类别特异性命名区的脑定位及其临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手术治疗脑内肿瘤的的理想目标是最大程度切除肿瘤体积,但不损伤运动、感觉、语言及其他重要认知功能。这类手术的关键就是如何术中准确实时“脑功能区”定位。准确的定位才能避免因过多切除而造成永久性神经功能障碍,也可避免因过分“胆小”而造成病灶切除不彻底,难以达到理想的治疗效果。对于运动、感觉等脑的初级功能定位,无论是术前功能磁共振定位还是术中直接电刺激定位,目前均比较成熟。而语言、记忆等高级认知功能的定位目前临床上仍存在问题。
     语言功能是人类所特有的高级认知功能,相对于运动、感觉、视觉等,语言相关皮质在人脑分布更广也更复杂。不同个体的语言皮质定位存在很大差异,尤其在颅内存在病变的病人,语言皮质的不典型分布则更为普遍[4]。如何定位语言区皮质,是优势半球,尤其是接近语言区病变手术的关键。积极地进行“语言区”脑内病变手术切除而不发生术后语言障碍,从而保障病人的生存质量,已逐渐成为当前神经外科特别关注的问题。
     术中皮质直接电刺激被视为术中确定语言区皮质和皮质下通路的“黄金方法”,用来提高手术切除效果。但我们实践中发现:术中直接电刺激会产生“假阳性”和“假阴性”刺激结果,“假阳性”刺激可导致肿瘤切除程度降低,而“假阴性”刺激则可导致永久性神经功能障碍,备受关注。
     “假阴性”刺激的原因有多种,包括刺激强度太低,刺激时间太短及癫痫发作后不应期刺激等。这些“假阴性”刺激可通过严格按照一定的流程和规则刺激而避免[9]。
     另外一种引起“假阴性”刺激的因素是术中任务选择不当。目前定位术中直接电刺激定位语言区时应用的术中任务主要有“数数”,“阅读”及“命名”任务。命名被认为是语言功能中的一个核心功能,可用来监测语言区。但目前术中所用的命名图片主要包括动物、鸟类、水果、蔬菜以及工具等,且混合在一个命名任务当中。而不同类型的命名区存在不同,造成这种“假阴性”刺激发生。因此研究这种类别特异性命名区脑定位有助于选择合理的术中任务,进一步避免术后语言功能障碍。
     本研究利用血氧水平依赖功能磁共振(Blood oxygen level dependent-functional magnetic resonance imaging, BOLD-fMRI)技术对健康志愿者名人面孔、动物和工具三种不同类型的命名脑区进行定位;进而使用静息态功能磁共振技术(Rest fMRI)研究这些不同类型命名任务激活脑区的功能连接(Functional connectivity, FC),最后,利用BOLD-fMRI技术和术中皮质直接电刺激技术(Direct electrical stimulation, DES)对脑功能区病变患者进行类别特异性命名区定位,以期发现国人的名人面孔、动物和工具三种不同类型命名脑功能区的分布特点。该研究将有助于神经外科医生进一步了解一些脑区的特殊功能,有助于优化唤醒手术中使用的语言任务,进一步避免“假阴性”刺激和术后语言功能障碍,提高神经外科脑内病变术后病人的生存质量。
     第一部分健康志愿者类别特异性命名脑区的功能磁共振研究
     目的:研究健康志愿者名人面孔、动物和工具三种不同类型命名任务的脑定位特点。
     方法:21名健康志愿者行三种不同类型命名任务的BOLD-fMRI扫描,采用SPM8软件进行脑功能图像分析,获取各激活体素的位置和强度,并用Marsbar0.42软件对其进行感兴趣区分析。
     结果:名人面孔命名区主要位于双侧前颞叶内侧(包括海马和杏仁核,且有明显的左侧优势)、双侧额下回三角部和盖部;命名动物主要激活左侧辅助运动区;而命名工具主要激活左侧运动前区和右侧辅助运动区。三种任务均有双侧梭状回激活,但命名工具激活范围比其余两种任务都大。57个感兴趣区经过单因素方差分析,有统计学意义的共有14个(P<0.05),面孔特异性激活脑区主要包括双侧前颞叶内侧,右侧岛叶前部、右侧额下回三角部和盖部,工具激活的特异性脑区主要位于右枕上回、左额下回眶部和双侧梭状回。动物激活的脑区在三组间无明显统计学意义。
     小结:本研究结果提示国人脑内可能存在类别特异性命名区,但分别比较广泛。提示在术中定位功能区过程中,可能需要选择类别特异性命名任务,以减少阴性刺激的发生率。
     第二部分健康志愿者类别特异性命名区静息态功能连接研究
     目的:研究健康志愿者名人面孔、动物和工具命名任务激活脑区的相关网络分布特点。
     方法:使用RESTV1.3软件分析21名健康志愿者的Rest-fMRI数据,根据第一部分研究结果,设计不同类型命名任务激活脑区的“种子点”,与全脑其他脑区进行功能连接(FC)分析,获取与各个“种子点”密切相关的脑区。
     结果:三种类型命名任务的激活脑区的网络分布比较广泛,名人面孔命名任务激活的脑区网络主要包括双侧前颞叶内侧,右侧额下回三角部和盖部,此外,还包括双侧额中回后部、颞极和左侧顶枕叶外侧面,左颞中回和颞下回。动物命名激活脑区网络则主要位于辅助运动区,双侧颞中回后部、额中回(左侧明显优势)、额下回、顶上小叶和左侧顶下小叶。工具命名激活脑区网络主要有左侧运动前区,右侧枕上回前部,双侧顶叶、额中回后部、颞极和左前颞叶内侧,左额上回后部。
     小结:名人面孔、动物和工具三种不同类型命名任务的脑定位网络有一定重叠,也存在差异,分布且比较广泛,提示这些部位的手术需要完善相关术前检查,以明确命名区的脑内定位。
     第三部分类别特异性命名区脑定位的临床研究
     目的:研究脑功能区病变病人上述三种不同类型命名任务的脑定位特点。
     方法:18例脑功能区病变病人进行BOLD-fMRI扫描和分析处理,在全麻术中唤醒状态下,使用类别特异性命名任务,术中皮质直接电刺激(DES)等来定位名人面孔、动物和工具三种不同类型的命名脑区。
     结果:①BOLD-fMRI发现名人面孔、动物和工具三种不同类型命名任务有共同的激活脑区:左额中回中后部,左额下回三角部,辅助运动区和双侧梭状回。同时,也存在类别特异性脑区:在双侧颞极,双侧海马前部和右侧前岛叶,名人面孔命名激活阳性率较高,但这种差别在三组间无统计学意义(P>0.05)。工具命名阳性激活率在双侧顶上小叶和右侧额中回后部相对较高。②DES也证实存在名人面孔特异性命名脑区(刺激过程中只有名人面孔命名受到抑制,而动物命名和工具命名均未受到抑制),但这些脑区分布比较弥散,主要分布在:左颞极、左额下回后部、左额上回后部和左缘上回;刺激过程中名人面孔和动物均出现命名障碍的脑区主要分布左颞叶中部;而动物和工具都命名不能的脑区主要有左额下回后部、左额中回后部和左颞后。三种类型均出现命名不能或语言紊乱的脑区主要位于左缘上回,左额中回后部和左额下回后部以及左颞上回后部;此外电刺激过程中,没有发现单独工具命名、单独动物命名或名人面孔和工具同时命名不能的脑区。
     小结:国人大脑内存在名人面孔特异性的命名区,动物命名脑区可被名人面孔名人任务或工具命名任务所激活。提示在全麻术中唤醒状态下,利用DES定位命名区的过程中,需要增加名人面孔命名任务,以减少阴性刺激的发生率,避免术后严重功能障碍,提高病人的术后生存质量。
     结论:该研究明确了国人脑内存在名人面孔类别特异性的命名区,动物命名脑区可以被名人面孔或工具命名任务所激活。这就要求在全麻术中唤醒状态下,利用皮质电刺激定位命名区过程中,需要增加名人面孔命名任务,以减少阴性刺激的发生率。同时,该研究还提示没有必要增加单独动物类型命名任务,避免延长定位时间。此外,该研究还拓宽了“功能区”的范围,使以往我们认为的“非功能区”成为功能区,如“左颞极”等,提示脑功能区手术的范围需要进一步认识,需引起临床的高度注意。
The goal of surgery in the treatment of intrinsic cerebral tumors is to resect the maximum neurologically permissible tumor volume, and to spare the eloquent areas that are associated with the control of motor, sense, language, or memory, and other cognitive functions. The key of this kind of surgery is an accurate real-time brain mapping for eloquent areas. Accurate mapping of eloquent areas can avoid both post-operative permanent neurological sequelae caused by intra-operatively damage to the eloquent areas, and a premature interruption of the resection by a "coward" surgical strategy. Brain mapping for motor and/or sensory can be accurately achieved not only by preoperative functional magnetic resonance imaging, but also by direct electrical stimulation. However, mapping of the language, memory, or other cognitive functions remains a problem for current surgical treatment of lesions harbored in the eloquent areas.
     Language is one of higher cognitive functions unique to the human beings. Language-related cortices are much broader and more complex than that of motor and/or sensory function. The language cortices vary among individuals, and this variation is much more apparent when patients have brain lesions near language cortices. How to map cortical areas for language is critical to the surgery of lesions located in the dominant hemisphere, particularly in areas close to language-related cortices. It gradually becomes a neurosurgical research hot spot for maximally resection of lesions in brain language areas, and meanwhile, minimally damage to the eloquent areas.
     Intra-operative direct electrical stimulations have been regarded as the "gold standard" in defining cortical and subcortical pathways of the language areas. This technique minimizes definitive post-operative neurological deficit while concurrently improves the quality of resection. However, it is necessary to stress that the technique can also result in "false positives" and "false negatives" even when direct electrical stimulations are properly used. Consequently, "false positives" could wrongly lead to a premature interruption of the resection, whereas "false negatives" could result in permanent neurological sequelae.
     There are several causes for "false negatives", such as an intensity of stimulation that is too low and stimulation that lasts too short a time or is performed during a transient post-epileptic refractory phase, which may lead to an erroneous technically "negative mapping". Nevertheless, such errors can be avoided by strictly following the practical rules of stimulation.
     Another cause for false negatives is an inappropriate intra-operative task for functional mapping. Counting, reading and naming are the three mostly used intra-operative tasks for mapping of language. Naming of pictures of objects is the basic task used in mapping procedures because naming is a core component in language abilities and is supposed to be a reliable method for identifying essential language sites. Patients are asked to name a set of line drawing of objects when the stimulation probes are placed at a cortical site. The pictures shown intra-operatively include pictures of animals, birds, fruits, vegetables, man-made objects, etc. They are blended in one naming task. However, cortical sites for naming may vary among different categories. This may results in a "false negative" mapping. Therefore, study on mapping of the category-specific naming cortices can help us to choose a more appropriate intra-operative task for functional mapping which can decrease the postoperative permanent morbidity.
     In this essay, we firstly conducted a blood oxygen level dependent-functional magnetic resonance imaging (BOLD-fMRI) study to map the category-specific sites associated with naming of famous faces, animals and tools in health Chinese volunteers. Then, the functional connectivity of the activated clusters was calculated by rest-state fMRI. In the third part, we investigated the category-specific naming sites in patient with brain lesions near eloquent areas by both BOLD-fMRI and direct electrical stimulation. The goal of this study was to test the hypothesis of dissociation of category specific naming area in cerebral cortices. The study will contribute to a better understanding of special functions in certain cortices, to help neurosurgeons choose more appropriate intra-operative tasks for functional mapping, and further to avoid postoperative permanent aphasia, and to improve the postoperative quality of life in patients with lesions near eloquent area.
     Part I A functional MRI study of mapping category-specific sites associated with naming of famous faces, animals and tools.
     Objective:To study the category specific cortices for naming famous faces, animals and tools in health volunteers.
     Methods:21 Chinese health volunteers were recruited to study the specific invoked areas involved in naming pictures of these three categories using BOLD-fMR. Functional images were analyzed using statistical parametric mapping (SPM8), and the region of interest (ROIs) was analyzed using Marsbar0.42.
     Results:Naming famous faces caused more activation in the bilateral medial parts of anterior temporal lobe (including head of hippocampi and amygdala with a significant left dominance). Bilateral activation of pars triangularis and pars opercularis in the naming of famous faces was also discovered by this study. Naming animals invoked greater responses in the left supplementary motor areas, while naming tools invoked more in left premotor areas and right supplementary motor areas. The extent of activated bilateral fusiform gyri by naming of tools was much larger than that by naming of famous faces or animals.57 regions of interest were analyzed by one-way ANOVA, and 14 of 57 activated clusters were shown statistically significant among three categories (P<0.05). They included bilateral medial parts of anterior temporal lobe, right anterior insula, right pars triangularis and pars opercularis in the naming of famous faces, and the right superior occipital gyrus and left pars orbitalis and bilateral fusiform gyri in naming of tools. There were no significant specific activated clusters in naming of animal.
     Conclusion:The brain cortices involved in the naming process will vary from naming of famous faces, animals and tools. And the category specific naming sites are extensive. This finding suggests that various categories of pictures should be adopted during intra-operative language mapping to get a broader map of language function, in order to minimize the incidence of false-negative stimulations and permanent post-operative deficits.
     PartⅡRest state functional connectivity of category-specific naming areas in health volunteers.
     Objective:To study the network distributed cortices related to the activated clusters specific for naming famous faces, animals and tools.
     Methods:Resting-state fMRI data from 21 healthy volunteers were analyzed the functional connectivity by software REST v1.3 to obtain with network distributed cortices closely related to the "seed voxles" that were picked based on activated clusters specific for naming famous faces, animals or tools.
     Results:Three types of naming tasks activated a broader network of brain regions Naming famous faces network mainly included bilateral medial parts of anterior temporal lobe and right pars triangularis and pars opercularis. It also included bilateral posterior middle frontal gyrus, bilateral temporal pole, left lateral side of pariet-occipital lobe, left middle and inferior temporal gyrus. Naming animals'network are mainly located in supplementary motor areas, bilateral posterior middle temporal gyrus, and bilateral posterior middle frontal gyrus with a significant left dominance, bilateral inferior frontal gyrus and superior parietal lobule, and left inferior parietal lobule. While naming tools' network was mainly consisted of left premotor area, right anterior superior occipital gyrus, bilateral parietal lobe, posterior middle frontal gyrus and temporal pole, and left medial temporal lobe, left posterior of superior frontal gyrus.
     Conclusion:The cortical network involved in different types of naming process overlaps in some cortices. There are also certain differences in activated areas among the three categories. And the category specific naming networks are rather extensive. This finding suggests that some more preoperative examinations are needed to clarify the naming cortices when surgeries are involved in certain areas.
     PartⅢClinical study on brain mapping of category-specific naming cortices
     Objective:To study the category specific cortices for naming famous faces, animals and tools in patients with lesions near eloquent areas.
     Methods:Naming sites for different categories of naming tasks were evaluated by the BOLD-fMRI in 18 patients with brain lesions in cerebral hemisphere. Then during awake procedures, the category specific naming cortices were detected by intraoperative direct electrical stimulation using a category specific naming task.
     Results:①Using BOLD-fMRI, we found that the common regions activated by naming the three categories of picture were the posterior parts of left middle frontal gyri, pars triangularis of left inferior frontal gyri, supplementary motor areas and bilateral fusiform gyri. There were also category-specific brain regions:Naming famous faces caused more activation in the bilateral temporal poles and head of hippocampi, and right anterior insula. But the differences among three groups are not statistically significant (P> 0.05). Naming tools invoked greater responses in bilateral superior parietal lobule and posterior parts of right middle frontal gyrus.②Intraoperative direct electrical stimulation has also confirmed the existence of famous face-specific naming regions that are distributed extensively, mainly in the left temporal pole, posterior parts of left inferior or superior frontal gyrus and left supramarginal gyrus. The common areas interfered by stimulation when perform naming famous faces, animals and tools were left supramarginal gyrus, posterior parts of left middle frontal gyrus and left inferior frontal gyrus, and the posterior parts of left superior temporal gyrus. There was no cortex specific for naming of animals, or naming of tools, or naming of both famous faces and tools. The middle parts of left temporal lobe were found for naming both famous faces and animals. Other regions for both naming animals and naming tools are mainly located in the posterior parts of left inferior frontal gyrus, middle frontal gyrus and left temporal lobe.
     Conclusion:The brain cortices involved in the naming process varies from naming of famous faces, animals and tools. There are some cortices exclusively for naming of famous faces. Cortices for naming of animals can be activated by naming of famous faces or tools. This finding suggests pictures of famous faces should be adopted during intra-operative language mapping to get a broader map of language function, in order to minimize the incidence of "false-negative" stimulations and permanent post-operative deficits, and to improve the patient's postoperative quality of life.
引文
[1]Gil-Robles S, Duffau H. Surgical management of World Health Organization Grade Ⅱ gliomas in eloquent areas:the necessity of preserving a margin around functional structures. Neurosurg Focus,2010,28(2):E8-10
    [2]Duffau H. Surgery of low-grade gliomas:towards a'functional neurooncology'. Curr Opin Oncol, 2009,21(6):543-549
    [3]Duffau H. New concepts in surgery of WHO grade Ⅱ gliomas:functional brain mapping, connectionism and plasticity-a review. J Neurooncol,2006,79(1):77-115
    [4]Vigneau M, Beaucousin V, Herve PY, Duffau H, Crivello F, Houde O, Mazoyer B, Tzourio-Mazoyer N. Meta-analyzing left hemisphere language areas:phonology, semantics, and sentence processing. Neuroimage,2006,30(4):1414-1432
    [5]Raboyeau G, Marcotte K, Adrover-Roig D, Ansaldo AI. Brain activation and lexical learning: The impact of learning phase and word type. Neuroimage,2010,49(3):2850-2861
    [6]白红民,王伟民,李天栋,刘方,高寒,王伟,郭晓绯,刘严.术中直接电刺激在功能区病变手术中的应用(附86例分析).中国微侵袭神经外科杂志,2009,14(07):289-291
    [7]白红民,王伟民,李天栋,任晓琳,李建亭,王玉宝,王国良,张小鹏.直接电刺激在功能区神经上皮肿瘤手术中的应用。中华神经外科疾病研究杂志,2007,6(01):31-34
    [8]王伟民,白红民,李天栋,何黎民,任晓琳,王莎莎,施冲.脑功能区胶质瘤手术中的新技术.中华神经外科杂志,2007,23(06):428-431
    [9]Mandonnet E, Winkler PA, Duffau H. Direct electrical stimulation as an input gate into brain functional networks:principles, advantages and limitations. Acta Neurochir (Wien), 2010,152(2):185-193
    [10]白红民,王伟民.术中直接电刺激在功能区病变手术中的应用.中国微侵袭神经外科杂志,2008,13(05):235-237
    [11]Duffau H. Introduction. Surgery of gliomas in eloquent areas:from brain hodotopy and plasticity to functional neurooncology. Neurosurg Focus,2010,28(2):Intro
    [12]Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, Ferson D, Heimberger AB, DeMonte F, Prabhu SS. Awake craniotomy for brain tumors near eloquent cortex:correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery,2009,64(5):836-845; discussion 345-346
    [13]Ilmberger J, Ruge M, Kreth FW, Briegel J, Reulen HJ, Tonn JC. Intraoperative mapping of language functions:a longitudinal neurolinguistic analysis. J Neurosurg,2008,109(4):583-592
    [14]Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med,2008,358(1):18-27
    [15]Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg, 1989,71(3):316-326
    [16]Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients.1989. J Neurosurg, 2008,108(2):411-421
    [17]Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics,2009,6(3):478-486
    [18]Sanai N, Berger MS. Intraoperative stimulation techniques for functional pathway preservation and glioma resection. Neurosurg Focus,2010,28(2):E1-3
    [19]Berger MS, Hadjipanayis CG. Surgery of intrinsic cerebral tumors. Neurosurgery,2007,61(1 Suppl):279-304; discussion 304-305
    [20]白红民,王伟民,李天栋,任晓琳,李建亭,王玉宝,王国良,张小鹏.直接电刺激在功能区神经上皮肿瘤手术中的应用.中华神经外科疾病研究杂志,2007,6(01):31-34
    [21]Damasio H, Grabowski TJ, Tranel D, Hichwa RD, Damasio AR. A neural basis for lexical retrieval. Nature,1996,380(6574):499-505
    [22]Grabowski TJ, Damasio H, Tranel D, Ponto LL, Hichwa RD, Damasio AR. A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp, 2001,13(4):199-212
    [23]Emmorey K, Grabowski T, McCullough S, Damasio H, Ponto LL, Hichwa RD, Bellugi U. Neural systems underlying lexical retrieval for sign language. Neuropsychologia, 2003,41(1):85-95
    [24]Tranel D. Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology,2006,20(1):1-10
    [25]Drane DL, Ojemann GA, Aylward E, Ojemann JG, Johnson LC, Silbergeld DL, Miller JW, Tranel D. Category-specific naming and recognition deficits in temporal lobe epilepsy surgical patients. Neuropsychologia,2008,46(5):1242-1255
    [26]Drane DL, Ojemann GA, Ojemann JG, Aylward E, Silbergeld DL, Miller JW, Tranel D. Category-specific recognition and naming deficits following resection of a right anterior temporal lobe tumor in a patient with atypical language lateralization. Cortex, 2009,45(5):630-640
    [27]Giussani C, Roux FE, Bello L, Lauwers-Cances V, Papagno C, Gaini SM, Puel M, Demonet JF. Who is who:areas of the brain associated with recognizing and naming famous faces. J Neurosurg,2009,110(2):289-299
    [28]Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways:evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg,2004,100(3):369-375
    [29]Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system:a study using cortico-subcortical electrostimulations. Brain,2005,128(Pt 4):797-810
    [30]Duffau H. Intraoperative cortico-subcortical stimulations in surgery of low-grade gliomas. Expert Rev Neurother,2005,5(4):473-485
    [31]de Schotten M T, Urbanski M, Duffau H, Volle E, Levy R, Dubois B, Bartolomeo P. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science, 2005,309(5744):2226-2228
    [32]Grabowski TJ, Damasio H, Tranel D, Ponto LL, Hichwa RD, Damasio AR. A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp, 2001,13(4):199-212
    [33]Tranel D. Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology,2006,20(1):1-10
    [34]Roux FE, Borsa S, Demonet JF. "The mute who can sing":a cortical stimulation study on singing. J Neurosurg,2009,110(2):282-288
    [35]Ruff IM, Petrovich BNM, Peck KK, Hou BL, Tabar V, Brennan CW, Holodny AI. Assessment of the language laterality index in patients with brain tumor using functional MR imaging:effects of thresholding, task selection, and prior surgery. AJNR Am J Neuroradiol,2008,29(3):528-535
    [36]Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, Bitar A, Fohanno D. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain,2002,125(Pt 1):199-214
    [37]DeLeon J, Gottesman RF, Kleinman JT, Newhart M, Davis C, Heidler-Gary J, Lee A, Hillis AE. Neural regions essential for distinct cognitive processes underlying picture naming. Brain, 2007,130(Pt 5):1408-1422
    [38]Tatlidil R, Xiong J, New P, West A, Fox P. Language mapping in pretreatment planning of patients with cerebral arteriovenous malformation:a PET study. Clin Nucl Med, 2000,25(8):591-595
    [39]Bhatnagar SC, Mandybur GT, Buckingham HW, Andy OJ. Language representation in the human brain:evidence from cortical mapping. Brain Lang,2000,74(2):238-259
    [40]Law J, Campbell C, Roulstone S, Adams C, Boyle J. Mapping practice onto theory:the speech and language practitioner's construction of receptive language impairment. Int J Lang Commun Disord,2008,43(3):245-263
    [41]Prakash N, Uhlemann F, Sheth SA, Bookheimer S, Martin N, Toga AW. Current trends in intraoperative optical imaging for functional brain mapping and delineation of lesions of language cortex. Neuroimage,2009,47 Suppl 2(:T116-126
    [42]Penfield W, Rasmussen T. Vocalization and arrest of speech. Arch Neurol Psychiatry, 1949,61(1):21-27
    [43]Penfield W. Some observations on the cerebral cortex of man. Proc R Soc Lond B Biol Sci, 1947,134(876):329-347
    [44]Rasmussen T, Penfield W. Further studies of the sensory and motor cerebral cortex of man. Fed Proc,1947,6(2):452-460
    [45]Ojemann GA. Cortical organization of language. J Neurosci,1991,11(8):2281-2287
    [46]Haglund MM, Berger MS, Shamseldin M, Lettich E, Ojemann GA. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery,1994,34(4):567-576
    [47]Ojemann JG, Ojemann GA, Lettich E. Cortical stimulation mapping of language cortex by using a verb generation task:effects of learning and comparison to mapping based on object naming. J Neurosurg,2002,97(1):33-38
    [48]Penfiedld W. The supplementary motor area in the cerebral cortex of man. Arch Psychiatr Nervenkr Z Gesamte Neurol Psychiatr,1950,185(6-7):670-674
    [49]Raumussen T, Penfield W. Movement of head and eyes from stimulation of human frontal cortex. Res Publ Assoc Res Nerv Ment Dis,1948,27 (1 vol.)(:346-361
    [50]Penfield W, Steelman H. The treatment of focal epilepsy by cortical excision. Ann Surg, 1947,126(5):740-762
    [51]Penfield W, Welch K. Instability of motor points and sensory points in the human cerebral cortex. Fed Proc,1948,7(1 Pt):91
    [52]Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, Sichez JP, Van Effenterre R. The role of dominant premotor cortex in language:a study using intraoperative functional mapping in awake patients. Neuroimage,2003,20(4):1903-1914
    [53]Bartolomeo P, de Schotten M T, Duffau H. Mapping of visuospatial functions during brain surgery:a new tool to prevent unilateral spatial neglect. Neurosurgery,2007,61(6):E1340
    [54]Duffau H, Peggy GST, Mandonnet E, Capelle L, Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade Ⅱ glioma in the left dominant hemisphere. J Neurosurg,2008,109(3):461-471
    [55]Szelenyi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, Neuloh G, Signorelli F, Sala F. Intraoperative electrical stimulation in awake craniotomy:methodological aspects of current practice. Neurosurg Focus,2010,28(2):E7
    [56]王永志,白红民,江涛,杨洁,吴臣兴,浦松,晋强,张忠,李守巍,谢坚.双语脑语言转换和语言代表区的术中直接电刺激研究(附2例分析).中国微侵袭神经外科杂志,2009,14(01):6-9
    [57]王伟民,李天栋,白红民,王国良,王玉宝.脑功能区胶质瘤的手术策略.中华神经外科杂志,2004,20(02):71-74
    [58]王伟民,李天栋,白红民,王国良,王玉宝.术中全麻唤醒下定位切除脑功能区病变(附5例报告).中国微侵袭神经外科杂志,2003,8(06):245-249
    [59]Tranel D, Damasio AR. Knowledge without awareness:an autonomic index of facial recognition by prosopagnosics. Science,1985,228(4706):1453-1454
    [60]Damasio AR, Castro-Caldas A. Letter:Prosopagnosia. Lancet,1974,2(7885):892-893
    [61]Tranel D. Impaired naming of unique landmarks is associated with left temporal polar damage. Neuropsychology,2006,20(1):1-10
    [62]Tranel D, Logan CG, Frank RJ, Damasio AR. Explaining category-related effects in the retrieval of conceptual and lexical knowledge for concrete entities:operationalization and analysis of factors. Neuropsychologia,1997,35(10):1329-1339
    [63]Grabowski TJ, Damasio H, Damasio AR. Premotor and prefrontal correlates of category-related lexical retrieval. Neuroimage,1998,7(3):232-243
    [64]Grabowski TJ, Damasio H, Tranel D, Ponto LL, Hichwa RD, Damasio AR. A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp, 2001,13(4):199-212
    [65]Giussani C, Roux FE, Bello L, Lauwers-Cances V, Papagno C, Gaini SM, Puel M, Demonet JF. Who is who:areas of the brain associated with recognizing and naming famous faces. J Neurosurg,2009,110(2):289-299
    [66]Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro MB, Rapoport SI. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA,1991,88(5):1621-1625
    [67]Haxby JV, Ungerleider LG, Horwitz B, Maisog JM, Rapoport SI, Grady CL. Face encoding and recognition in the human brain. Proc Natl Acad Sci USA,1996,93(2):922-927
    [68]Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV. Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci USA,1999,96(16):9379-9384
    [69]王聪,王肇轶.面孔识别的特异性及加工模型.太原师范学院学报(自然科学版),2008,(03):52-55
    [70]彭小虎,罗跃嘉.面孔认知及其神经机制的独特性.心理科学,2002,(04):488-489
    [71]徐岩,周晓林.面孔加工的认知神经科学研究:回顾与展望.心理科学进展,2003,(01):35-43
    [72]Grill-Spector K, Knouf N, Kanwisher N. The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci,2004,7(5):555-562
    [73]Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ. Recruitment of anterior dorsolateral prefrontal cortex in human reasoning:a parametric study of relational complexity. Cereb Cortex,2002,12(5):477-485
    [74]Zeineh MM, Engel SA, Thompson PM, Bookheimer SY. Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science,2003,299(5606):577-580
    [75]Schacter DL, Addis DR, Buckner RL. Remembering the past to imagine the future:the prospective brain. Nat Rev Neurosci,2007,8(9):657-661
    [76]Schacter DL, Addis DR. The optimistic brain. Nat Neurosci,2007,10(11):1345-1347
    [77]Sergent J, Zuck E, Terriah S, MacDonald B. Distributed neural network underlying musical sight-reading and keyboard performance. Science,1992,257(5066):106-109
    [78]Gross CG, Sergent J. Face recognition. Curr Opin Neurobiol,1992,2(2):156-161
    [79]Kanwisher N, McDermott J, Chun MM. The fusiform face area:a module in human extrastriate cortex specialized for face perception. J Neurosci,1997,17(11):4302-4311
    [80]Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 2001,293(5539):2425-2430
    [81]Kranz F, Ishai A. Face perception is modulated by sexual preference. Curr Biol, 2006,16(1):63-68
    [82]Bar M, Aminoff E, Ishai A. Famous faces activate contextual associations in the parahippocampal cortex. Cereb Cortex,2008,18(6):1233-1238
    [83]Ishai A. Let's face it:it's a cortical network. Neuroimage,2008,40(2):415-419
    [84]张权,张云亭,李威,张敬.情感反应中杏仁核激活的磁共振功能成像.中国临床医学影像杂志,2008,(04):285-286
    [85]赵丽翔,胡治国,张学新.身份识别的脑功能成像研究.心理科学进展,2008,(02):234-239
    [86]林志成。眼睛注视:独特的还是不独特的.心理科学进展,2005,(04):398-405
    [87]徐岩,周晓林.面孔加工的认知神经科学研究:回顾与展望.心理科学进展,2003,(01):35-43
    [88]Caramazza A, Shelton JR. Domain-specific knowledge systems in the brain the animate-inanimate distinction. J Cogn Neurosci,1998,10(1):1-34
    [89]Chouinard PA, Goodale MA. Category-specific neural processing for naming pictures of animals and naming pictures of tools:An ALE meta-analysis. Neuropsychologia,2010,48(2):408-418
    [90]Damasio H, Grabowski TJ, Tranel D, Ponto LL, Hichwa RD, Damasio AR. Neural correlates of naming actions and of naming spatial relations. Neuroimage,2001,13(6 Pt 1):1053-1064
    [91]Soros P, Cornelissen K, Laine M, Salmelin R. Naming actions and objects:cortical dynamics in healthy adults and in an anomic patient with a dissociation in action/object naming. Neuroimage, 2003,19(4):1787-1801
    [92]Mohanty A, Engels AS, Herrington JD, Heller W, Ho MH, Banich MT, Webb AG, Warren SL, Miller GA. Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology,2007,44(3):343-351
    [93]Tyler LK, Marslen-Wilson W. Fronto-temporal brain systems supporting spoken language comprehension. Philos Trans R Soc Lond B Biol Sci,2008,363(1493):1037-1054
    [94]Wagner K, Frings L, Halsband U, Everts R, Buller A, Spreer J, Zentner J, Schulze-Bonhage A. Hippocampal functional connectivity reflects verbal episodic memory network integrity. Neuroreport,2007,18(16):1719-1723
    [95]Habas C. Functional connectivity of the human rostral and caudal cingulate motor areas in the brain Testing state at 3T. Neuroradiology,2010,52(1):47-59
    [96]Simonyan K, Ostuni J, Ludlow CL, Horwitz B. Functional but not structural networks of the human laryngeal motor cortex show left hemispheric lateralization during syllable but not breathing production. J Neurosci,2009,29(47):14912-14923
    [97]杨时骐,吴光耀.静息态脑功能磁共振成像的研究进展.武汉大学学报(医学版),2010,(01):137-140
    [98]邵辉丽.静息态默认功能网络磁共振成像研究.中国医学影像技术,2009,(S1):201-203
    [99]蒋田仔,刘勇,李永辉.脑网络:从脑结构到脑功能.生命科学,2009,(02):181-188
    [100]田丽霞.基于静息状态的功能磁共振成像.北京生物医学工程,2008,(02):219-223
    [101]黄成众,赵京英,江桦,王大会,闫镔.静息状态脑功能网络的研究及应用.中国组织工程研究与临床康复,2007,(22):4388-4391
    [102]Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med,1995,34(4):537-541
    [103]Biswal B, DeYoe AE, Hyde JS. Reduction of physiological fluctuations in fMRI using digital filters. Magn Reson Med,1996,35(1):107-113
    [104]汤妮,王志群,邬霞,李坤成,姚力.基于独立成分分析和相关分析的fMRI功能连接方法.北京师范大学学报(自然科学版),2008,(01):54-57+111
    [105]于海燕,钱志余,卢光明,张志强.基于功能磁共振成像(fMRI)的脑功能逻辑任务功能区BOLD信号研究.生物医学工程学杂志,2009,(06):1171-1176
    [106]张种,张云亭,张权.动词生成任务相关脑区的功能磁共振成像研究.天津医科大学学报,2009,03):351-353+397
    [107]刘强,卢光明,张宗军,张龙江.血氧水平依赖功能磁共振成像在累及运动区脑肿瘤中的应用.医学影像学杂志,2009,v08):941-945
    [108]吴润果,邱蕾,郑璐,张占军,罗跃嘉,王永炎.认知任务的功能磁共振技术在神经药理学研究中的进展.中国药理学通报,2009,(08):984-987
    [109]孙学军,叶朝辉.脑功能磁共振成像研究进展.中国神经科学杂志,2001,03):270-272
    [110]Zangaladze A, Sharan A, Evans J, Wyeth DH, Wyeth EG, Tracy JI, Chervoneva I, Sperling MR. The effectiveness of low-frequency stimulation for mapping cortical function. Epilepsia, 2008,49(3):481-487
    [111]Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity:relation to a default mode of brain function. Proc Natl Acad Sci USA,2001,98(7):4259-4264
    [112]Zacks JM, Braver TS, Sheridan MA, Donaldson DI, Snyder AZ, Ollinger JM, Buckner RL, Raichle ME. Human brain activity time-locked to perceptual event boundaries. Nat Neurosci, 2001,4(6):651-655
    [113]Raichle ME. Cognitive neuroscience. Bold insights. Nature,2001,412(6843):128-130
    [114]Roskies AL, Fiez JA, Balota DA, Raichle ME, Petersen SE. Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. J Cogn Neurosci, 2001,13(6):829-843
    [115]Simons CJ, Tracy DK, Sanghera KK, O'Daly O, Gilleen J, Dominguez MD, Krabbendam L, Shergill SS. Functional magnetic resonance imaging of inner speech in schizophrenia. Biol Psychiatry,2010,67(3):232-237
    [116]Leff AP, Schofield TM, Crinion JT, Seghier ML, Grogan A, Green DW, Price CJ. The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension:evidence from 210 patients with stroke. Brain,2009,132(Pt 12):3401-3410
    [117]Warren JE, Crinion JT, Lambon RMA, Wise RJ. Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain,2009,132(Pt 12):3428-3442
    [118]Schwartz MF, Kimberg DY, Walker GM, Faseyitan O, Brecher A, Dell GS, Coslett HB. Anterior temporal involvement in semantic word retrieval:voxel-based lesion-symptom mapping evidence from aphasia. Brain,2009,132(Pt 12):3411-3427
    [119]范青,王继军,王雪梅,谭令,肖泽萍.静息态脑功能磁共振在精神障碍中的研究进展.上海精神医学,2009,(06):370-372
    [120]刘功禄,赵永波.神经及精神障碍性疾病静息态fMRI研究.中国神经精神疾病杂志,2009,(09):571-573
    [121]王丽,姚志剑,卢青,刘海燕,曹燕翔,滕皋军.抑郁症静息态大脑双侧杏仁核的功能连接.临床精神医学杂志,2008,(03):145-147
    [122]Liu CL, Hue CW, Chen CC, Chuang KH, Liang KC, Wang YH, Wu CW, Chen JH. Dissociated roles of the middle frontal gyri in the processing of Chinese characters. Neuroreport, 2006,17(13):1397-1401
    [123]孔维丹,朱朝喆,邹启红,左西年,严超赣,臧玉峰.采用分水岭分割方法获取功能磁共振激活图感兴趣区.中国医学影像技术,2008,(09):1476-1479
    [124]Volle E, Kinkingnehun S, Pochon JB, Mondon K, de Schotten M T, Seassau M, Duffau H, Samson Y, Dubois B, Levy R. The functional architecture of the left posterior and lateral prefrontal cortex in humans. Cereb Cortex,2008,18(10):2460-2469
    [125]Duffau H, Leroy M, Gatignol P. Cortico-subcortical organization of language networks in the right hemisphere:an electrostimulation study in left-handers. Neuropsychologia, 2008,46(14):3197-3209
    [126]Giussani C, Roux FE, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery,2010,66(1):113-120
    [127]Bruce V, Young A. Understanding face recognition. Br J Psychol,1986,77 (Pt 3)(:305-327
    [128]汪亚珉.面部表情识别与面孔身份识别的独立加工与交互作用机制.心理科学进展,2005,(04):497-516
    [129]王君,刘嘉.功能性磁共振成像的应用和发展前景.现代仪器,2008,(01):6-10
    [130]李恩中.功能磁共振成像在认知神经科学中的应用.计算机科学与探索,2008,(06):589-600
    [131]Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA,1990,87(24):9868-9872
    [132]周雪婷,蔡太生.句子加工脑机制功能磁共振研究进展.中国临床心理学杂志,2009,(05):592-594
    [133]赵汉青,朱月蓉,程国勤,王安明,封世文.汉语量词加工的脑功能磁共振研究.南京医科大学学报(自然科学版),2009,(06):848-852
    [134]仪晓立,戴建平.功能磁共振在神经外科中的应用.中国医学影像技术,2009,(02):319-321
    [135]McCarthy G, Blamire AM, Rothman DL, Gruetter R, Shulman RG Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci USA,1993,90(11):4952-4956
    [136]Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jesmanowicz A, Bandettini PA, Wong EC, Estkowski LD, Goldstein MD, Haughton VM, et a. Functional magnetic resonance imaging of human auditory cortex. Ann Neurol,1994,35(6):662-672
    [137]Liebenthal E, Binder JR, Piorkowski RL, Remez RE. Short-term reorganization of auditory analysis induced by phonetic experience. J Cogn Neurosci,2003,15(4):549-558
    [138]Liebenthal E, Binder JR, Spitzer SM, Possing ET, Medler DA. Neural substrates of phonemic perception. Cereb Cortex,2005,15(10):1621-1631
    [139]Desai RH, Binder JR, Conant LL, Seidenberg MS. Activation of sensory-motor areas in sentence comprehension. Cereb Cortex,2010,20(2):468-478
    [140]Xiao Z, Zhang JX, Wang X, Wu R, Hu X, Weng X, Tan LH. Differential activity in left inferior frontal gyrus for pseudowords and real words:an event-related fMRI study on auditory lexical decision. Hum Brain Mapp,2005,25(2):212-221
    [141]Tan LH, Laird AR, Li K, Fox PT. Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words:a meta-analysis. Hum Brain Mapp,2005,25(1):83-91
    [142]Tan LH, Spinks JA, Eden GF, Perfetti CA, Siok WT. Reading depends on writing, in Chinese. Proc Natl Acad Sci USA,2005,102(24):8781-8785
    [143]Li G, Cheung RT, Gao JH, Lee TM, Tan LH, Fox PT, Jack CR Jr, Yang ES. Cognitive processing in Chinese literate and illiterate subjects:an fMRI study. Hum Brain Mapp,2006,27(2):144-152
    [144]Jabbour RA, Hempel A, Gates JR, Zhang W, Risse GL. Right hemisphere language mapping in patients with bilateral language. Epilepsy Behav,2005,6(4):587-592
    [145]Hirata M, Goto T, Barnes G, Umekawa Y, Yanagisawa T, Kato A, Oshino S, Kishima H, Hashimoto N, Saitoh Y, Tani N, Yorifuji S, Yoshimine T. Language dominance and mapping based on neuromagnetic oscillatory changes:comparison with invasive procedures. J Neurosurg, 2010,112(3):528-538
    [146]Ilmberger J, Ruge M, Kreth FW, Briegel J, Reulen HJ, Tonn JC. Intraoperative mapping of language functions:a longitudinal neurolinguistic analysis. J Neurosurg,2008,109(4):583-592
    [147]Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, Ferson D, Heimberger AB, DeMonte F, Prabhu SS. Awake craniotomy for brain tumors near eloquent cortex:correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery,2009,64(5):836-845; discussion 345-346
    [148]Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, Van Effenterre R, Capelle L. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas:a comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry,2005,76(6):845-851
    [149]Duffau H. The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia,2008,46(4):927-934

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700