扩展基础冲剪破坏特征和计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩展基础的冲剪计算是建筑基础设计一个重要环节,本文总结了国内外关于冲剪问题的研究现状和设计方法,并针对ACI318、EN1992、GB50007的计算方法进行了算例对比分析,提出了需要进一步研究的问题。本课题研究的主要内容包括扩展基础的冲剪破坏特征;基础平面尺寸、基础配筋率以及偏心荷载对基础冲剪承载力的影响等。本次试验共设计了16个基础模型,得到了扩展基础的冲切剪切破坏特征,对各影响因素进行了分析,提出了基于计算截面在距柱边ho/2处的剪切计算方法的建议,为扩展基础的冲剪设计和规范修订提供依据和参考。
     论文工作的主要研究成果如下:
     (1)通过试验得到了扩展基础的冲剪破坏特征,验证了当基础宽度大于柱宽加两倍基础有效高度时,将发生冲切破坏;当基础宽度小于或等于柱宽加两倍基础有效高度时,若不配置抗剪钢筋,基础将发生剪切破坏;当配置抗剪钢筋时,基础将发生弯曲破坏。
     (2)对于剪切破坏型的扩展基础,在中心荷载作用下其剪切破坏角约为55°,在偏心荷载作用下,偏心一侧的剪切破坏角约为60°,另一侧的破坏角约为50°;对于冲切破坏型的扩展基础,在中心荷载作用下冲切破坏角约为51°;在偏心荷载作用下,冲切破坏角分别为60°和48°左右。偏心荷载作用下,偏心方向一侧剪切破坏角大于中心荷载作用下的剪切破坏角。
     (3)在本次试验条件下,剪切型基础混凝土发挥的抗剪强度在0.98MPa-1.45MPa范围内,即在0.59ft-0.8ft之间;冲切型基础混凝土发挥的抗剪强度在1.27MPa-2.09MPa范围内,即在0.75ft~1.31ft之间。剪切型基础混凝土抗剪强度的发挥程度低于冲切型基础混凝士抗剪强度的发挥程度。
     (4)纵筋配筋率可以提高基础抗冲剪承载力,基于本次试验条件,平均提高约15%~20%左右。
     (5)分析了基础板平面尺寸对基础抗冲剪承载力的影响,提出了考虑基础边长比影响的冲切承载力半经验公式;提出了计算截面在距柱边ho/2处的剪切验算建议方法。
     (6)试验结果表明,将圆柱基础代换为方柱基础进行冲切验算时,若按等剪切面积换算,其冲切承载力基本接近;若按柱等面积换算,圆柱基础用方柱基础代替设计时偏于安全。
     综合上述研究成果,本文的主要创新点如下
     (1)通过试验得到了扩展基础的冲剪破坏特征,验证J’当基础宽度小于或等于柱宽加两倍基础有效高度时,基础将发生剪切破坏,当基础宽度大于柱宽加两倍基础有效高度时,将发生冲切破坏。
     (2)偏心荷载作用下,偏心方向一侧剪切破坏角大于中心荷载作用下的剪切破坏角。
     (3)基于本次试验条件,剪切型基础的混凝土抗剪强度在0.98MPa~1.45MPa范围内,即在0.59ft~0.88ft之间;冲切型基础的混凝土抗冲切强度在1.27MPa~2.09MPa范围内,即在0.75ft1.31ft之间;剪切型基础混凝土抗剪强度的发挥程度低于冲切型基础混凝土抗剪强度的发挥程度。
     (4)分析了基础板平面尺寸对基础抗冲剪承载力的影响,提出了考虑基础边长比影响的冲切计算半经验公式,提出了基于计算截面在距柱边h0/2处的剪切验算方法的建议。
The shear calculation is a important procedure in design of spread foundation. This article summarized research situation and design method about questions of shearing at home and abroad, some examples are comparative analysis according to different codes(ACI318、EN1992、GB50007). Some problems which need to be studied further are put forward. The main content of this research include shear failure characteristics of extended foundation; impacts of foundation plane dimensions, reinforcement ratio and eccentric loads on shear bearing capacity and so on. Sixteen models of reinforced concrete foundation are designed. The punching shear failure characteristics of reinforced concrete foundation are achieved through model tests, various influential factors have been analyzed, also some advice of shear calculation method is put forward to provide some basis and reference for spread foundation punching shear design and specification revision.
     The main research results are as follows through the test and data analysis:
     (1) The shear failure characteristics of spread foundation are achieved through tests. It verify that punch failure will occur when the width of foundation is more than the column width pulsing double ho, when the foundation width is less than or equal to the column width pulsing double ho, the foundation without shear reinforcement will occur shear failure, the foundation with shear reinforcement will occur bending failure.
     (2) The shear rupture angle is about fifty-five degrees for shear failure foundation under centric load, when there are eccentric loads, the rupture angle of eccentric side is about sixty degrees, the reverse side is fifty degrees; the punching shear rupture angle of foundation is about fifty-one degrees under central load, the punching shear rupture angle of eccentric side is bigger and the reverse side is smaller for punching foundation under eccentric load, the rupture angles are sixty degrees and forty-eight degrees respectively.
     (3) The range of shearing strength of shear type foundation is at about0.98MPa to1.45MPa, which is between0.59ft and1.88ft under the condition of this test; the range of shearing strength of punching type foundation is at about1.27MPa to2.09MPa, which is between0.75ft and1.31ft. The shear strength level of development of concrete in shear type foundation is below that in punching type foundation.
     (4) The reinforcement ratio can increase shear capacity of foundation. Base on the condition of this test, it may be increased about15%~20%averagely.
     (5) The influence of plan dimensions of foundation plate on punching shear bearing capacity is analyzed. The semi-empirical formula of punching shear calculation considering influence of foundation side ratio is put forward; shear calculation formula is put forward according to the critical plane of ho/2.
     (6) The result of experiment show that cylinder foundation is replaced by square column foundation when punching shear calculate, if according to equal of shear area, their punching shear capacity is approach; if according to equal area of column cross section, the calculation result is inclined to safe.
     The main innovative results are as follows combined with the above research conclusion:
     (1) The punching shear failure characteristics of spread foundation are achieved through tests. It verify that punch failure will occur when the width of foundation is more than the column width pulsing double ho, when the foundation width is less than or equal to the column width pulsing double ho, the foundation without shear reinforcement will occur shear failure.
     (2) The rupture angle of side of eccentric direction is greater than the rupture angle of shear when centric load acts.
     (3) The range of shear type foundation shearing strength is at about0.98MPa to1.45MPa, which is between0.59ft and1.88ft base on the condition of this test; the range of shearing strength of punching type foundation is at about1.27MPa to2.09MPa, which is between0.75ft and1.31ft. The shear strength level of development of concrete in shear type foundation is below that in punching type foundation.
     (4) The influence of plan dimensions of foundation plate on punching shear bearing capacity is analyzed. The semi-empirical formula of punching shear calculation considering influence of foundation side ratio is put forward; shear calculation formula is put forward according to the critical plane of ho/2.
引文
[1]ACI Committee 318.ACI 318-08, Building.Code Requirements for Structural Concrete and Commentary[S]:American Concrete Institute,2008.
    [2]European Committee for Standardization. EN 1992-1-1:2004, Design of Concrete Structures[S].The authority of the Standards Policy and Strategy Committee of UK,2004.
    [3]中华人民共和国住房和城乡建设部.GB50007-2011建筑地基基础设计规范[S].北京:中国建筑出版社,2012.
    [4]中华人民共和国住房和城乡建设部.GB50010-2010混凝土结构设计规范[S].北京:中国建筑出版社,2011.
    [5]Talbot, A.N., Reinforced Concrete Wall Footings and Column Footings, University of Illinois Engineering Experiment Station, Bulletin No.67,March 1913,114 pages
    [6]Bach, C., and Graf, O., Tests of Square and Rectangular Reinforced Concrete Slabs Supported on all Sides, Deutscher Ausschuss fur Eisenbeton Heft 30,1915,309 pages.
    [7]Richart, F.E., Brandtzaeg, A., and Brown,R.L.,A Study of Failure of Concrete under Combined Compressive Stresses, University of Illionis Engineering Experiment Station, Bulletin No.185,November 1928,102 pages
    [8]Richart,F.E., Reinforced Concrete Wall and Column Footings, Journal of the American Concrete Institute;Proceedings,45,97-127,237-260,1948.
    [9]Hognestad, E., Shearing Strength of Reinforced Concrete Column Footings, Journal of the American Concrete Institute; Proceedings,50,189-208,1953.
    [10]Elstner,R.C, and Hognestad, E., An Investigation of Reinforced Concrete Slabs Failing in Shear, University of Illinois,Department of Theoretical and Applied Mechanics, Mimeographed Report, March 1953,84 pages.
    [11]Elstner,R.C., and Hognestad, E., Shearing Strength of Reinforced Concrete Slabs, Journal of the American Concrete Institute;Proceedings,53,29-58,1956.
    [12]Whitney, C.S., Ultimate Shear Strength of Reinforced Concrete Flat Slabs, Footings, Beams, and Frame Members without Shear Reinforcement, Journal of the American Concrete Institute;Proceedings,54,265-298,1957.
    [13]Moe J.Shearing Strength of Reinforced concrete Slabs and Footing under Concentrated Load[A].Development Department Bulletin D47[C], Portland Cement Association, April, 1961.
    [14]W.Salim, W.M.Sebastian. Punching Shear Failure in Reinforced Concrete Slabs with Compressive Membrane Action[J]. ACI Structural Journal,2003,100(4):471-479.
    [15]Yitzhaki, D. Punching Strength of Reinforced Concrete Slabs. Proceedings. ACI, Vol.63, No.5, May,1966,527-540 pages.
    [16]刘立渠.钢筋混凝土板考虑加载面边长比及纵筋影响的抗冲切试验研究[D].北京:中国建筑科学研究院博士学位论文,2006
    [17]P.E. Regan. Design for Punching Shear. The Structural Engineer. Vol.52, No.6, June,1974.
    [21]P.E. Regan.Symmetric Punching of Reinforced Concrete Slabs. Magazine of Concrete Research, Vol.38,No.136,sept,1986.
    [19]周克荣.冲切的全过程、工作机理和承载力研究[D].同济大学博士学位论文,1990.
    [20]H.Marzouk, Moustafa Osman,Shereif Helmy. Behavior Lightweight Aggregate Concrete Slabs Under Column Load Moment[J]. ACI Structural Journal,2000,97(6):860-866.of High-Strength and Unbalanced
    [21]CEB-FIP Model Code 1990. Thomas Telford Ltd., London,1993.
    [22]Ramdane, K.E. Punching Shear of High Performance Concrete Slabs.4th International Symposium on Utilization of High-strength/High-performance Concrete. Paris,1996, pp. 1015-1026.
    [23]Hallgren, M. and Kinnunen, S. Increase of Punching Shear Capacity by using High-Strength Concrete.4th International Symposium on Utilization of High-strength/High-performance Concrete. Paris,1996, pp.1037-1046.
    [24]Marzouk, H. and Hussein, A. Experimental Investigation on the Behaviour of High-Strength Concrete Slabs. ACI Structural Journal, Nov.-Dec, V.88, No.6,1991, pp.701-713.
    [31]Tomaszewicz, A. High-strength Concrete SP2-Plates and Shells. Report 2.3, Punching Shear Capacity of Reinforced Concrete Slabs. Report No. STF70A93082, SINTEF, Trondheim, 1993.
    [26]Marzouk H, Hussein A. Punching shear analysis of reinforced high-strength concrete slabs [J]. Canadian Journal of Civil Engineering,1991,18:954-963.
    [27]沙志国.钢筋混凝土板的抗冲切强度计算[J],吉林建筑技术通讯,1977,2.
    [28]楼板及基础抗冲切强度专题组.钢筋混凝土板和基础抗冲切强度的试验研究[J].建筑结构学报,1987.
    [29]陈维烈、魏潮文.钢筋混凝土基础抗冲切强度试验研究[J].福州大学土建系科技情报室,1985年12月.
    [30]周朝阳.钢筋混凝土板抗冲切计算模型与配筋研究[D]湖南大学博士学位论文,1989.
    [31]周朝阳,任达.板及基础冲切承载力随混凝土强度的变化[J].青海大学学报(自然科学版),2002,(1).
    [32]余志武.钢筋混凝土板和基础抗冲切强度的塑性分析[J].长沙铁道学院科研处,1985,12.
    [33]童启明.钢筋混凝土板的抗冲切强度计算,南京工学院学报,1980,1.
    [34]白生翔.钢筋混凝土扩展基础设计方法的改进建议[J].工业建筑,35(2),2005.
    [35]程万里.冲切问题试验总结与研究[S].硕士学位论文.
    [36]李云贵.现代建筑设计与施工关键技术研究[M].中国建筑科学研究院,2010.
    [37]曹明, 龚绍熙.钢筋混凝土板柱节点弯冲界限破坏的分析[J].福州大学学报(增刊),1996,24(9).
    [38]林旭健,郑作樵,钱在兹.混凝土弯冲板的破坏机构与极限强度[J].工程力学,2003,20(1).
    [39]蒋大骅.混凝土板的冲切与剪切.结构工程师1989(2)
    [40]Geaund H, Dikshit 0 P. Yield line analysis of the punching problem at slab/column intersections. ACI SP-30,1971.
    [41]李剑群.混凝土结构冲切破坏和剪切破坏的理解与辨析[J].四川建材,2009(2)
    [42]滕延京.地基基础设计规范与国外规范分项安全系数取值对比分析[J],建筑科学,1999(5).
    [43]A.H.尼尔逊,过镇海等译[M].中国建筑工业出版社,2003.
    [44]约瑟夫·E·波勒斯,童晓东.基础工程分析与设计[M]北京:中国建筑工业出版社,2004.
    [45]周朝阳,张赛赛,刘澍.混凝土板及基础抗冲切设计计算截面的取法[J].中南大学学报,36(1),2005,2.
    [46]冯承辉,田明革.钢筋混凝土板冲切公式比较分析研究[J].建筑结构,2003(1)
    [47]滕延京.建筑地基基础设计规范的编制和历次修订[J].建筑结构学报,2010(6)
    [48]连晓庄,陈晓明.国内外规范抗冲切设计方法评介[J].四川建筑科学研究,33(4),2007.
    [49]李广信.高等土力学[M].清华大学出版社,2006.
    [50]过镇海.混凝土的强度和变形试验基础和本构关系[M].北京:清华大学出版社,1997.
    [51]曹明,龚绍熙.钢筋混凝土板柱节点弯冲界限破坏的分析[J].福州大学学报(增刊)1996,24(9).
    [52]石金龙,滕延京.柱下筏板基础冲切承载力的试验研究[J].岩土工程学报,2009年第5期.
    [53]宫剑飞.多塔楼荷载作用下大底盘框筏基础反力及沉降计算[D].中国建筑科学研究院博士学位论文,1999.
    [54]王曙光.竖向荷载作用下梁板式筏形基础基底反力及变形特征研究[D].中国建筑科学研究院博士学位论文2002.
    [55]黄熙龄.高层建筑厚筏反力及变形特征试验研究[J]岩土工程学报Vol.24(2),2002
    [56]田磊,贡金鑫,魏巍巍.混凝土圆柱支承板的受冲切承载力计算[J].建筑结构,41(1),2011.
    [57]李定国、舒兆发、余志武.无抗冲切钢筋的混凝土板柱连接的试验研究[J].湖南大学科研处,1985年12月.
    [58]舒兆发、李定国.配置抗冲切钢筋的混凝土板柱连接的强度和性能试验研究[J].湖南大学科研处,1985年12月.
    [59]王天稳.土木工程结构试验[M]武汉:武汉理工大学出版社,2011.
    [60]周明华.土木工程结构试验与检测[M]南京:东南大学出版社,2012.
    [61]顾晓鲁,钱鸿缙等.地基与基础(第二版)[M].中国建筑工业出版社,1993.
    [62]N. J Gardner.Relationship of the Punching Shear Capacity of Reinforced Concrete Slabs with Concrete strength.ACI Structural Journal, January-February 1990.
    [63]刘立渠,黄小坤,陶学康.考虑纵筋率及加载面边长比影响的板受冲切承载力计算分析[J].土木工程学报,41(7)2008,7.
    [64]土工试验方法标准.GB/T 50123-1999中国计划出版社,1999
    [65]吴能森,谢成新.基底压力分布对扩展基础冲切承载力影响的研究[J].西北建筑工程学院学报,19(1),2002.
    [66]石金龙.柱下筏板基础角柱边柱冲切性状的研究[S].中国建筑科学研究院硕士学位论文,2005.
    [67]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [68]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2006.
    [69]陈火红,杨剑等Marc有限元实例教程[M].北京:机械工业出版社,2007
    [70]陶学康,钢筋混凝土圆板冲切破坏的有限单元法分析[J].土木工程学报,1986,19(2):1-14.
    [71]史志华,胡德忻,陈基发.钢筋混凝土结构安全度水准修订评估[J].建筑科学,2002,18增刊1.
    [72]杨开.钢筋混凝土板受冲切可靠度分析[S].湖南大学硕士学位论文,2012.
    [73]郑永保.构筑物独立浅基础设计可靠度理论研究及工程应用[D].重庆大学博士学位论文,2005.
    [74]彭立新.结构可靠性管理[M].北京:中国建筑工业出版社,2012.
    [75]余建星.工程结构可靠性原理及其优化设计[M].北京:中国建筑工业出版社,2013.
    [76]中华人民共和国住房和城乡建设部.GB50068-2001.建筑结构可靠度设计统一标准[S].北京:中国建筑出版社,2005.
    [77]Regan P E.The dependence of punching resistance upon the geometry of the failure surface.[J].NCR 1984,36(126).
    [78]Hamkins N M. Shear strength of slabs with shear reinforcement [J]ACI SP42-34,1974..
    [79]刘广义,栾英,刘晓东.配抗冲切弯筋板冲切问题试验研究[J].哈尔滨建筑工程学院学报,1994,27(3)
    [80]黄小坤,刘立渠,陶学康.考虑纵筋率及加载面边长比影响的板受冲切承载力试验研究[J].土木工程学报,2008,41(7)
    [81]魏巍巍,贡金鑫,田磊.钢筋混凝土板受冲切承载力对比分析[J],建筑科学与工程学报,2010,27(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700