ICF物理实验分布式测量软件系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ICF(惯性约束聚变)实验物理诊断测量软件系统是ICF实验不可或缺的重要组成部分。它为满足ICF实验研究中大数据量、多学科、多项目测量系统的数据采集、保存和处理的需要提供了良好的技术条件。但由于ICF研究工作在我国起步较晚,目前国内所使用的测量软件系统整体水平较低,具有诸多不足,尤其是随着“神光—Ⅲ”原型实验装置的建成,软件系统已经成为制约我国ICF研究工作快速发展的瓶颈。
     本文涉及的领域集中在软件部分,其目的就是通过研究、分析测量测试系统中涉及到的各种最新的软件技术的原理和实现方式,选择并建立一套能够满足“神光-Ⅲ”原型上的物理实验诊断系统以及将来的“神光-Ⅲ”主机装置系统需求的分布式测量软件体系。该软件体系具有良好的模块性和尽可能低的耦合性,具有开放性和灵活性,使得系统能够根据物理需求的变化而调整,也可以随着相关技术的发展得到不断更新和升级。
     本文首先介绍了ICF物理实验的背景,以及国内外ICF物理实验中测量软件系统的发展现状,说明了建立一个具有先进性、通用性、开放性和分布性等特点的测量软件系统的必要性,并给出了分布式测量软件系统的设计思路,整体架构和开发、运行环境的选择。
     本文在分析并比较了目前国内ICF研究领域内的所涉及的各种仪器总线后,将分布式测量软件系统的硬件平台定义为混合总线结构的测试系统,该系统同时结合了模块化仪器平台和分立仪器的组件,它们通过各种不同的仪器标准总线相互连接,充分发挥多种总线和平台的优势,具有独立性、耐久性、可扩展性和高性价比。根据这种混合总线结构,文章结合ICF物理实验实际应用,分析并完成了基于标准仪器驱动器的虚拟仪器测量子系统的设计和开发,从而通过从下而上的开发方式完成完整的测量软件体系的建立。
     为了保证测量软件系统的通用性和开放性,本文详细阐述了基于组件的设计和开发方案,并结合ICF研究领域内最常见的示波器测量系统进行了实际应用,利用面向对象的设计模式完成了一个具有模块化功能的通用示波器测量系统。
     分布式测量软件系统的关键问题之一就是如何在系统内部以及系统之间实现标准的数据交换,本文详细介绍了目前国际测量测试领域内的最新标准—自动化测试语言的框架和结构,并结合分布式测量软件系统进行了应用,特别是利用XML序列化技术实现了将ATML标准集成到面向对象的测量程序中。
     分布式测量软件系统的另外一个关键问题在于如何不同应用域的程序之间实现对象类型的耦合,本文研究并实现了两种可能的方案,即.NET Remoting和Web Service,而在现阶段.NET Remoting这种耦合方式更具有实际意义。
     本论文的意义和主要创新之处包括:
     1.本文研究内容属于“神光—Ⅲ”系列装置ICF实验物理诊断的关键部分之一,该项目作为我国863高技术研究发展计划的主题项目和国家重点工程,是极为复杂的多学科跨世纪的系统研究工程,无论对国民经济、军事应用,还是基础学科探索都有着重要而特殊的意义。
     2.首次将分布式技术应用于国内ICF装置物理诊断系统,完成了分布式测量软件系统的设计思路,整体架构和开发、运行环境的选择。
     3.通过对相关国际标准的仔细研究,首次全面系统地在ICF实验物理诊断测量系统中使用并自行开发出符合标准的仪器驱动器,完成了基于虚拟仪器概念的混合总线测试系统的构建。
     4.在ICF实验测量系统中完整的应用了诸如面向对象、组件开发、XML技术以及有关网络开发技术,尤其是首次在ICF研究领域内应用了最新的自动化测试标记语言作为数据交换标准,实现了ICF物理实验的分布式测量。
Measurement software system of physical diagnostics in Inertial Confinement Fusion (ICF) experiments is a very important part, which supports acquisition, storage and processing of target-diagnostic data. As a result of the late start of ICF research in our country, overall domestic measurement software system is on a relatively low level at present, with very many disadvantages. Practically, considering the accomplishment of SG-III prototype facility, measurement software system has became the restriction of rapid growth in out country's ICF research field.
    The thesis is focused on the software domain, and describes the research and development work of the principles and implementation of various latest software technologies for measurement and test system. In the thesis we select and establish a set of distributed measurement software system, which not only satisfies the requirement of physical diagnostics of SG-III prototype facility, but also meets the demands of SG-III main facility in the future.
    At the first of this thesis, the background knowledge of ICF experiment and the current situation of measurement software system of domestic and foreign ICF experiment. The necessity and urgent needs for a new measurement software system which is advanced, interchangeable, expandable and distributed are mentioned. Then the design scheme, overall architecture, development and run environment of the distributed measurement system are briefly introduced.
    After the analysis and comparison of instrument buses involved in current ICF research filed, the thesis proposes the distributed measurement software system should be based on the mixed-bus hardware platform. This platform combines modular instruments with the independent instrument together, and these instruments are interconnected through different instrument buses. The platform takes full advantage of multi buses and protocols, and provides independence, duration, expansion and high performance to price. According to this mixed-bus platform, the thesis introduces how to build up the virtual instrument measurement subsystem based on the instrument drivers, and accomplish the whole measurement software system through the bottom-top method.
    To ensure the interchangeable and expandable of the measurement software system, the thesis then introduces the software design and development based on component in details. Furthermore, the thesis illustrates an interchangeable oscilloscope application based on the object-oriented design.
    One key topic of the distributed measurement software system is how to achieve data exchange internally and externally. This thesis introduces latest data standard in measurement and test-Auto Test Markup Language, and the implementing ATML in distributed measurement software system with XML serialization.
    Another key topic of the distributed measurement software system is the coupling of different applications. This thesis research discusses two possible ways, .NET Remoting and Web Service, and .NET Remoting is more practical at present.
    The significance and innovation of the thesis are as follows:
    1. Measurement software system is one key part of SG-III prototype facility, which is the principal item of National 863 Project. The software system is a very complex and long time engineering project of great significance for national economy, military application and foundation research.
    2. Firstly bringing forward distributed technologies for physical diagnostics in
    ICF experiments. Accomplished the design, development of the distributed measurement software system, and select the environment for developing and running.
    3. Firstly bringing forward the comprehensive idea of using instrument drivers
    in measurement software system for ICF experiments, firstly accomplished the development of custom instrument driver, and build a mixed-buses test system based virtual instruments.
    4. Firstly application of object-oriented, component, XML etc. in domestic measurement software system for ICF experiments, practically firstly bringing forward the latest ATML into related field and realizes the distributed measurement for ICF physical experiments.
引文
[1] H Γ.巴索夫等著,华欣生译.稠密等离子体诊断学 《强激光与粒子束》杂志社.1992.
    [2] 傅依备,杨建国,江文勉等编.惯性约束聚变与强激光技术(1).四川绵 阳:中国工程物理研究院核物理与化学研究所(内部发行),1992.
    [3] N. G. Basov et al. Proceeding of conference on quantum electronic. Paris, 1963.
    [4] http://www.863.org.cn/863briefing/863bifO01_22.html
    [5] J. D. Lawson. Proc. Physics. Soc. B70, 1957. 6.
    [6] E. Storm et al. Progress in laboratory high gains ICF. The Eighth Session of the ISNW, Eric, Sicily, Italy, 1988.
    [7] J. D. Lindl. The evolution toward indirect drive and decades of progress toward ICF ignition and burn. UCRL-JC-115197, No. 12, 1993.
    [8] John D. Lindl et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. PHYSICS OF PLASMAS, VOLUNE 11, NUMBER 2, FEBUARY 2004.
    [9] 杨存榜.ICF实验数据综合采集处理和管理系统.中国科技大学博士学位论文.2000.
    [10] 孟汉城,奚全生.测试与测试技术的发展.航天测控.http://www.casic-amc.com 2007
    [11] J. Holzrichter, etc. Data processing and analysis. UCRL-50021-74(1975), Laser program annual report - 1974, p339-351
    [12] http://lasers.11nl.gov/anniversary/series.html http://lasers.11nl.gov/anniversary/history.html
    [13] L. W. Coleman, et al. Data acquisition and processing. UCRL-50021-75(1976), Laser program annual report - 1975, p433-445
    [14] J. R. Greenwood, et al. Target data acquisition and analysis system. UCRL-50021-76(1977), Laser program annual eport - 1976, p123-126
    [15] E. M. Campbell, et al. Data management and analysis. UCRL-50021-84(1985), Laser program annual report - 1984, p5-75~5-89
    [16] M. Andre, D. Babonnwau. Progress in inertial confinement fusion physics. Laser and Particle Beam, No. 3, 1994.
    [17] A. Hauer, N. Dalomater, D. Ress. Review of drive symmetry measurement and control experiments on the NOVA laser system. Rev. Sci. Instrum, Vol. 66, No. 1, Jan. 1995.
    [18] June Camada, Kevin Gleason, Arnold B. Heller. The national ignition facility (NIF). Energy and Technology, No. 10, 1994.
    [19] J. D. Kikenny. Diagnostic system for the national ignition facility (NIF). Rve. Sci. Instrum, Vol. 66, No. 1, Jan. 1995.
    [20] V. A. Martin, et al. Analysis and data management. UCRL-50021-87(1988), Laser program annual report - 1987, p3-109~3-116
    [21] John A. Boles, David Pessel. Omega automated laser control and data acquisition. IEEE Journal of Quantum Electronics, 1991. 17(9): 1903.
    [22] John M. Soures, et al. National Laser Users' Facility User' s Guide. University of Rochester Laboratory for laser energetics. Jan 1998.
    [23] 陆靖平.ICF实验ICCS中靶诊断子系统集总式平台的设计和典型模件研制.中国科技大学博士学位论文.2001.
    [24] 虞孝麒.高等核电子学讲义 (研究生课程讲义).中国科技大学.1996
    [25] http://public.web.cern. ch/Public/CERNOP/League5.html
    [26] 过雅南.新一代高能物理实验中的计算机技术.核电子学与探测技术.Jan 1995.42-52
    [27] R. Brun, N. Buncic, et al. ROOT Overview. CERN. 1996
    [28] 苏春晓.用于ICF诊断实验的大型数据处理系统调研报告和实施方案(内部报告).中国工程物理研究院高温高密度等离子体国家重点实验室. 1999.
    [29] 苏春晓,杨存榜,郭素.激光打靶实验数据在线采集和处理系统.核电子学与探测技术.Vol.15 No.6 1995
    [30] A. Hauer, N. Dalomater, D. Ress. Review of drive symmetry measurement and control experiments on the NOVA laser system. Rev. Sci. Instrum, Vol. 66, No. 1, Jan. 1995
    [31] Andrew S. Tanenbaum, Maarten van Steen. Distributed System: Principles and Paradigms. Prentice Hall. Jan. 2002
    [32] Flynn, M., Some Computer Organization and Their Effectiveness, IEEE Trans. Comput., Vol. C-21, pp. 948, 1972
    [33] 沈艳,古天祥.基于CORBA和Agent技术的分布式测量系统研究.电子测量与仪器学报.2003.10
    [34] 孙映卓.LabVIEW用于分布式测量与控制系统.测控技术.2003.7
    [35] 罗小川,车仁生,崔长彩.分布式网络化测量系统——面向先进制造的新一代测量系统.光学精密工程.2002.1
    [36] Gray W. Johnson, Richard Jennings. LabVIEW Graphical Programming. McGraw-Hill Professional. July. 2006
    [37] 张凤均.LabWindows/CVI 开发入门和进阶.北京航空航天大学出版社.2001.12
    [38] Beck Zaratian. Microsoft Visual C++6.0 Programmer's Guide. Microsoft Press. Dec. 1998
    [39] Jeffrey Richter著,周靖,张杰良译.框架设计—CLR Via C#.清华大学出版社.2006.11
    [40] 舒悌翔.自动测试技术的发展探讨.宇航计测技术.2001.6
    [41] 刘金甫,田同明.可互操作ATS的技术实现途径.测控技术.2002.2
    [42] 王厚铿,王俊刚,孙勇.军用自动测试系统(ATS)技术综述.航空科学技术.2006.5
    [43] 李行善,于劲松.ATS(自动测试系统)及ATE技术.电子产品世界.2002.3
    [44] 赵会兵.虚拟仪器技术规范与系统集成.清华大学出版社.2003.8
    [45] 理解仪器控制中的竞争的总线技术.http://www.ni.com/china
    [46] 仪器总线技术的回顾与展望.http://www.ni.com/china
    [47] 是什么提升了总线的性能.http://www.ni.com/china
    [48] 使用虚拟仪器技术创建合成仪器.http://ni.com/china
    [49] 周泓等.虚拟仪器系统软件结构的设计.计算机自动测量与控制.2000.8
    [50] 刘洋.虚拟仪器技术及其发展趋势.仪表技术.2004.5
    [51] IEEE Std 488. 2-1992 IEEE Standard Code, Formats, Protocols, and Common Commands For Use With IEEE Std 488. 1-1987
    [52] Standard Commands for Programmable Instruments(SCPI) Consortium's SCPI Standard 1997
    [53] 韩剑峰等.VXI技术在通信测控中的应用.国外电子测量技术.1999.4
    [54] 代俊光,陈光偶.面向对象技术及其在VXI系统中的应用.1998.4
    [55] 陈鸣,杨存榜,丁永坤,阴泽杰.用于ICF实验中超热电子测量的数据采集系统.强激光与粒子束.2006.4
    [56] 陆俊峰,陈鸣等.大型ICF实验物理诊断系统的集中控制设计.强激光与粒子束.2006.18
    [57] Randy Abernethy著,汪浩等译.COM/DCOM技术内幕.北京:清华大学出版社,2000
    [58] 张成名,王建华,蔡金燕.自动测试系统的通用性研究.控制系统.2007.1
    [59] 林春晓,杨伟民,胡敏.组件技术在分布式测是系统与测试工具集成中的应用.上海理工大学学报.2006.5
    [60] 王鸿钰.一种以GPIB—ENET构建的分布式测试系统.测控技术.2002.1
    [61] 何岭送,张登攀,赖红.可重构虚拟仪器系统.机械工程学报.2005.9
    [62] 王思华,叶文生,雷兆宜,陆尧胜.DataSocket技术及其在虚拟仪器远程测控系统中的应用.暨南大学学报(自然科学版).2000,21(3)
    [63] 赵伟,张小牛,孟浩文.网络化——测量技术与仪器发展的新趋势.电测与仪表.2000,第37卷,第7期
    [64] Matthew MacDonald Microsoft(?). NET Distributed Applications: Integrating XML Web Services and. NET Remoting. Microsoft Press. February 12, 2003
    [65] Cameron Hughes, Tracey Hughes, Parallel and Distributed Programming Using C++, Addison Wesley, August 25, 2003
    [66] Chuck White著,周生炳译.XML从入门到精通.电子工业出版社.2002.1
    [67] Akmal B.Charudhri等著,邢春晓等译.XML和支持XML的数据库系统.清华大学出版社.2006.2
    [68] Priscilla Walmsley著,陈维军等译.XML模式权威教程.清华大学出版社.2003.1
    [69] IEEE, "Automatic Test Markup Language," December 2004, http://grouper. ieee.org/groups/scc20/tii/ATML/Working%20Groups/Management/ATML%200verview.doc
    [70] Ron Taylor. Incorporating ATML Interface Standards within an ATE Software Architecture. AUTOTESTCON 2003 Proceedings. Anaheim California, USA, Sept, 2003
    [71] Eduardo Millan Tamayo, Cesar Fernandez Moreno. The Spanish standard automatic test system (SAMe) experience. AUTOTESTCON 2004 Proceedings. San Antonio, USA, Sept, 2004.
    [72] O'Donnell, S. J. and Richardson, P. Implementing ATMI. Into an Existing Software Architecture. AUTOTESTCON 2004 Proceedings. San Antonio, USA, Sept, 2004.
    [73] Steven A Wegener. Practical Implementation of an Open Test System Using ATML. IEEE 2004 AUTOTESTCON. San Antonio, USA, Sept, 2004.
    [74] 陈鸣等. Implementing ATML in Distributed ATS for SGⅢ Prototype. Plasma Science and Technology. 2007. 2
    [75] Dino Esposito著,宁建平等译.Microsoft.NET XML程序设计.机械工业出版社.2003.9
    [76] Mark Birbect等著,裴剑锋等译.XML高级编程.机械工业出版社.2002.5
    [77] Adam Freeman,Allen Jones 著,向璐等译.Microsoft.NET XML Web服务 程序设计.清华大学出版社.2003.8
    [78] 郑小平..NET精髓—Web服务原理与开发.人民邮电出版社.2002.1
    [79] 钱卫星,王勇.基于XML数据交换的仪器远程Web测控.测控技术.2004.2
    [80] 王勇,张惊雷,黄惟一.基于XML的虚拟仪器远程测控系统.工业仪表与自动化装置.2005.3
    [81] 邓俊杰,高宝成.虚拟仪器中Web Service应用研究.电工技术杂志.2004.10
    [82] 王勇,张惊雷,钱卫星等.基于Web Service平台的虚拟仪器远程Web测控.舰船电子工程.2005.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700