匀,镀液中PTFE含量的增加能使镀层结晶更加致密,晶粒细化,但PTFE含量过高,镀层中颗粒易聚集使晶粒粗大,镀层表面不均匀,镀液中PTFE的添加量为8g/L时获得的复合镀层的结晶最致密,在此条件下制备的复合镀层的耐腐蚀性能和耐磨性能均最佳。
     为了提高镀银镍钛合金的耐腐蚀性能和生物相容性,采用表面活性剂包裹二氧化钛粉末加入、TiO_2粉末直接加入和TiO_2溶胶加入镀液三种方法,制备了Ag/TiO_2复合镀层。研究了表面活性剂种类及用量、TiO_2粉末的加入量、钛溶胶的加入量等因素对复合镀层的影响。采用表面活性剂包覆TiO_2粉末加入镀液的方法来制备Ag/TiO_2复合镀层,通过正交试验确定了较优的表面活性剂及TiO_2的添加量为:阴离子表面活性剂SDS含量为1g/L,TiO_2为30g/L,但Ag/TiO_2复合镀层的耐腐蚀性能不如银镀镍钛合金。采用直接加入TiO_2粉末法制备了Ag/TiO_2复合镀层,考察了镀液中TiO_2的添加量对镀层微观表面形貌和晶体组织结构的影响。随着镀液中TiO_2含量的增加镀层表面变得平坦,但TiO_2含量过高则出现大颗粒团聚,表面粗糙。镀液中TiO_2含量在50g/L时,复合镀层中TiO_2复合量最高、耐腐蚀性能最佳、Ag离子溶出量最少、血液相容性较好,镀层在Hank's溶液中的耐腐蚀性能较镀银镍钛合金好。采用TiO_2溶胶加入法制备Ag/TiO_2复合镀层,研究了溶胶加入量对镀层性能的影响,当TiO_2溶胶加入量为100ml/L、电镀时间为1h时,镀层表面最致密,镀层中TiO_2含量最大,大于直接加入法制备的镀层的复合量,同时复合镀层的耐腐蚀性能较直接加入法好。Ag/TiO_2复合镀层具有良好的抗菌性能。
Nickel-titanium alloy has become a very potential biomedical material for its uniqueshape memory, superelasticity and good biocompatibility. Metallic silver has a goodflexibility and scalability, good chemical stability, excellent electrical conductivity and astrong bactericidal capability. The purpose of this thesis is to electroplate silver on the surfaceof biomedical nickel-titanium alloy substrate, in order to change the biocompatibility ofnickel-titanium alloy in vivo and to improve the corrosion resistance of nickel-titanium alloy;to promote the further application of the nickel-titanium alloy in medicine, we improve thecorrosion resistance of Ag plating by composite depositing Ag/PTFE composite plating on thesurface of nickel-titanium alloy; meanwhile, to increase the corrosion property and frictionproperty of silver-plated layer by using the composite plating technology to deposit Ag/TiO_2composite plating on the surface of the nickel-titanium alloy, corrosion property, bloodcapatibility and antimicrobial property of Ag/TiO_2composite plating have been investigated.
     First, this paper optimized the process of silver electroplating on the surface ofnickel-titanium alloy, determines the basic composition and process conditions of our silverplating solution which are as follows: sulfosalicylic acid120g/L, potassium hydroxide10g/L,silver nitrate30g/L, ammonium acetate50g/L, and ammonia55ml/L;pH9, stirring speed250r/min, bath temperature25°C, current density0.4A/dm2, plating time1h. The effect ofplating time and current density on the coating properties is investigated. The morphology,composition and structure of coating surface are characterized by using SEM, EDS and XRD;while the open circuit potential-time curves, Tafel polarization curves and electrochemicalimpedance spectroscopy are used to evaluate corrosion resistance. The surface of Ag-coatedNiTi alloy is relatively smooth; the deposition rate is greater; the corrosion resistance is better.
     Ag/PTFE composite plating is prepared by adding PTFE powder wrapped in surfactantsto the electrolyte on the basis of silver plating. The corrosion property of three types’surfactants and their mixed systems on the composite plating is studied, and the results showthat when added non-ionic surfactant OP-101g/L the corrosion resistance can be the best. Onthis basis, the effect of the PTFE addition and plating time on the properties of Ag/PTFEcomposite plating is investigated. The effect of the plating time and PTFE concentration onthe coating surface morphology and crystal structure is investigated. The results show thatwith1h plating time it can get a more uniform coating; the increases in PTFE concentrationcould make the crystalline grain of the coating refinement and more dense, but when the concentration of PTFE is too high, particles in the coating are easy to gather so that the grainswould be coarse, and coating surface is uneven. The most appropriate PTFE added in the bathis8g/L. The electrochemical and abrasive resistance tests show that the8g/L PTFEconcentration in the bath has the best coating corrosion resistance and abrasive resistance.
     In order to improve the biocompatibility and corrosion property of the silver layer,Ag/TiO_2composite plating is prepared by using three methods which are adding TiO_2wrapped in the surfactant and then added to the bath, adding TiO_2powder directly and addingTiO_2sol to the plating solution. The effect of the adding amount of TiO_2powder, type andamount of surfactant, titanium sol dosage and other factors on the composite coatings hasbeen studied. Surfactant is used to coat TiO_2powder and then added to the bath to prepareAg/TiO_2composite coating. We design an orthogonal experiment to determine the optimumof the surfactant and TiO_2when adding TiO_2powder coated by surfactant to the bath toprepare Ag/TiO_2composite plating: anionic surfactant sodium dodecyl sulfate dose of1g/L,and TiO_230g/L. According to the analysis of the surface morphology and electrochemicalcorrosion results of prepared plating obtained by adding different surfactants in the bath, wefound the coating prepared with1g/L anionic surfactant in the bath has the best corrosionresistance. But the corrosion resistance of Ag/TiO_2composite plating is slightly bad. Theeffect of TiO_2addition in the bath on the micro-surface morphology and crystal organizationalstructure of the plating is studied, when added TiO_2powder directly to prepare nano Ag/TiO_2composite plating. As the TiO_2concentration in the bath increased, the plating surfaceflattened, however, when TiO_2concentration level is too high, large particles would aggregateand the surface would be rough. When the concentration of titanium dioxide particle inplating solution is50g/L, we can have the most abundant particles in the composite coatingand the corrosion resistance of the coating can be the best. Biological performance tests of thecomposite platings show that: resistance to ion release is the best when bath concentration is50g/L; all the prepared composite platings with different TiO_2concentration in the bath havegood blood compatibility. Ag/TiO_2composite coating is prepared by joining with TiO_2sol andthe effect of sol addition on the coating properties is studied. Coating surface is most dense;and TiO_2concentration in the coating is the largest when the amount TiO_2sol is100ml/L--theplating time is1hour--much larger than the composite amount in the plating prepared byadding directly. At the same time, the corrosion resistance of composite plating is better thanadded directly. The plating has good antimicrobial property.
引文
[1]郑玉峰,赵连城.生物医用镍钛合金[M].北京:科学出版社.2004.48-397页
    [2] Kusy R. P. A review of contemporary archwires: their properties and characteristcs [J].Angle Orthodontist.1997,3:197-207P
    [3]崔忠波,陈民芳.医用NiTi合金表面改性的研究进展[J].材料导报.2005:21(5):79-81页
    [4]赵连城,郑玉峰.形状记忆与超弹性镍钛合金的发展和应用[J].中国有色金属学报.2005:14:323-326页
    [5]郭鹤桐,张三元.复合电镀技术[M].北京:化学工业出版社.2007:9-20,45-74,240-269页
    [6] Pun D.K., Berzins D.W. Corrosion behavior of shape memory, superelastic, andnonsuperelastic nickel-titanium-based orthodontic wires at various temperatures[J].Dental Materials.2008,24(2):221-227P
    [7] Arciniegas M., Casals J. Study of hardness and wear behavior of NiTi shape memoryalloys[J]. Journal of Alloys and Compounds.2008,460(1-2):213-219P
    [8] Yan W. Y. Theoretical investigation of wear-resistance mechanism of superelastic shapememory alloy NiTi[J]. Materials Science and Engineering A.2006,427(1-2):348-355P
    [9]耿冰.形状记忆合金的研究现状及应用特点[J].辽宁大学学报.2007,34(3):225-228页
    [10] Huang H. H., Chiu Y. H., Lee T. H. Ion release from NiTi orthodontic wires in artificialsaliva with various acidities[J]. Biomaterials.2003,24(20):3585-3592P
    [11]杨大智,吴明雄. Ni-Ti形状记忆合金在生物医学领域中的应用[M].北京:冶金工业出版社.2003:1-266页
    [12]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社.2002.1-20页
    [13]王丹丹.镍钛形状记忆合金静动态力学性能的实验研究[D].哈尔滨工程大学硕士论文.2008:1-16页
    [14]沈阳. NiTi合金血管内支架表面改性及其生物相容性研究[D].重庆大学硕士论文.2005:1-50页
    [15] Rondefi O. Corrosion resistance tests on NiTi shape memory alloy[J]. Biomaterials.1996,(17):2003-2008P
    [16]薛淼,陈希贤,李一鸣等.镍钛记忆合金的基础研究-(I)模拟腐蚀试验[J].口腔医学,1982,62(12):44-47页
    [17]王继芳,卢世壁,徐仕琦等.镊钛合金动物组织埋藏实验报告[J].北京生物医学工程,1992(2):22-25页
    [18] Uo M., Watari F., Yokoyama A., et al. Dissolution of nickel and tissure responseobserved by X-my scanning analytical microscopy [J]. Biomaterials.1999,20(7):747-755P
    [19] Zhao Tingting, Li Yan, Zhao Xinqing, et al. Ni ion release, osteoblast-materialinteractions, and hemocompatibility of hafnium-implanted NiTi alloy[J]. Journal ofBiomedical Materials Researc-Part B: Applied Biomaterials.2012,100(3):646-659P
    [20] Chan C.W., Man H.C., Yue T.M. Susceptibility to stress corrosion cracking of NiTilaser weldment in Hanks' solution[J]. Corrosion Science,2012,57(4):260-269P
    [21] Gorji M.R. Sanjabi S. Corrosion behavior of ion implanted NiTi shape memory alloythin films[J]. Materials Letters.2012,73(4):179-182P
    [22] Freitag M., Lstrok O. B., Goryczka T., et al. Application of EIS to study the corrosionresistance of passivated NiTi shape memory alloy in simulated body fluid[J]. Diffusionand Defect Data Pt. B: Solid State Phenomena.2012,183:57-64P
    [23] Motemani Y. Ahmadabadi N. M., Tan M.J., et al. Effect of cooling rate on the phasetransformation behavior and mechanical properties of Ni-rich NiTi shape memoryalloy[J]. Journal of Alloys and Compounds.2009,469(1-2):164-168P
    [24] Elahinia Mohammad H., Hashemi Mahdi, Tabesh Majid, et al. Manufacturing andprocessing of NiTi implants: A review[J]. Progress in Materials Science.2012,57(5):911-946P
    [25] Jafar Khalil-Allafi, Behnam Amin-Ahmadi, Mehrnoush Zare. Biocompatibility andcorrosion behavior of the shape memory NiTi alloy in the physiological environmentssimulated with body fluids for medical applications[J]. Materials Science andEngineering C.2010,30(8):1112-1117P
    [26] Huan Z. Fratila-Apachitei L.E., Apachitei I., et al. Porous NiTi surfaces for biomedicalapplications[J]. Applied Surface Science.2012,258(13):5244-5249P
    [27] Hassanzadeh Nemati N., Sadrnezhaad, S.K. Characterization of constrained aged nitistrips for using in artificial muscle actuators[J]. Source: International Journal ofEngineering, Transactions A: Basics.2011,24(4):321-329P
    [28] Yu Jingyuan, Li Qiang. Study on effect of sintering temperature on microstructure andcompressive property of porous NiTi alloys[J]. Advanced Materials Research.2011,299-300:480-483P
    [29] Zhao Lifeng, Hong Yan, Yang Dayun, et al. The underlying biological mechanisms ofbiocompatibility differences between bare and TiN-coated NiTi alloys[J]. BiomedicalMaterials.2011,6(2):210-215P
    [30] Kang Guozheng. Research progress in cyclic deformation of super-elastic NiTi shapememory alloy[J]. Journal of Southwest Jiaotong University.2011,46(3):355-364P
    [31] Mojtaba N. E., Reza E. K., Saleh D. M., et al. Bonding strength, hardness andbioactivity of nano bioglass-titania nanocomposite coating deposited on NiTi nails[J].Current Nanoscience.2011,7(4):568-575P
    [32] Wever D J, Veldhuizen A G, Sanders M M. Cytotoxic, allergic and genotoxic activity ofa nickel-titanium alloy[J]. Biomaterials.1997,18(16):1115-1120P
    [33] Wu Shuilin, Liu Xiangmei, Chu Paul K., et al. Fabrication and surface modification ofporous nano-structured NiTi orthopedic scaffolds for bone implants[J]. MaterialsResearch Society Symposium Proceedings.2010,1181:143-152P
    [34] J ms Timo, Muhonen Virpi, Danilov Anatoli, et al. Biocompatibility aspects ofNiTi-based medical implants[J]. Materials Science Forum.2010,631-632:175-179P
    [35] Jafar K. A., Behnam A. A., Mehrnoush Z. Biocompatibility and corrosion behavior ofthe shape memory NiTi alloy in the physiological environments simulated with bodyfluids for medical applications[J]. Materials Science and Engineering C,2010,30(8):1112-1117P
    [36] Villermaux F., Tabrizian M., Yahia L. H., et al. Exmer laser treatment of NiTi shapememory alloy biomaterials[J]. Applied Surface Science.1997,101-110:62-66P
    [37] Barcos R., Conde A., De Damborenea J.J., et al. Effect of nitrogen ion implantation onin vitro corrosion behaviour of NiTi[J]. Revista de Metalurgia (Madrid).2008,44(4):326-334P
    [38] Tan L, Dodd K. A., Crone W. C. Corrosion and wear-corrosion behavior of NiTimodified by plasma source ion implantation[J]. Biomaterlals.2003,24:3931-3939P
    [39] Zheng C.Y., Nie F.L., Zheng Y. F. Enhanced in vitro biocompatibility ofultrafine-grained biomedical NiTi alloy with microporous surface[J]. Applied SurfaceScience.2011,257:9086-9093P
    [40] Thierry B., Tabrizian M., Trepanier C. Effect of surface treatment and sterilizationprocesses oil the corrosion behavior of NiTi shape memory alloy[J]. Joarnal ofBiomedical Materials Research.2000,5l(4):685-693P
    [41] Trigvell S., Hayden R. D., NeIson K. F. Effects of surface treatment on the surfacechemistry of NiTi alloy for biomedical applications[J]. Surface and Interface Analysis.1998,26(7):483-489P
    [42]苏向东,王天民,郝维昌.低温去合金化处理对医用镍钛合金表面性质的影响.稀有金属材料与工程.2009,37(5):859-863页
    [43] Li Qiang, Zhang Xiaona. Study on surface oxidation behavior of pourous NiTi alloy athigh temperature[J]. Advanced Materials Research.2011,299-300:534-537P
    [44]王如萌,储成林,李艳芬等.镍钛合金光催化高级氧化表面改性与生物相容性.稀有金属材料与工程.2009,37(11):2027-2030页
    [45] Cheng Y, Cai W, Zheng Y F. Biomedical Properties of Tantalum Coatings Prepared byMulti Arc Ion-Plating[J]. Surface and coating technology.2005,190:425-428P
    [46] Wong M.H., Cheng F.T., Man H.C. Characteristics, apatite-forming ability andcorrosion resistance of NiTi surface modified by AC anodization[J]. Applied SurfaceScience.2007,253(18):7527-7534P
    [47] Xu J.L., Liu F., Wang F.P., et al. Alumina coating formed on medical NiTi alloy bymicro-arc oxidation[J]. Materials Letters.2008,62:4112-4114P
    [48]王建军.镍钛合金堵闭器钽镀层的制备与性能研究[D].哈尔滨工程大学硕士论文.2010:1-6页
    [49]吉宏林,储成林,王如萌等.镍钛合金表面锆膜磁控溅射制备与组织结构研究[J].稀有金属材料与工程.2009,38(2):295-298页
    [50]张贵,张德元,何伶俐等.纳米结构Ti/TiN涂层对NiTi合金生物相容性的影响[J].现代生物医学进展.2009,9(13):2465-2468页
    [51]成艳.退火对镀钽NiTi合金微观组织结构和血液相容性的影响[J].功能材料[J].2004,35:2290-2292页
    [52] Li Li, Zi Fangtao. Polymer thin films prepared by RF magnetron sputtering of PTFE onNiTi alloys[J]. Materials Science Forum.2007,561-565(2):1229-1232P
    [53] Liu Jingxiao, Yang Dazhi. Preparation of TiO2film containing phosphorus onbiomedical NiTi alloy by sol-gel method[J]. Journal of the Chinese Ceramic Society.2002,30(1):45-50P
    [54] Zheng C. Y., Nie F. L., Zheng, Y. F., et al. Enhanced corrosion resistance and cellularbehavior of ultrafine-grained biomedical NiTi alloy with a novel SrO-SiO2-TiO2sol-gelcoating[J]. Applied Surface Science.2011,257(13):5913-5918P
    [55]陈民芳,杨贤金,何菲等. NaOH浓度对NiTi形状记忆合金表面类骨磷灰石形成的影响[J].金属学报.2003,8(29):859-864页
    [56] Torabi M., Sadrnezhaad S.K. Corrosion behavior of polypyrrole/hydroxyapatitenanocomposite thin films electropolymerized on NiTi substrates in simulated bodyfluid[J]. Materials and Corrosion.2011,62(3):252-257P
    [57] Sun Tao, Lee Wing-Cheung, Wang Min. A comparative study of apatite coating andapatite/collagen composite coating fabricated on NiTi shape memory alloy throughelectrochemical deposition[J]. Materials Letters.2011,65:2575-2577P
    [58]周惠敏.镍钛齿科车针新型复合镀层的制备与性能研究[D].哈尔滨工程大学博士论文.2010:1-18页
    [59] Lu Lihong, Zhang Jingwu, Shen Dejiu. Characterization of anatase coatings on NiTishape memory alloy by plasma electrolytic oxidation method[J]. Applied Mechanicsand Materials.2012,121-126:3837-3841P
    [60]王为.银镀层及银基复合镀层的制备和表征[D].天津大学硕士论文.2009:1-80页
    [61]张庆.无氰电沉积银工艺及性能的研究[D].上海大学硕士论文.2007:1-20页
    [62]宁远涛,赵怀志.银[M].长沙:中南大学出版社.2005.367-392页
    [63]邓平晔,白新德,叶彬等.载银抗菌功能膜的制备和研究[J].稀有技术材料与工程.2004,33(12):1278-1282页
    [64]陈水挟,刘进荣,曾汉民.几类载银活性炭纤维抗菌活性的比较[J].新型炭材料.2002,17(1):26-29页
    [65] Ukovic, Josif. Cyanide free bath for electrodeposition of silver[P]. US Pat:3984292,1976-10-05
    [66] Kim Jae Jeong, Ahn Eung Jin, Seo Joon Mo. New additives for super-conformalelectroplating of Ag thin film for ULSI[J]. Proceedings-Electrochemical Society.2003,10:88-93P
    [67] Koo Hyo-Chol, Ahn Eung Jin, Kim Jae Jeong. Direct-electroplating of Ag onPretreated TiN surfaces[J]. Journal of the Electrochemical Society.2008,155(1):D10-D13P
    [68] Nobel Fred I, Braseh. Cyanide-free plating solutions for monovalent metals[P]. US Pat:5302278.1994-04-12
    [69] Zarkadas G. M., Stergiou A., Papanastasiou G.. Influence of citric acid on the silverelectrodeposition from aqueous AgNO3solutions[J]. Electrochimica Acta.2005,50(25):5022–5031P
    [70] Kondo Toshihiro, Takakusagi Satoru, Uosaki Kohei. Stability of under potentiallydeposited Ag layers on a Au(111) surface studied by surface X-ray scattering[J].Electrochemistry Communications.2009,11(4):804-807P
    [71]王兵,郭鹤桐,于海燕.甲基磺酸盐电镀银镀层工艺的研究[A].中国电子学会电镀专业委员会.全国电镀年会论文集[C].深圳:中国电子学会电镀专业委员会.2001.91-93页
    [72] Xie Bugao, Sun Jianjun, Lin Zhibin, et al. Electrodeposition of mirror-bright silver incyanide-free bath containing uracil as complexing agent without a separate strikeplating process[J]. Journal of the Electrochemical Society.2009,156(3): D79-D83P
    [73] Li Xiangliang, Wang Xibao, Gao Rui, et al. Study of deposition patterns of platinglayers in SiC/Cu composites by electro-brush plating[J]. Applied Surface Science.2011,257:10294-10299P
    [74] Nguyen Viet-Hue, Hoang Thi-Nam, Nguyen Ngoc-Phong, et al. Cr/nanodiamondcomposite plating with cobalt cation additive. Trans[J]. Nonferrous Met. Soc. China.2009,19:975-978P
    [75] Kim Jae-Ho, Yonezawa Susumu, Takashi Masayuki. Preparation and characterizationof C/Ni-PTFE electrode using Ni-PTFE composite plating for alkaline fuel cells[J].International journal of hydrogen energy.2011,36:1720-1729P
    [76] Han Zhongzhi, Zuo Yu, Ju Pengfei, et al. The preparation and characteristics of a rareearth/nano-TiO2composite coating on aluminum alloy by brush plating[J]. Surface andCoatings Technology.2012,206:3264-3269P
    [77] Lee Mu-Tse, Fu Mei-Hui, Wu Jyun-Lin. Thermal properties of diamond/Ag compositesfabricated by eletroless silver plating[J]. Diamond and related materials.2011,20:130-133P
    [78] Cobley A.J., Mason T.J., Alarjah M. The effect of ultrasound on the gold plating ofsilica nanoparticles for use in composite solders[J]. Ultrasonics Sonochemistry.2011,18:37-41P
    [79] Peng Bing, Wang Jia, Chai Liyuan, et al. Preparation of nano-Ag/TiO2thin-film[J].Trans. Nonferrous Met. Soc. China.2008,18:986-994P
    [80]蒋斌,徐滨士,董士运.纳米复合镀层的研究现状[J].材料保护.2002,35(6):25-27页
    [81]彭元芳,曾振欧,赵国鹏等.电沉积纳米复合镀层的研究现状[J].电镀与涂饰.2002,21(6):17-21页
    [82]刘小兵,王徐承,陈煜等.复合电沉积的最新研究动态[J].电化学.2003,9(2):117-121页
    [83]邹建平,贺子凯,黄鑫.自润滑复合镀层的研究现状及进展[J].电镀与涂饰,2003,22(4):29-31页
    [84] Fu Yu, Hou Ming, Xu Hongfeng, et al. Ag-polytetrafluoroethylene composite coatingon stainless steel as bipolar plate of proton exchange membrane fuel cell[J]. Journal ofPower Sources.2008,182:580-584P
    [85] Denny Thiemig, Andreas Bund, Jan B. Talbot. Influence of hydrodynamics and pulseplating parameters on the electrocodeposition of nickel–alumina nanocompositefilms[J]. Electrochimica Acta.2009,54:2491–2498P
    [86] Shahab Ansari Amin, Mohammad Pazouki,Azarmidokht Hosseinnia. Synthesis ofTiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterialactivity against Ecoat[J]. Powder Technology.2009,196:241-245P
    [87] Yong Tan, Liu Changsheng, Sun Jie, et al. Study of roughness for electroplating ofcomposite texture on material surface[J]. Materials Science Forum.2011,686:511-514P
    [88] Gyttou P., Pavlato E A., Spyellis N, et al. Hardening modification of nickd matrixcomposite dectrocoafings containing SiC nanogartides[J]. Electroplating and SurfaceTreatment.2001,9(1):23-28P
    [89]杜克勤,车如心,陈慧光.镍/聚四氟乙烯复合电镀新工艺的研究[J].大连铁道学院学报.2001,22(1):30-33页
    [90] Chen Weiwei, Gao Wei. Sol-enhanced electroplating of nanostructured Ni-TiO2composite coatings-The effects of sol concentration on the mechanical and corrosionproperties[J]. Electrochimica Acta.2010,55:6865-6871P
    [91] Bogdan S. N., Lidy E. F., Sebastian A.J. et al. In vitro antibacterial activity of porousTiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus[J]. ActaBiomaterialia.2009,5:3573-3580P
    [92] Chen Weiwei, He Yedong, Gao Wei. Synthesis of nanostructured Ni-TiO2compositecoatings by sol-enhanced electroplating[J]. Journal of the Electrochemical Society.2010,157(8): E122-E128P
    [93] Aruna S.T., William V.K., Rajam K.S.. Ni-based electrodeposited composite coatingexhibiting improved microhardness, corrosion and wear resistance properties[J].Journal of Alloys and Compounds.2009,468:546-552P
    [94] Chen Weiwei, He Yedong, Gao Wei. Electrodeposition of sol-enhanced nanostructuredNi-TiO2composite coatings[J]. Surface and Coatings Technology.2010,204:2487-2492P
    [95]陈劲松,黄因慧,刘志东等.电沉积复合镀层研究的新动态[J].电镀与涂饰.2006,28(2):21-24页
    [96] Cobley A.J., Mason T.J., Alarjah M. The effect of ultrasound on the gold plating ofsilica nanoparticles for use in composite solders[J]. Ultrasonics Sonochemistry.2011,18:37-41P
    [97] Chen Weiwei, Gao Wei, He Yedong. A novel electroless plating of Ni-P-TiO2nano-composite coatings[J]. Surface and coatings technology.2010,204:2493-2498P
    [98] Du Dengxue, Zhang Zhipeng, Zhoulei. The continuous plating of Ni-Cr compositecoatings and TiO2nano-modify[J]. Advanced Materials Research.2011,239-242:227-231P
    [99] Zhou M. W., Yin N. R., Tacconi D. Metai/semiconductor electrocompositephotoelectrodes[J]. Journai of Electroanaiytical Chemistry.1996,402:221-224P
    [100] Wang Wei, Qian Shiqiang, Zhou Xiying, et al. Microstructure and high temperatureoxidation resistance of nano-ZrO2/Ni composite coatings prepared by high speed jetelectroplating[J]. Transactions of Materials and Heat Treatment.2009,30(5):192-195P
    [101] Mai Lixiang, Wang Dawei, Zhang Sheng, et al. Synthesis and bactericidal ability ofAg/TiO2composite films deposited on titanium plate[J]. Applied Surface Science.2010,257(3):974-978P
    [102] Dong Yuming, Wang Guangli, Jiang Pingping, et al. Catalytic ozonation of phenol inaqueous solution by Co3O4nanoparticles[J]. Bulletin of the Korean Chemical Society.2010,31(10):2830-2834P
    [103]叶裕中,金宗德,程佩珞等. Ag-MoS2复合镀层性能研究[J].电镀与精饰.1992,14(5):10-12页
    [104]赵亚萍,王锦华,印仁和等.抗菌耐蚀性功能复合镀层(Ag)-Ni/Cr的开发研究[J].电化学.2003,3(1):71-75页
    [105]吴元康,余琨,熊晓辉等.纳米晶金刚石织构粒子增强银基电接触复合镀层的研究[J].电镀与涂饰.2002,21(3):6-11页
    [106]胡信国,孙福根,禇德威.银-氢氧化高铈胶体复合电镀新工艺的研究[J].电镀与环保.1990,20(3):1-3页
    [107] Fu Yu, Hou Ming, Xu Hongfeng, et al. Ag-polytetrafluoroethylene composite coatingon stainless steel as bipolar plate of proton exchange membrane fuel cell[J]. Journal ofPower Sources.2008,182(2):580-584P
    [108] Lee MuTse, Fu MeiHui, Wu JyunLin, et al. Thermal properties of diamond/Agcomposites fabricated by eletroless silver plating[J]. Diamond and Related Materials.2011,20(2):130-133P
    [109] Kulova T.L., Skundin A.M., Shepelev A.D., et al. Electrochemical properties andmorphology of composite fibers based on silicon and carbon obtained byelectroforming[J]. Russian Journal of Physical Chemistry A.2011,85(12):2222-2226P
    [110]任义磊.新型复合镀层制造技术及应用研究[D].江苏大学硕士论文.2010.1-50页
    [111] Jang Joo-Hee, Kim Tae-Yoo, Kim Nam-Jeong, et al. Preparation and characterizationof Nb2O5-Al2O3composite oxide formed by cathodic electroplating and anodizing[J].Materials Science and Engineering B: Solid-State Materials for Advanced Technology.2011,176(18):1505-1508P
    [112] Shaviv Roey, Geiss Roy H., Read David T., et al. Effects of barrier composition andelectroplating chemistry on adhesion and voiding in copper/dielectric diffusion barrierfilms[J]. Journal of Applied Physics.2011,110,(4):112-116P
    [113] Allahkaram Saeed Reza, Golroh Setareh, Mohammadalipour Morteza. Properties ofAl2O3nano-particle reinforced copper matrix composite coatings prepared by pulse anddirect current electroplating[J]. Materials and Design.2011,32(8-9):4478-4484P
    [114]杜克勤,车如心,陈慧光.镍/聚四氟乙烯复合电镀新工艺的研究[J].大连铁道学院学报.2001,22(1):30-33页
    [115] Phillips Steven, Lessard Larry Application of natural fiber composites to musicalinstrument top plates[J]. Journal of Composite Materials.2012,46(2):145-154P
    [116] Sun Xin, He Xiangzhu, Wang Yongxiu, et al. Characterization of Cr-α-Al2O3compositecoatings electrodeposited from Cr(III) plating bath[J]. Applied Mechanics andMaterials.2012,121-126:60-64P
    [117] Kunugi Yoshihito, Nonaka Tsutomu, Chong Yongbo, et al. Electro organic reactions onorganic electrodes. Part15. Electrolysis using composite-plated electrodes. Part IV.Polarization study on a hydrophobic Ni/PTFE composite-plated nickel electrode[J].Electrochimica Acta.1992,37(2):353-355P
    [118] Li Q., Gao H., Wang J.P., et al. Electroplating of anticorrosive Ni-TiO2compositecoatings on sintered NdFeB permanent magnets[J]. Transactions of the Institute ofMetal Finishing.2009,87(3):149-154P
    [119] Shin Yue-Seon, Ko Young-Ki, Kim Jun-Ki, et al. SiC-nanoparticle dispersed compositesolder bumps fabricated by electroplating[J]. Surface Review and Letters.2010,17(2):201-205P
    [120] Li W. H., Zhou X.Y., Xu Z., et al. Effect of bath temperature on nanocrystallineNi-polytetrafluoroethylene composite coatings prepared by brush electroplating[J].Surface Engineering.2009,25(5):353-360P
    [121] Yu Sirong, Liu Yan, Liu Jiaan, et al. Corrosion resistance of the eletrodepositionnano-TiO2/Ni composite coating on AZ91HP Mg alloy. Advanced Materials Research.2011,306-307:742-745P
    [122]李卫东,朱军雄,胡进等. Ni-TiO2复合电镀工艺研究[J].表面技术.2002,31(2):32-35页
    [123]陈玉梅,左正忠,杨磊等.表面活性剂对电沉积镍/纳米二氧化钛复合层的影响[J].表面技术.2005,34(5):22-25页
    [124]苏永堂,成旦红,张庆等.银-纳米TiO2复合电沉积及镀层耐蚀性的研究[C].2005年上海市电镀与表面精饰学术会论文集.2005:282-287页
    [125] Vaezi M.R., Sadrnezhaad S.K., Nikzad L. Electrodeposition of Ni-SiC nano-compositecoatings and evaluation of wear and corrosion resistance and electroplatingcharacteristics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2008,315(1-3):176-182P
    [126]邱文革,陈树森.表面活性剂在金属加工中的应用[M].北京:化学工业出版社,2003:1-100页
    [127]阳范文,赵耀明.表面活性剂对Ni-P-SiC化学复合镀层性能的影响[J].材料保护,2000,33(9):12-13页
    [128]黄辉,林志成.表面活性剂在Ni-SiC复合电镀中的作用及机理[J].材料保护.1997,30(1):14-16页
    [129]董允,张廷森,林晓娉.现代表面工程技术[M].北京:机械工业出版社.1999:1-100页
    [130] Wang Hong. Optimization of the process conditions based on depositing rate andmicro-hardness for electroless Ni-P-nano SiC composite plating[J]. AdvancedMaterials Research.2011,339(1):483-486P
    [131] Kim Wal Jun, Jang Eui Yun, Seo Dong Kyun, et al. Crystal-like growth of a metaloxide/CNT composite fiber with electroplated “seed” from a CNT-dispersednonaqueous electrolyte[J]. Langmuir.2010,26(20):15701-15705P
    [132]王庆宇.齿科用Ti-In系合金的组织结构与性能研究[D].哈尔滨工程大学博士论文.2011:24-25页
    [133]张斌斌. Ti-Ag基合金的组织结构与生物性能[D].哈尔滨工程大学博士论文.2011:27页
    [134] Edwards N., Mitche U. S., Pratt A. Silver compound antimicrombial composite[J].European Patent Application.1987,251:783-786P
    [135]常涛.银离子消毒剂研究概述[J].解放军预防医学杂志.2005,23:75-77页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700