鲜果气调包装的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的果蔬生产量连年稳居世界首位,但由于缺乏有效的采后包装保鲜措施,每年因此而损失的果蔬产品经济价值高达数百亿元。因不使用化学试剂处理和具有高效的保鲜性能,气调包装在水果的采后贮运和销售链中得到越来越广泛的应用。气调包装的效率和性能主要取决于对被包装水果产品生理特性的正确理解和包装件自身的合理设计。虽然国内外对鲜果气调包装已进行了大量的研究并取得了卓有成效的研究成果,但目前仍存在如下限制气调包装工程化应用的理论和技术瓶颈:(1)现有的水果呼吸速率模型形式复杂、参数多、预测精度低,能预测的变量少;(2)对于部分鲜果品种在气调环境胁迫下的呼吸特性和响应尚缺乏系统性的实验研究;(3)气调包装件的设计理论和设计方法仍停留在科研层面,尚缺少面向工程应用的气调包装设计理论和方法。
     本论文以番石榴、杨桃、荔枝和番木瓜为研究案例,在深入理解和把握呼吸代谢本质的基础上,针对不同呼吸类型的水果,把化学动力学理论和人工神经网络建模方法引入到鲜果呼吸速率预测领域,分别构建了形式简单、预测精度高的数学呼吸速率模型和可预测四元变量的人工神经网络呼吸速率模型。此外,本论文还系统地研究了温度和气调环境对番石榴、杨桃和荔枝呼吸特性的影响,并提出了一种面向工程应用的鲜果气调包装设计方法。论文的主要内容和主要结论包括如下五个方面:
     1.利用化学动力学速率方程分别为番石榴、杨桃和荔枝构建了呼吸速率预测模型,该模型能高效整合温度、CO2浓度和O2浓度三个变量对鲜果呼吸速率的影响;三种水果化学动力呼吸速率模型的O2和CO2反应级数分别为——番石榴:0.46和-0.30;杨桃:0.91和-0.24;荔枝:0.98和-0.32;做为对比,分别表征了三种水果的酶动力学无竞争型M-M方程呼吸速率模型;采用三个统计学指标对三种水果的两类呼吸速率模型分别在两个温度下进行了模型性能验证;结果表明,化学动力学呼吸速率模型具有很好的预测精度和模型效率,其性能明显优于酶动力学呼吸速率模型。2.研究了番石榴、杨桃和荔枝在模拟气调包装环境下的呼吸特性;三种水果的呼吸初值与温度之间的关系均遵循Arrhenius公式,呼吸初值的表观活化能为——番石榴:48.09 kJ/mol、杨桃:54.49 kJ/mol、荔枝:70.91 kJ/mol;三种水果呼吸初值的平均温度系数分别为2.00、2.11和2.55;番石榴和杨桃的呼吸商与温度之间呈良好的线性关系,荔枝的呼吸商与温度之间的线性关系不明显;呼吸商与温度之间的拟合方程为——番石榴:RQ = 4.82×10-3T - 0.432(r = 0.988)、杨桃:RQ = 5.60×10-3T - 0.609(r = 0.998)、荔枝:RQ = 1.00×10-3T - 0.730(r = 0.606);升高温度能提高三种水果的O2发酵阈值;实验温度范围内三种水果的O2发酵阈值为——番石榴:1.68% ~ 6.88%(5 ~ 30°C)、杨桃:5.90% ~ 6.62%(15 ~ 30°C)、荔枝:5.19% ~ 7.77%(5 ~ 25°C);CO2发酵阈值为——番石榴:18.04% ~ 14.97%(5 ~ 30°C)、杨桃:15.10% ~ 15.72%(15 ~ 30°C)、荔枝:13.67% ~ 15.83%(5 ~ 25°C)。
     3.利用人工神经网络理论与方法为番木瓜建立了包含成熟度、温度、CO2浓度和O2浓度的四元呼吸速率预测模型,并与四元二次多项式呼吸速率模型进行了性能分析和对比;研究了番木瓜呼吸行为对四个影响因子的敏感性和响应曲线;结果表明,四元二次多项式方程的预测性能超出了可接受范围,不适合用于构建番木瓜的四元呼吸速率模型,人工神经网络呼吸速率模型具有良好的预测精度和模型效率,可以用于模拟番木瓜呼吸对四元变量综合刺激的响应;番木瓜呼吸速率对四个影响因子的敏感性依次为:温度>成熟度> O2浓度> CO2浓度;四个影响因子对番木瓜呼吸速率均呈非线性影响,呼吸速率与温度、成熟度和O2浓度正相关,与CO2浓度负相关;番木瓜呼吸速率对15 ~ 25°C之间的温度、四成熟至八成熟之间的成熟度、21% ~ 15%区间的氧气浓度以及4%以上的二氧化碳浓度变化较为敏感。
     4.提出了一种面向工程应用的鲜果气调包装设计方法,开发了鲜果气调包装计算机辅助设计软件;提取八个对果蔬气调包装设计有重要影响的关键参数,组成四对关键参数比例,以关键参数比例之间的相互作用机理和相关模型公式为理论指导,提出关键参数比例法气调包装设计方法和分级设计指导原则;在关键参数比例法体系的基础上,构建了操作性强的“5 + 1”鲜果气调包装设计流程;以MATLAB为平台,开发了具有气体浓度动态模拟功能的计算机辅助设计软件。
     5.根据所提出的鲜果气调包装设计方法和流程,为番石榴设计了气调包装技术参数,并对设计效果进行了实验验证;实验结果表明,当包装内外气体交换达到动态平衡时包装内气体浓度值能够保持在设计目标水平附近,被包装番石榴的质量指标变化慢于未包装对照样品,未包装番石榴的保质期为10 ~ 15 d,气调包装番石榴的保质期为30 ~ 35 d,保质期被延长了一倍多。
The yield of fruits and vegetables in China has continuously taken the first place in the world over recent years. There was an annual money loss up to tens of billion yuan in China due to the lack of effective packaging and protection for harvested fruits and vegetables. Because of no use of chemical reagent and high effectiveness, modified atmosphere packaging (MAP) has been increasingly applied to quality keeping for fresh fruits during the postharvest distribution, storage and retail. The effectiveness and performance of MAP heavily depends upon the proper understanding of the physiological properties of packaged commodity and the accurate design of the MAP itself. Although there is already a lot of work relevant to the MAP of fresh produce in China and other countries as well, theoretical and technical bottlenecks still presently exist when applying the MAP technology to engineering projects, including: (1) current models on predicting the respiration rate of fresh produce are complex in form with too many parameters and containing fewer variables, resulting in low prediction accuracy; (2) systemic experimental research is absent with regards to the respiratory responses of some fresh fruit varieties to modified atmospheres; (3) the theory and method of MAP design still remain on the level of scientific research and theory and method oriented to engineering application is lacking.
     Taking guava, carambola, litchi and papaya as case study, the dissertation developed mathematical respiration rate prediction models with simple form and high prediction precision and an ANN respiration rate prediction model that was capable of describing respiration rate as a function of four influencing variables, for fruits with different respiration patterns by introducing the chemical kinetics principle and the artificial neural network (ANN) into the field of respiratory prediction for fresh fruits on the basis of deep understanding and grasp of the essence of respiratory methmolism. Moreover, research work was carried out systemically to examine the effect of temperature and modified-atmospheric conditions on the respiratory characteristics of guava, carambola and litchi, and a new method on how to design the MAP for fresh produce was proposed with emphasis on engineering application. The main contents and research results of the dissertation consist of five parts as described below.
     1. Models that are able to easily incorporate effects of temperature, CO2 concentration and O2 concentration on the respiration rate were developed for guava, carambola and litchi by using the reaction rate equation of the chemical kinetics theory. The reaction orders of O2 and CO2 in the respiration models developed for the three fruits were: 0.46 and -0.30 for guava, 0.91 and -0.24 for carambola, 0.98 and -0.32 for litchi, respectively. As contrasts, respiration models based on the Michaelis-Menten equation of enzyme kinetics with uncompetitive mechanism were also parameterised for these three fruits. The performances of the two types of respiration rate model of the three fruit were validated at two temperatures through use of three statistical indicators. Results showed that the respiration rate models based on the chemical kinetics were of very good prediction accuracy and model efficiency, significantly better than those created on the enzyme kinetics.
     2. The respiratory characteristics of guava, carambola and litchi were studied under the environmental simulations of MAP. Relationships between temperature and the initial respiration rates of each of the three fruits were found in accordance with the Arrhenius equation. The apparent activation energies of the initial respirations for guava, carambola and litchi were 48.09, 54.49 and 70.91 kJ/mol, respectively, and the averages of the temperature coefficients were 2.00, 2.11 and 2.55 for guava, carambola and litchi, respectively. There was a good linear fitness between temperature and the respiratory quotient (RQ) for guava and carambola, and such a linear relationship was unobvious to litchi. The regression equations fitted for the respiratory quotients and temperatures were: guava: RQ = 4.82×10-3T - 0.432 (r = 0.988), carambola: RQ = 5.60×10-3T - 0.609 (r = 0.998), litchi: RQ = 1.00×10-3T - 0.730 (r = 0.606). Increases in temperature can enhance O2 fermentative thresholds of the three fruits. Oxygen fermentative thresholds of respirations of guava, carambola and litchi in the temperature range studied were 1.68% ~ 6.88% (5 ~ 30°C), 5.90% ~ 6.62% (15 ~ 30°C), 5.19% ~ 7.77% (5 ~ 25°C), respectively. Fermentative thresholds of CO2 of the three fruits’respiration were: guava:18.04% ~ 14.97%(5 ~ 30°C)、carambola:15.10% ~ 15.72%(15 ~ 30°C)、litchi:13.67% ~ 15.83%(5 ~ 25°C)。
     3. The theory and method related to ANN technology were adopted to create respiration rate prediction model for papaya, which taken into account four variables that have impacts on papaya’s respiration, namely, maturity degree, temperature, CO2 concentration and O2 concentration. The performance of ANN model was compared with that of a second-order polynomial model. The respiratory behaviours of papaya were analysed for its sensitivity and response to each of the four influencing factor studied. Verification result showed that the prediction performance of the second-order polynomial equation with four variables exceeded the limit of acceptance, and was thus not appropriate for the creation of multivariate respiration rate model for papaya. By contrast, the ANN model yielded a very satisfactory prediction result to predict the respiration rate of papaya subjected to the four influencing factors. The sensitivities of papaya’s respiration rate to the four factors in a descending order follow as: temperature > maturity degree > O2 concentration > CO2 concentration. Nonlinear correlations were observed between each of the four factors and the respiration rate of papaya. The papaya’s respiration rate was directly proportional to temperature, maturity degree and O2 concentration and inversely proportional to CO2 concentration. The respiration rate of papaya was more sensitive to temperatures between 15 ~ 25°C, maturity degrees of 40% ~ 80%, O2 concentrations ranging 21% ~ 15%, and CO2 concentrations higher than 4%.
     4. An approach for MAP design for fresh produce was proposed with emphasis on the engineering application. Based on which, computer-aided software of fresh produce MAP design was developed. Eight key parameters that have vital impacts on the MAP’s performance were extracted and four ratio pairs thereof were obtained. A method named key parameter ratio and a principle called grading-design for the MAP design of fresh produce were suggested in terms of the underlying mechanism of those parameter ratioes and related mathematical formulae. On the basis of the new design system, an operable routine called“5 + 1”procedure to design the MAP package for fresh produce was proposed. A computer-aided software pack desiged with the function of simulating time-varying gas concentrations within MAP was developed on the platform provided by MATLAB.
     5. Dimensional parameters of guava’s MAP were calculated according to the design method and procedure recommended in this dissertation. Experiments were carried out to verify the performance of the designed MAP. Results showed that the gas concentrations within the MAP were maintained around the expected gaseous levels when the gas exchanges across the MAP wall reached to dynamic equilibrium, and the packaged fruit samples senesced much slower than the unpackaged controls indicated by several quality indexes examined. The unpackaged fruit samples were found having shelf-life periods of 10 ~ 15 d, and the packaged ones 30 ~ 35 d, two times more than that of the unpackaged fruit.
引文
1.卢立新.果蔬及其制品包装[M].北京:化学工业出版社,2005
    2.赵维光,袁亚祥.果蔬腐烂一年损失750亿[N].文汇报,2009-09-04(2)
    3. Zhang Z, Rao V R. Analysis of genetic diversity of tropical fruit tree species in Asia– examples of genetic diversity treatment[C]. In: Mal B, Ramamani Y S, Rao V R, eds. Proc. of the 3rd Annual Meeting of Tropical Fruit Genet Resours Project. Chongqing: 2003. 28-32
    4. Pe?a J E, Sharp J L, Wysoki M. Tropical fruit pests and pollinators[M]. New York: CABI Publishing, 2002. 1-3
    5.陈维信,吴振先,苏美霞.热带亚热带果蔬贮运保鲜现状及发展趋势[J].保鲜与加工,2003,18(5):1-3
    6. Yahia E M. Modified and controlled atmosphere for the storage, transportation, and packaging of horticultural commodities[M].Boca Raton: CRC Press, 2009.
    7. Kader A A, Zagory D, Kerbel E L. Modified atmosphere packaging of fruits and vegetables[J]. Crit Rev Food Sci Nutr, 1989, 28(1): 1-30
    8. Robertson G L. Food packaging principles and practice (second edition)[M]. Boca Raton: CRC Press, 2006. 313-327
    9.刘颖,邬志敏,王涛,等.果蔬气调包装设计及贮藏其预测[J].上海理工大学学报,2006,28(6):526-530
    10. Zagory D, Kader A A. Modified atmosphere packaging of fresh produce[J]. Food Technol, 1988, 42(9): 70-74, 76-77
    11. Ahvenainen R. Novel food packaging techniques[M]. Cambridge: Woodhead Publishing Limited, 2003. 337-356
    12. Papajorgji P J, Pardalos P M. Advances in modeling agricultural systems[M]. New York: Springer Science + Buisness Media, 2009. 455-483
    13.卢立新.果蔬气调包装理论研究进展[J].农业工程学报,2005,21(7):175-180
    14.王相友,李霞,王娟,等.气调包装下果蔬呼吸速率研究进展[J].农业机械学报,2008,39(8):94-100,78
    15. Fonseca S C, Oliveira F A R, Brecht J K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review[J]. J Food Eng, 2002, 52: 99-119
    16.王文生,杨少桧.果品蔬菜保鲜包装应用技术[M].北京:印刷工业出版社,2008.3-4
    17. Ooraikul B, Stiles M E. Modified atmosphere packaging of food[M]. Chichester: Ellis Horwood Limited, 1991. 169-245
    18.沈莲清,黄光荣,沈报恩.果蔬呼吸反应动力学研究进展及其在MAP保鲜中的应用[J].浙江大学学报(农业与生命科学版),2005,31(6):671-676
    19. Cliffe-Byrnes V, O’Beirne D. Effects of chlorine treatment and packaging on the quality and shelf-life of modified atmosphere (MA) packaged coleslaw mix[J]. Food Control, 2005, 16: 707-716
    20.余伟,贾晓辉,王文辉,等.自发气调包装对3个西洋梨品种保鲜效果的研究[J].浙江农业科学,2009,1:117-119
    21.孟成民,徐步前.自发气调包装及乙烯吸收剂对樱桃番茄贮藏品质的影响[J].保鲜与加工,2005,26(1):31-33
    22. Ravindra M R, Goswami T K. Modelling the respiration rate of green mature mango under aerobic conditions[J]. Biosystems Eng, 2008, 99: 239-248
    23.卢立新.果蔬气调保鲜包装数学模型[J].机电信息,2005,(6):25-27
    24.郭静成.植物生物化学知识[M].石家庄:河北人民出版社,1981.140-176
    25. Lee D S, Haggar P E, Lee J, et al. Model for fresh produce respiration in modified atmospheres based on principles of enzyme kinetics[J]. J Food Sci, 1991, 56: 1580-1585
    26. Chevillotte P. Relation between the reaction cytochrome oxidase-oxygen and oxygen uptake in cells in vivo[J]. J Theor Biol, 1973, 39: 277-295
    27.Л.В.梅特利茨基著.水果和蔬菜的生物化学基础[M].刘慕春等译.北京:科学出版社,1988.276-284
    28. Kerbel E L, Kader A A, Romani R J. Respiratory and glycolytic response of suspension-cultured‘Passe Crassane’pear fruit cells to elevated CO2 concentrations[J]. J ASHS, 1990, 115: 111-114
    29. Mathooko F M. Regulation of respiratory metabolism in fruits and vegetables by carbon dioxide[J]. Postharvest Biol Technol, 1996, 9: 247-264
    30. Peppelenbos H W, van’t Leven J. Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables[J]. Postharvest Biol Technol, 1996, 7: 27-40
    31. Makino Y, Iwasaki K, Hirata T. Oxygen consumption model for fresh produce on the basis of adsorption theory[J]. Trans ASAE, 1996, 39: 1067-1073
    32. Henig Y S, Gilbert S G. Computer analysis of the variables affecting respiration and quality of produce packaged in polymeric films[J]. J Food Sci, 1975, 40: 1033-1035
    33. Fishman S, Rodov V, Ben-Yehoshua S. Mathematical model for perforation effect on oxygen and water vapour dynamics in modified atmosphere package[J]. J Food Sci, 1996,
    61(5): 956-961
    34. Hayakawa K, Henig Y S, Gilbrt S G. Formulae for prediction gas exchange of fresh produce in polymeric film package[J]. J Food Sci, 1975, 40(2): 186-191
    35. Rocculi P, Del Nobile M A, Romani S, et al. Use of a simple mathematical model to evaluate dipping and MAP effects on aerobic respiration of minimally processed apples[J]. J Food Eng, 2006, 76: 334-340
    36. Nobile M A D, Licciardello F, Scrocco C, et al. Design of plastic packages for minimally processed fruits[J]. J Food Eng, 2007, 79: 217-224
    37. Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O. Modeling changes of headspace gasconcentrations to describe the respiration of fresh-cut melon under low or superatmospheric oxygen atmospheres[J]. J Food Eng, 2008, 85: 401-409
    38. Reid M S, Pratt H K. Ethylene and the respiration climacteric[J]. Nature, 1970, 226: 976-977
    39. Watada A E, Herner R C, Kader A A, et al. Terminology for the description of developmental stages of horticultural crops[J]. HortScience, 1984, 19(1): 20-21
    40. Bruinsma J, Paull R E. Respiration during postharvest development of soursop fruit, Annona muricata L[J]. Plant Physiol, 1984, 76(1): 131-138
    41. Yang C C, Chinnan M S. Modeling the effect of O2 and CO2 in respiration and quality of stored tomatoes[J]. Trans ASAE, 1988, 31(3): 920-925
    42. Ravindra M R, Chattopadhyay P K. Optimisation of osmotic preconcentration and fluidized bed drying to produce dehydrated quick-cooking potato cubes[J]. J Food Eng, 2000, 44(1): 5-11
    43.陈乃光.果蔬采后呼吸反应动力学的研究[J].食品科学,1988,9(5):1-4
    44. Lammertyn J, Franck C, Verlinden B E, et al. Comparative study of the O2, CO2 and temperature effect on respiration between‘Conference’pear cell protoplasts in suspension and intact pears[J]. J Exp Bot, 2001, 52: 1769-1777
    45. Mahajan P V, Goswami T K. Enzyme kinetics based modelling of respiration rate for apple[J]. J Agric Eng Res, 2001, 79: 399-406
    46. Fonseca S C, Oliveira F A R, Frias J M, et al. Modelling respiration rate of shredded Galega kale for development of modified atmosphere packaging[J]. J Food Eng, 2002, 54: 299-307
    47. Salvador M L, Jaime P, Oria. Modeling of O2 and CO2 exchange dynamics in modified atmosphere packaging of burlat cherries[J]. J Food Sci, 2002, 67: 231-235
    48. Petracek P D, Joles D W, Shirazi A, et al. Modified atmosphere packaging of sweet cherry (Prunus avium L, ev‘Sams’) fruit: metabolic responses to oxygen, carbon dioxide, and temperatue[J]. Postharvest Biol Technol, 2002, 24: 259-270
    49. Song Y, Vorsa N, Yam K L. Modeling respiration-transpiration in a modified atmosphere packaging system containing blueberry[J]. J Food Eng, 2002, 53: 103-109
    50. Charles F, Sanchez J, Gontard N. Active modified atmosphere packaging of fresh fruits and vegetables: modeling with tomatoes and oxygen absorber[J]. J Food Sci, 2003, 68: 1736-1742
    51. Charles F, Sanchez J, Gontard N. Modeling of active modified atmosphere packaging of endives exposed to several postharvest temperature[J]. J Food Sci, 2005, 70: E443-E449
    52. Torrieri E, Gavella S, Masi P. Modelling the respiration rate of fresh-cut Annurca apples to develop modified atmosphere packaging[J]. Int J Food Sci Technol, 2009, 44: 890-899
    53. Iqbal T, Rodrigues F A S, Mahajan P V, et al. Mathematical modeling of the influence of temperature and gas composition on the respiration rate of shredded carrots[J]. J Food eng, 2009, 91: 325-332
    54. Rai D R, Paul S. Transient state in-pack respiration rates of mushroom under modified atmosphere packaging based on enzyme kinetics[J]. Biosystems Eng, 2007, 98: 319-326
    55.刘迎雪.运输工况对樱桃番茄呼吸特性和气调包装质量的影响[D]:[硕士学位论文].无锡:江南大学包装工程系,2007
    56.胡红艳.微孔膜果蔬气调包装机理及其应用研究[D]:[硕士学位论文].无锡:江南大学包装工程系,2007
    57.李铁华.硅窗气调包装延长茶树菇贮藏期的工艺及机理研究[D]:[博士学位论文].无锡:江南大学食品学院,2007
    58. Li T, Zhang M. Effects of modified atmosphere packaging with various sizes of silicon gum film window on the storage of agrocybe chaxingu huang and the modelling of its respiration rate[J]. Packaging Technol Sci, 2008, 21: 13-23
    59.刘颖,李云飞,王如竹,等.基于Michaelis-Menten型呼吸速率模型的实验研究[J].上海交通大学学报,2004,38(7):1170-1173
    60. Liu Y, Li Y, Wang R, et al. Model of gas exchange dynamics for modified-atmosphere package containing fresh produce[J]. J Southeast Univ (English Edition), 2005, 21(3): 314-318
    61.雷桥,周颖越,徐文达.环境因素对自然气调下双孢蘑菇呼吸速率影响的初步研究[J].农业工程学报,2005,21(7):153-157
    62.唐志鹏,黄晓蓉,陆建勋,等.罗汉果果实采后呼吸生理特性的研究[J].广西农业生物科学,2007,26(2):165-167
    63. Bhande S D, Ravindra M R, Goswami T K. Respiration rate of banana fruit under aerobic conditions at different storage temperatures[J]. J Food Eng, 2008, 87: 116-123
    64. Dash K K, Ravindra M R, Goswami T K. Modeling of respiration rate of sapota fruit under aerobic conditions[J]. J Food Process Eng, 2009, 32: 528-543
    65.车东.鲜切果蔬产品气调包装工艺及质量评价[D]:[硕士学位论文].无锡:江南大学包装工程系,2007
    66.肖功年.两类气调包装延长草莓和平菇货架保鲜期的研究[D]:[博士学位论文].无锡:江南大学食品学院,2003
    67. Zhu M, Chu C L, Wang S L, et al. Influence of oxygen, carbon dioxide and degree of cutting on the respiration rate of rutabaga[J]. J Food Sci, 2001, 66: 30-37
    68.李艳.番木瓜气调保鲜技术研究[D]:[硕士学位论文].无锡:江南大学包装工程系,2007
    69.卢立新,陶瑛.青豌豆呼吸速率的测定与模型表征[J].食品与生物技术学报,2006,25(2):33-36
    70. Lammertyn J, Scheerlinck N, Jancsók P, et al. A respiration-diffusion model for‘Conference’pears I: model development and validation[J]. Postharvest Biol Technol, 2003, 30: 29-42
    71.胡红艳,卢立新.微孔膜果蔬气调包装设计方法研究[J].包装工程,2008,29:171-173
    72. Ke D, Mateos M, Kader A A. Regulation of fermentative metabolism in fruits and vegetables by controlled atmospheres[C]. In: Proc of the 6th Int Controlled Atmos Res Conf. New York: Cornell University, 1993. 63-77
    73. Joles D W, Cameron A C, Shirazi A, et al. Modified-atmosphere packaging of‘Heritage’red raspberry fruit: respiratory response to reduced oxygen, enhanced carbon dioxide and temperature[J]. J ASHS, 1994, 119: 540-545
    74. Lee D S, Song Y, Yam K L. Application of an enzyme kinetics based respiration model to permeable system experiment of fresh produce[J]. J Food Eng, 1996, 27: 297-310
    75. Lippert F, Blanke M M. Effect of mechanical harvest and timing of 1-MCP application on respiration and fruit quality of European plums Prunus domestica L[J]. Postharvest Biol Technol, 2004, 34: 305-311
    76. Lakakul R, Beaudry R M, Hernandez R J. Modeling respiration of apple slices in modified-atmosphere packages[J]. J Food Sci, 1999, 64: 105-110
    77. Bower J H, Jobling J J, Patterson B D, et al. A method for measuring the respiration rate and respiratory quotient of detached plant tissues[J]. Postharvest Biol Technol, 1998, 13: 263-270
    78. Bender R J, Brecht J K, Sargent S A, et al. Mango tolerance to reduced oxygen levels in controlled atmosphere storage[J]. J ASHS, 2000, 125(6): 707-713
    79. Gasser F, Eppler T, Naunheim W, et al. Control of the critical oxygen level during dynamic CA storage of apples by monitoring respiration as well as chlorophyll fluorescence[J]. Acta Hort, 2008, 796: 69-76
    80. Valle-Guadarrama S, Saucedo-Veloz C, Pe?a-Valdivia C, et al. Aerobic-Anaerobicmetabolic transition in‘Hass’avocado fruits[J]. Food Sci Technol Int, 2004, 10(6): 391-398
    81.张长峰.气调包装条件下果蔬呼吸强度模型的研究进展[J].农业工程学报,2004,20(3):281-285
    82. Lamikanra O. Fresh-cut fruits and vegetables[M]. Boca Raton: CRC Press, 2002. 306-333
    83. Wiley R C. Minimally processed refrigerated fruits & vegetables[M]. London: Chapman & Hall, 1994. 183-224
    84. Jurin V, Karel M. Studies on control of respiration of Mclntosh apples by packaging methods[J]. Food Technol, 1963, 17(6): 104-108
    85. Zagory D, Mannapperuma J D, Kader A A, et al. Use of computer model in the design of modified atmosphere packages for fresh fruits and vegetables[C]. In: Fellman J K, ed. Proc of the 5th Int Controlled Atmos Res Conf (Vol.1). Wenatchee, 1989. 479-486
    86. Mannapperuma J D, Zagory D, Singh R P, et al. Design of polymeric packages for modified atmosphere storage of fresh produce[C]. In: Fellman J K, ed. Proc of the 5th Int Controlled Atmos Res Conf (Vol.2). Wenatchee: 1989. 225-233
    87. Deily K, Rizvi S. Optimization of parameters for packaging of fresh peaches in polymeric films[J]. J Food Process Eng, 1981, 5: 23-41
    88. Cameron A. Boylan-Pett W, Lee J. Design of modified atmosphere packaging systems: modeling oxygen concentration within sealed packages of tomato fruits[J]. J Food Sci, 1989, 54(6): 1413-1416, 1421
    89. Talasila P, Chau K, Brecht J. Design of rigid modified atmosphere packages for fresh fruits and vegetables[J]. J Food Sci, 1995, 60(4): 758-769
    90. Del-Valle V, Hernández-Mu?oz P, CataláR, et al. Optimization of an equilibrium modified atmosphere packaging (EMAP) for minimally processed mandarin segments[J]. J Food Eng, 2009, 91: 474-481
    91. Mahajan P V, Oliveira F A R, Montanez J C, et al. Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce[J]. Innov Food Sci Emerging Technol, 2007, 8: 84-92
    92.崔爽.果蔬气调包装模型与仿真[J].重庆工商大学学报(自然科学版).2007,24(2):200-202
    93.钟雪君.塑料膜打孔装置[P].中国专利,CN200520056940.9.2006-01-02
    94.曹菲,张蕾.微孔薄膜在果蔬气调包装中的应用及发展前景[J].中国包装,2004,24(2):107-109
    95. Lee D S, Renault P. Using pinholes as tools to attain optimum modified atmospheres in packages of fresh produce[J]. Packaging Technol Sci, 1998, 11: 119-130
    96.钟思强,黄树长.番石榴的营养价值及其高效栽培技术[J].中国南方果树,2008,37(1):41-43
    97. Ruehle G D. The common guava-a neglected fruit with a promising future[J]. Econ Bot, 1948, 2: 306-325
    98. Jacomino A P, Kluge R A, Sarantópoulos C I G L, et al. Evaluation of plastic packages for guava refrigerated preservation[J]. Packaging Technol Sci, 2001, 14: 11-19
    99. Pal P K, Singh S P, Singh C P, et al. Response of guava fruit (Psidium guajava L cv Lucknow-49) to controlled atmosphere storage[J]. Acta Hort, 2007, 735: 547-554
    100.李金雨,黄维南.杨桃果实采后生理研究(综述)[J].亚热带植物通讯,1995,24(2):54-58
    101.潘永贵,段琪,陈维信.壳聚糖涂膜处理对鲜切杨桃的保鲜效果[J].热带作物学报,2008,29(2):145-149
    102.郭飞燕,史载锋,杨玲,等.壳聚糖涂膜保鲜杨桃研究[J].安徽农业科学,2009,37(2):813-815
    103.海金萍,柯斐.壳聚糖涂膜保鲜杨桃的研究[J].广东化工,2009,36(4):153-156
    104. Teixeira G H A, Durigan J F, Alves R E, et al. Use of modified atmosphere to extend shelf life of fresh-cut carambola (Averrhoa carambola L cv Fwang Tung)[J]. Postharvest Biol Technol, 2007, 44: 80-85
    105. Teixeira G H A, Durigan J F, Alves R E, et al. Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres[J]. Postharvest Biol Technol, 2008, 48: 415-421
    106. Holcroft D M, Mitcham E J. Postharvest physiology and handling of litchi (Litchi chinensis Sonn)[J]. Postharvest Biol Technol, 1996, 9: 265-281
    107.赵学敏.白话本草纲目拾遗[M].北京:学苑出版社,1994.216-217
    108. Wu Y, Yi G, Zhou B, et al. The advancement of research on litchi and longan germplasm resources in China[J]. Scientia Hort, 2007, 114: 143-150
    109.陈维信,吴振先,苏美霞,等.荔枝常温下泡沫箱加冰保鲜研究[J].广东农业科学,2000,(3):27-28
    110. Jiang Y M, Fu J R. Postharvest browning of litchi fruit by water loss and its preventionby controlled atmosphere storage at high relative humidity[J]. Lebensmittel Wissenschaf & Technologie, 1999, 32: 278-283
    111. Mahajan P V, Goswami T K. Extended storage life of litchi fruit using controlled atmosphere and low temperature[J]. J Food Process Pres, 2004, 28: 388-403
    112. Tian S P, Li B Q, Yong X. Effects of O2 and CO2 concentrations on physiology and quality of litchi fruit in storage[J]. Food Chem, 2005, 91: 659-663
    113.吴遵耀,郭林榕,熊月明.番木瓜生产现状及发展对策[J].福建农业科技,2007,(3):88-90
    114.杨培生,钟思现,杜中军,等.我国番木瓜产业发展现状和主要问题[J].中国热带农业,2007,(4):8-9
    115.陈维信.番木瓜贮藏保鲜技术[J].农产品加工,2007,(3):30-31
    116.李艳,胡长鹰,王志伟.气调保鲜包装初始气体浓度配比对番木瓜品质的影响[J].食品科学,2007,28(2):484-490
    117. González-Aguilar G A, Buta J G, Wang C Y. Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya‘Sunrise’[J]. Postharvest Biol Technol, 2003, 28: 361-370
    118. Chonhenchob V, Singh S P. Packaging performance comparison for distribution and export of papaya fruit[J]. Packaging Technol Sci, 2005, 18: 125-131
    1.金松寿.化学动力学[M].上海:科技卫生出版社,1959.1-3
    1.ЕИ伊列敏著.化学动力学基础[M].陈天明等译.福州:福建科学技术出版社,1985.1-11
    2.韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987.3-8,63-112
    3. Toledo R T. Fundamentals of food process engineering (third edition)[M]. New York: Springer Science+Business Media, 2007. 285-300
    4.王琪.化学动力学导论[M].长春:吉林人民出版社,1982.4-25
    5. Helrich C S. Modern thermodynamics with statistical mechanics[M]. Heidelberg: Springer, 2009. 299-306
    6. Purich D L, Allison R D. Handbook of biochemical kinetics[M]. Orlando: Academic Press, 2000. 129-142
    7. Gross K. The commercial storage of fruits, vegetables, and florist and nursery stocks[DB/OL]. http://www.ba.ars.usda.gov/hb66/019respiration.pdf, 2009-01-09
    8.郭静成.植物生物化学知识[M].石家庄:河北人民出版社,1981.140-176
    9. Weichmann J. Postharvest physiology of vegetables[M]. New York:Marcel Dekker,1987.25-43
    10. Ooraikul B, Stiles M E. Modified atmosphere packaging of food[M]. Chichester: Ellis Horwood Limited, 1991.181-193
    11.叶创兴,周昌清,王金发.生命科学基础教程[DB/OL].http://jpkc.sysu.edu.cn/2006/ xdsmkx/netcourse/ch1/5-3.htm,2009-9-29
    12.卢立新.果蔬及其制品包装[M].北京:化学工业出版社,2005.22-25
    13. Rooney M L. Active food packaging[M]. Glasgow: Blackie Academic & Profesional, 1995. 55-55
    14. Papajorgji P J, Pardalos P M. Advances in modeling agricultural systems[M]. New York: Springer Science+Buisness, 2009. 463-463
    15. Reyes M U, Paull R E. Effect of storage temperature and ethylene treatment on Guava (Psidium guajava L) fruit ripening[J]. Postharvest Biol Technol, 1995, 6: 357-365
    16. Ali Z M, Chin L H, Marimuthu M, et al. Low temperature storage and modified atmosphere packaging of carambola fruit and their effects on ripening related texture changes, wall modification and chilling injury symptoms[J]. Postharvest Biol Technol, 2004, 33: 181-192
    17. Ravindra M R, Goswami T K. Modelling the respiration rate of green mature mango under aerobic conditions[J]. Biosystems Eng, 2008, 99: 239-248
    18. Fonseca S C, Oliveira F A R, Brecht J K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review[J]. J Food Eng, 2002, 52: 99-119
    19. Bhande S D, Ravindra M R, Goswami T K. Respiration rate of banana fruit under aerobic condtions at different storage temperatures[J]. J Food Eng, 2008, 87: 116-123
    20. Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments[J]. Geoderma, 1997, 81: 153-225
    21.张宇镭,党琰,贺平安.利用Pearson相关系数定量分析生物亲缘关系[J].计算机工程与应用,2005,33:79-82,99
    22. Dash K K, Ravindra M R, Goswami T K. Modeling of respiration rate of sapota fruit under aerobic conditions[J]. J Food Process Eng, 2009, 32: 528-543
    23. Mahayothee B, Udomkun P, Nagle M, et al. Effects of pretreatments on colour alterations of litchi during drying and storage[J]. Eur Food Res Technol, 2009, 229: 329-337
    24.陈维信,吴振先,苏美霞,等.荔枝常温下泡沫箱加冰保鲜研究[J].广东农业科学,2000,3:27-28
    25. Buluk, R E E, Babiker F E, Tinay A H E. Changes in sugar, ash and minerals in four guava cultivars during ripening[J]. Plant Food Hum Nutr, 1996, 49: 147-154
    26. Priyadarshan P M, Jain S M. Breeding plantation tree crops: tropical species[M]. New York: Springer Science+Business Media, 2009. 83-119
    27. Prado R M, Natale W, Correa, M C M, et al. Liming and postharvest quality of carambola fruits[J]. Brazilian Arch Biol Technol, 2005, 48: 689-696
    28. Holcroft D M, Mitcham E J. Postharvest physiology and handling of litchi (Litchi chinensis Sonn) [J]. Postharvest Biol Technol, 1996, 265-281
    29. Kader A A. Guava: recommendations for maintaining postharvest quality[DB/OL]. http://postharvest.ucdavis.edu/Produce/ProduceFacts/Fruit/Guava.shtml, 2009-2-10
    30. O’Hare T J. Postharvest physiology and storage of carambola (starfruit): a review[J]. Postharvest Biol Technol, 1993, 2: 257-267
    31. Joles D W, Cameron A C, Shirazi A, et al. Modified atmosphere packaging of‘Heritage’red raspberry fruit: respiratory response to reduced oxygen, enhanced carbon dioxide and temperature[J]. J ASHS, 1994, 119: 540-545
    32. Cameron A C, Beaudry R M, Banks N H, et al. Modified atmosphere packaging of blueberry fruit: modeling respiration and package oxygen partial pressures as a function of temperature[J]. J ASHS, 1994, 119: 534-539
    33. Smyth A B, Song J, Cameron A C. Modified atmosphere packaged cut iceberg lettuce: effects of temperatures and O2 partial pressure on respiration and quality[J]. J Agric Food Chem, 1998, 46: 4556-4562
    34. Lakakul R, Beaudry R M, Hernandez R J. Modeling respiration of apple slices in modified-atmosphere packages[J]. J Food Sci, 1999, 64: 105-110
    35. Banks N H, Hewett E W, Rajapakse N C, et al. Modeling fruit response to modified atmospheres[C]. In: Fllman J K, ed. Proc of the 5th Int Controlled Atmos Res Conf (Vol.1). Washington: Wenatchee, 1989. 359-366
    36. Fishman S, Rodov V, Ben-Yehoshua S. Mathematical model for perforation effect on oxygen and water vapor dynamics in modified-atmosphere packages[J]. J Food Sci, 1996, 61: 956-961
    37. Fonseca S C, Oliveira F A R, Brecht J K. Modelling respiration rate of fresh fruits andvegetables for modified atmosphere packages: a review[J]. J Food Eng, 2002, 52: 99-119
    38. Peppelenbos H W, Leven J. Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables[J]. Postharvest Biol Technol, 1996, 7: 27-40
    39. Purich D L, Allison R D. Handbook of biochemical kinetics[M]. London: Academic Press, 2000. 247-249
    1. Paull R E, Chen C C. Guava: the commercial storage of fruits, vegetables, and florist and nursery stocks[DB/OL]. http://www.ba.ars.usda.gov/hb66/074guava.pdf, 2009-01-09
    2.佚名.番石榴采后保鲜技术要点[J].保鲜与加工,2001,1(5):38-38
    3. Bron I U, Ribeiro R V, Cavalini F C, et al. Temperature-related changes in respiration and Q10 coefficient of guava[J]. Scientia Agricola, 2005, 62(5): 458-463
    4. Kader A A, A summary of CA requirements and recommendations for fruits other than apples and pears[C]. In: Oosterhaven J, Peppelenbos H W, eds. Proc of the 8th Int Controlled Atmos Res Conf (Vol.3). Rotterdam Netherlands: 2003. 737-740
    5. Pérez-Tello G O, Silva-Espinoza B A, Vargas-Arispuro I, et al. Effect of temperature on enzymatic and physiological factors related to chilling injury in carambola fruit (Averrhoa carambola L)[J]. Biochem Biophys Res Commun, 2001, 287: 846-851
    6. Siller J, Muy M, Araiza E, et al. Postharvest changes of carambola fruit (Averrhoa carambola L) picked at different ripening stages[J]. HortScience, 1995, 30: 814-814 (Abstract)
    7. Mitcham E J, McDonald R E. Characterization of the ripening of carambola (averrhoa carambola L) fruit[J]. Proc Fla State Hort Soc, 1991, 104: 104-108
    8. Paull R E, Chen C C. Carambola: the commercial storage of fruits, vegetables, and florist and nursery stocks[DB/OL]. http://www.ba.ars.usda.gov/hb66/045carambola.pdf, 2009-01-09
    9. Paull R E, Chen C C, Chen N J. Litchi: the commercial storage of fruits, vegetables, and florist and nursery stocks[DB/OL]. http://www.ba.ars.usda.gov/hb66/085litchi.pdf, 2009-01-09
    10.陈芳,李月标,陈绵达.荔枝果实在贮藏中乙烯的产生和控制[J].园艺学报,1986,13(3):151-155
    11. Parry R T. Principle and applications of modified atmosphere packaging of foods[M]. Glasgow: Blackie Academic & Professional, 1993. 114-133
    12.江英武. Arrhenius方程应用仍须澄清的问题[J].含能材料,2009,17 (3): IX-X
    13. Ooraikul B, Stiles M E. Modified atmosphere packaging of food[M]. Chichester: Ellis Horwood Limited, 1991. 169-227
    14.陈维信,吴振先,苏美霞,等.荔枝常温下泡沫箱加冰保鲜研究[J].广东农业科学,2000,3:27-28
    15.叶其蓝,林月芳,曾纪瑶,等.杨桃贮藏与加工工艺研究进展[J].保鲜与加工,2009,51:1-4
    16.陈文生,高松峰,林立红,等.珍珠番石榴在粤东地区的表现及丰产栽碚[J].广西热带农业,2007,109:16-17
    17. Wilson C L. Intelligent and active packaging for fruits and vegetables[M]. Boca Raton: CRC Press, 2007. 40-41
    18. Stiles W. Principles of plant physiology[M]. Ocala: Atlantic Publishing, 1995. 133-139
    19. Lambers H, Chapin(III) F S, Pons T L. Plant physiological ecology(second edition) [M].New York: Springer Science+Business Media, 2008. 127-129
    20. Gran C D, Beaudry R M. Determination of the low oxygen limit of several commercial apple cultivars by respiratory quotient breakpoint[J]. Postharvest Biol Technol, 1993, 3: 259-267
    21. Yearsley C W, Banks N H, Ganesh S, et al. Determination of lower oxygen limits for apple fruit[J]. Postharvest Biol Technol, 1996, 8: 95-109
    22. Petracek P D, Joles D W, Shirazi A, et al. Modified atmosphere packaging of sweet cherry (Prunus avium L, ev.‘Sams’) fruit: metabolic responses to oxygen carbon dioxide, and temperature[J]. Postharvest Biol Technol, 2002, 24: 259-270
    23.李铁华,张慜.硅窗气调包装保鲜贮藏茶树菇呼吸特性与贮藏品质的研究[J].食品与机械,2007,23(1):39-43
    24. Mateos M, Ke D, Cantwell M, et al. Phenolic metabolism and ethanolic fermentation of intact and cut lettuce[J]. Postharvest Biol Technol, 1993, 3: 225-233
    25. Ke D, Yahia E, Hess B, et al. Regulation of fermentative metabolism in avocado fruit under oxygen and carbon dioxide stresses[J]. J ASHS, 1995, 120(3): 481-490
    26. Prasad N B L, Azeenoddin G. Characteristics and composition of guava (Psidium guajava L) seed and oil[J]. J AOCS, 1994, 71(4): 457-458
    27.卢立新.果蔬及其制品包装[M].北京:化学工业出版社,2005.22-26
    28. Narain N, Bora P S, Holschuh H J, et al. Physical and chemical composition of carambola fruit (Averrhoa carambola L) at three stages of maturity[J]. Ciencia Tecnología Alimentaria, 2001, 3(3): 144-148
    29. Berry S K. The composition of the oil of starfruit (Averrhoa carambola, Linn) seeds[J]. J AOCS, 1978, 55(3): 340-341
    30.王育林,彭永宏.热空气处理对荔枝生理特性和贮藏效果的影响[J].应用与环境生物学报,2003,9(2):137-140
    31. Saltveit M E. Respiratory metabolism: the commercial storage of fruits, vegetables, and florist and nursery stocks[DB/OL]. http://www.ba.ars.usda.gov/hb66/019respiration.pdf, 2009-01-09
    32. Tang P S. On the respiratory quotient of lupinus albus as a function o temperature[J]. J Gen Physiol, 1932, 15(5): 561-569
    33. Nakamura N, Rao D V S, Shiina T, et al. Respiration properties of tree-ripe mango under CA condition[J]. Japan Agric Res Q, 2004, 38(4): 221-226
    34. Lippert F, Blanke M M. Effect of mechanical harvest and timing of 1-MCP application on respiration and fruit quality of European plums Prunus domestica L[J]. Postharvest Biol Technol, 2004, 34: 305-311
    35. Bhande S D, Ravindra M R, Goswami T K. Respiration rate of banana fruit under aerobic conditions at different storage temperatures[J]. J Food Eng, 2008, 87: 116-123
    36.雷桥,徐文达.青花菜呼吸速率和呼吸商的研究[J].上海农业学报,2004,20(1):68-71
    37. Zhang M, Tao Q, Huan Y J, et al. Effect of temperature control and high humidity on the preservation of JUFENG grapes[J]. Int Agrophysics, 2002, 16: 277-281
    38.李瑾瑜,黄文书,古丽娜孜,等.贮温对番茄呼吸代谢的影响[J].新疆农业科学,2008,45(4):633-636
    39. Papajorgji P J, Pardalos P M. Advances in modeling agricultural systems[M]. New York: Springer Science+Buisness Media, 2009. 455-483
    40. Nunes M C N, Emond J P, Brecht J K. Brief deviation from set point temperatures during normal airport handling operations negatively affect the quality of papaya (Carica papaya) fruit[J]. Postharvest Biol Technol, 2006, 41: 328-340
    41. Ke D, Mila M, Kader A A. Regulation of fermentative metabolism in fruits and vegetables by controlled atmospheres[C]. In: Ke D, Mateos M, Kader A A, eds. Proc of the 6th Int Controlled Atmos Res Conf. New York: Cornell University, 1993. 63-77
    42. Yearsley C W, Banks N H, Ganesh S. Temperature effects on the internal lower oxygen limits of apple fruit[J]. Postharvest Biol Technol, 1997, 11:73-78
    43. Valle-Guadarrama S, Saucedo-Veloz C, Pena-Valdivia C B, et al. Aerobic-anaerobic metabolic transition in‘Hass’avocado fruits[J]. Food Sci Technol Int, 2004, 10(6): 391-398
    44. Ke D, Goldstein L, O’Mahony M, et al. Effects of short-term exposure to low O2 and high CO2 atmosphere on quality attributes of strawberries[J]. J Food Sci, 1991, 56(1): 50-54
    45. Fonseca J M, Rushing J W, Testin R F. The anaerobic compensation point for fresh-cut watermelon and implications for postprocess handling[J]. HortScience, 2004, 39(3): 562-566
    46. Bender R J, Brecht J K, Sargent S A, et al. Mango tolerance to reduced oxygen levels in controlled atmosphere storage[J]. J ASHS, 2000, 125(6): 707-713
    47. Ke D, Kader A A. External and internal factors influence fruit tolerance to low-oxygen atmosphere[J]. J ASHS, 1992, 117(6): 913-918
    48. Ahvenainen R. Novel Food Packaging Techniques[M]. Cambridge: Woodhead Publishing,2003. 337-346
    49.许晓春,林朝朋,陈维信.荔枝果皮褐变机理及保鲜技术研究进展[J].韶关学院学报,2005,26(3):97-100
    50. Daszie B K, Banks N H, Cleland D J, et al. Role of skin resistance to gas diffusion in the response of fruits to modified atmospheres[J]. Acta Hort, 1993, 343: 129-134
    51. Or E, Baybik J, Sakda A, et al. Fermentative metabolism in grape berries: isolation and characterization of pyruvate decarboxylase cDNA and analysis of its expression throughout berry development[J]. Plant Sci, 2000, 156: 151-158
    52. Beaudry R M. Effect of carbon dioxide partial pressure on blueberry fruit respiration and respiratory quotient[J]. Postharvest Biol Technol, 1993, 3: 249-258
    53. Beaudry R M, Cameron A C, Shirazi A, et al. Modified atmosphere packaging of blueberry fruit: effect of temperature on package O2 and CO2[J]. J ASHS, 1992, 117: 436-441
    54. Joles D W, Cameron A C, Shirazi A, et al. Modified-atmosphere packaging of‘Heritage’red raspberry fruit: respiratory response to reduced oxygen, enhanced carbon dioxide, and temperature[J]. J ASHS, 1994, 119: 540-545
    55. Maneerat C, Tongta A, Kanlayanarat S, et al. A transient model to predict O2 and CO2 concentrations in modified-atmosphere packaging of bananas at various temperatures[C]. In: Saltveit M E, ed. Proc of the 7th Int Controlled Atmos Res Conf (Vol.4). Davis: University of California, 1997. 191-197
    56. Lakakul R, Beaudry R M, Hernandez R J. Modeling respiration of apple slices in modified-atmosphere packages[J]. J Food Sci, 1999, 64: 105-110
    1. Zagory D, Kader A A. Modified atmosphere packaging of fresh produce[J]. Food Technol, 1988, 42(9): 70-74, 76-77
    2. Fonseca S C, Oliveira F A R, Brecht J K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review[J]. J Food Eng, 2002, 52: 99-119
    3. Paull R E, Chen W. Minimal processing of papaya (Carica papaya L.) and the physiology of halved fruit[J]. Postharvest Biol Technol, 1997, 12: 93-99
    4. Ravindra M R, Goswami T K. Modelling the respiration rate of green mature mango under aerobic condition[J]. Biosystems Eng, 2008, 99: 239-248
    5. Cherian R P, Smith L N, Midha P S. A neural network approach for selection of powdermetallurgy materials and process parameters[J]. Artif Intell Eng, 2000, 14(1): 39-44
    6.韩力群.人工神经网络教程[M].北京:北京邮局大学出版社,2006.14-83
    7. [美]Ham F M, Kostanic I,著.叶世伟,王海娟,译.神经计算原理[M].北京:机械工业出版社2007. 1-70
    8.闻新,周露,王丹力,等.MATLAB神经网络应用设计[M].北京:科学出版社,2002.205-243
    9.吴仕勇.基于数值计算方法的BP神经网络及遗传算法的优化研究[D]:[硕士学位论文].昆明:云南师范大学计算机科学与信息技术学院,2006
    10.董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2005.64-120
    11.阮俊虎.遗传神经网络[DB/OL].河北工程大学大学管理科学与工程, http://www.sciencenet.cn/m/Print.aspx?id=219287,2009-10-16
    12.闻新,周露,李翔,等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.258-284
    13. Watada A E, Herner R C, Kader A A, et al. Terminology for the description of developmental stages of horticultural crops[J]. HortScience, 1984, 19(1): 20-21
    14. [苏]Л.В.梅特利茨基,著.刘慕春,唐崇钦,贾志旺,译.水果和蔬菜的生物化学基础[M].北京:科学出版社,1988.258-275
    15. Zhou L, Paull R E, Chen N J. Papaya: the commercial storage of fruits, vegetables, and florist and nursery stocks[DB/OL]. http://www.ba.ars.usda.gov/hb66/101papaya.pdf, 2009-01-09
    16. Bron I U, Ribeiro R V, Azzolini M, et al. Chlorophyll fluorescence as a tool to evaluate the ripeness of‘Golden’papaya fruit[J]. Postharvest Biol Technol, 2004, 33: 163-173
    17. Kader A A. Papaya: recommendations for maintaining postharvest quality[DB/OL]. http://postharvest.ucdavis.edu/Produce/ProduceFacts/Fruit/papayas html, 2009-01-09
    18. Almora K, Pino J A, Hernández M, et al. Evaluation of volatiles from ripening papaya (Carica papaya L., var. Maradol roja)[J]. Food Chem, 2004, 86: 127-130
    19. Bron I U, Jacomino A P. Ripening and quality of‘Golden’papaya fruit harvested at different maturity stages[J]. Brazilian J Plant Physiol, 2006, 18(3): 389-396
    20. Karakurt Y, Huber D J. Characterization of wound-regulated cDNAs and their expression in fresh-cut and intact papaya fruit during low-temperature storage[J]. Postharvest Biol Technol, 2007, 44: 179-183
    21. Manenoi A, Bayogan E R V, Thumdee S, et al. Utility of 1-methylcyclopropene as a papaya postharvest treatment[J]. Postharvest Biol Technol, 2007, 44: 55-62.
    22.段华伟,王志伟,胡长鹰.气调包装工况下番木瓜成熟度的无损分级[J].包装工程,2008,29(10):107-108,125
    23. Cybenko G. Approximation by superpositions of a sigmoidal function[J]. Math Control Signals Systems, 1989, 2: 303-314.
    24. Cravener T L, Roush W B. Improving neural network prediction of amino acid levels in feed ingredients[J]. Poultry Sci, 1999, 78: 983-991
    25. Inamdar M V, Date P P, Desai U B. Studies on the prediction of springback in air vee bending of metallic sheets using an artificial neural network[J]. J Mater Process Technol, 2000, 108: 45-54
    26. Pan Y, Jiang J, Wang R, et al. Prediction of auto-ignition temperature of hydrocarbons by neural network based on atom-type electrotopological-state indices[J]. J Hazard Mater, 2008, 157: 510-517
    27. Burnham K P, Anderson D R. Model selection and multimodel inference (second edition)[M]. New York: Springer-Verlag, 2002. 60-64
    28. Sohn J H, Smith R, Yoong E, et al. Quantification of odours from piggery effluent ponds using an electronic nose and an artificial neural network[J]. Biosystems Eng, 2003, 86(4): 399-410
    29. Sung A H. Ranking importance of input parameters of neural networks[J]. Expert Systems Appl, 1998, 15: 405-411
    30. Gevrey M, Dimopoulos I, Lek S. Review and comparison of methods to study the contribution of variables in artificial neural network models[J]. Ecol Modell, 2003, 160: 249-264
    31. Cenci S A, Soares A G, Souza M L M, et al. Study of storage sunrise‘Solo’papaya fruit under controlled atmosphere[C]. In: Kader A A. ed. Proc of the 7th Int Controlled Atmos Conf (Vol.3). Davis: University of California, 1997. 205-211.
    32. Lobo M G, Cano M P. Preservation of hermaphrodite and female papaya fruits (Carica papaya L., Cv Sunrise, Solo group) by freezing: physical, physico-chemical and sensorial aspects[J]. Zeitschrift für Leben und -Forschung A, 1998, 206: 343-349.
    33. Bhande S D, Ravindra M R, Goswami T K. Respiration rate of banana fruit under aerobic condtions at different storage temperatures[J]. J Food Eng, 2008, 87: 116-123
    34. Dash K K, Ravindra M R, Goswami T K. Modeling of respiration rate of sapota fruitunder aerobic conditions[J]. J Food Process Eng, 2009, 32: 528-543
    35. Biale J B, Young R E, Olmstead A J. Fruit respiration and ethylene production[J]. Plant Physiol, 1954, 29(2): 168-174
    36.李雯,谢江辉,邵远志,等.几种处理方法对番木瓜果实贮藏的保鲜效果[J].果树学报,2009,26(3):399-402
    37.陈维信.番木瓜贮藏保鲜技术[J].农产品加工,2007(3):30-31
    38. Karakurt Y, Huber D J. Activities of several membrane and cell-wall hydrolases, ethylene biosynthetic enzymes, and cell wall polyuronide degradation during low-temperature storage of intact and fresh-cut papaya (Carica papaya) fruit[J]. Postharvest Biol Technol, 2003, 28: 219-229
    39. Jacxsens L, Devlieghere F, Debevere J. Predictive modelling for packaging design: equilibrium modified atmosphere packages of fresh-cut vegetables subjected to a simulated distribution chain[J]. Int J Food Microbiol, 2002, 73: 331-341
    40. Nunes M C N, Emond J P, Brecht J K. Brief deviations from set point temperatures during normal airport handling operations negatively affect the quality of papaya (Carica papaya) fruit[J]. Postharvest Biol Technol, 2006, 41: 328-340
    1. Zagory D, Kader A A. Modified atmosphere packaging of fresh produce[J]. Food Technol, 1988, 42(9): 70-74, 76-77
    2.李铁华.硅窗气调包装延长茶树菇贮藏期的工艺及机理研究[D]:[博士学位论文].无锡:江南大学食品学院,2007
    3. Papajorgji P J, Pardalos P M. Advances in modeling agricultural systems[M]. New York: Springer Science + Buisness Media, 2009. 455-483
    4.卢立新.果蔬气调包装理论研究进展[J].农业工程学报,2005,21(7):175-180
    5. Mahajan P V, Oliveira F A R, Montanez J C, et al. Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce[J]. Innov Food Sci Emerg Technol, 2007, 8: 84-92
    6. Jacxsens L, Devlieghere F, Debevere J. Predictive modelling for packaging design: equilibrium modified atmosphere packages of fresh-cut vegetables subjected to a simulated distribution chain[J]. Int J Food Microbiol, 2002, 73: 331-341
    7. Fonseca S C, Oliveira F A R, Brecht J K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review[J]. J Food Eng, 2002, 52: 99-119
    8.卢立新.果蔬气调保鲜包装数学模型[J].机电信息,2005,90:25-27
    9. Rooney M L. Active Food Packaging[M]. Glasgow: Blackie Academic & Professional, 1995. 55-73
    10.王家民,崔爽,于江.果蔬气调包装模型研究[J].包装工程,2005,26(4):28-29
    11. Lamikanra O. Fresh-cut fruits and vegetables. Boca Raton: CRC Press, 2002. 306-333
    12. Mannapperuma J D, Zagory D, Singh R P, et al. Design of polymeric packages for modified atmosphere storage of fresh produce[C]. In: Fellman J K, ed. Proc of the 5th Int Controlled Atmos Res Con (Vol.2). Wenatchee: 1989. 225-233
    13.蔡莹,卢立新.果蔬气调保鲜包装气调包装技术机理[M].机电信息,2004,(5):37-41
    14.崔爽.果蔬气调包装模型与仿真[J].重庆工商大学学报(自然科学版),2007,24(2):200-202
    15. Parry R T. Principles and applications of modified atmosphere packaging of foods[M]. Glasgow: Blackie Academic & Professional, 1993.125-133
    16. O.G.皮林格,A.L.巴纳主编.食品用塑料包装材料[M].范家起等译.北京:化学工业出版社,2004.210-217
    17. Weichmann J. The effect of controlled-atmosphere storage on the sensory and nutritional quality of fruits and vegetables[J]. Hort Review, 1986, 8: 101-127
    1.夏杏洲,王维名,张宇杨,等.番石榴在低温下的贮藏特性研究[J].食品科学,2004,25(8):180-183
    2. Reyes M U, Paull R E. Effect of storage temperature and ethylene treatment on Guava (Psidium guajava L) fruit ripening[J]. Postharvest Biol Technol, 1995, 6: 357-365
    3. Bassetto E, Jacomino A P, Pinheiro A L, et al. Delay of ripening of‘Pedro Sato’guavawith 1-methylcyclopropene[J]. Postharvest Biol Technol, 2005, 35: 303-308
    4. Singh S P, Pal P K. Response of climacteric-type guava (Psidium guajava L.) to postharvest treatment with 1-MCP[J]. Postharvest Biol Technol, 2008, 47: 307-314
    5. Pal P K, Singh S P, Singh C P, et al. Response of guava fruit (Psidium guajava L cv Lucknow-49) to controlled atmosphere storage[J]. Acta Hort, 2007, 735: 547-554
    6. Jacomino A P, Kluge R A, Sarantópoulos C I G L, et al. Evaluation of plastic packages for guava refrigerated preservation[J]. Packaging Technol Sci, 2001, 14: 11-19
    7. Pal P K, Ahmad M S, Roy S K, et al. Influence of storage environment, surface coating, and individual shrink wrapping on quality assurance of guava (Psidium guajava) fruits[J]. Plant Food Hum Nutr, 2004, 59: 67-72
    8.张福平,陈蔚辉,林建新.新世纪番石榴的防腐保鲜[J].中国南方果树,2003,32(2):35-36
    9. Singh S P, Pal R K. Controlled atmosphere storage of guava (Psidium guajava L) fruit[J]. Postharvest Biol Technol, 2008, 47: 296-306
    10. Kader A A. Guava: recommendations for maintaining postharvest quality[DB/OL]. http://postharvest.ucdavis.edu/Produce/ProduceFacts/Fruit/Guava.shtml, 2009-01- 09
    11. Papajorgji P J, Pardalos P M. Advances in modeling agricultural systems[M]. New York: Springer Science+Buisness Media, 2009. 455-483
    12. Parry R T. Principles and applications of modified atmosphere packaging of foods[M]. London: Blackie Academic & Professional, 1993. 128-129
    13. An J, Zhang M, Lu Q, et al. Effect of a prestorage treatment with 6-benzylaminopurine and modified atmosphere packaging storage on the respiration and quality of green asparagus pears[J]. J Food Eng, 2006, 77: 951-957
    14.侯曼玲.食品分析[M].北京:化学工业出版社,2004.38-45,113-119
    15. Jain N, Dhawan K, Malhotra S P, et al. Compositional and enzymatic changes in guava (Psidium guajava L) fruits during ripening[J]. Acta Physiol Plantarum, 2001, 23(3): 357-362
    16.胡成发.印刷色彩与色度学[M].北京:印刷工业出版社,1993.182-183
    17. Dhillon B, Devgan A K, Sandhu G. Design and evaluation of modified atmosphere packaging for guava (Psidium guajava L.)[C]. The American Society of Agricultural and Biological Engineers (ASABE) Meeting Paper, Michigan: 2007. Paper No.076208
    18. Uddin M S, Hawlader M N A, Ding L, et al. Degradation of ascorbic acid in dried guava during storage[J]. J Food Eng, 2002, 51: 21-26
    19. Lee S K, Kader A A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops[J]. Postharvest Biol Technol, 2000, 20: 207-220
    20. Jain N, Dhawan K, Malhotra S, et al. Biochemistry of fruit ripening of guava (Psidium guajava L): compositional and enzymatic changes[J]. Plant Food Hum Nutr, 2003, 58: 309-315
    21.Л.В.梅特利茨基著.水果和蔬菜的生物化学基础[M].刘慕春等译.北京:科学出版社,1988.123-132
    22. Ke D, Rodriguez-Sinobas L, Kader A A. Physiology and prediction of fruit tolerance to low-oxygen atmosphere[J]. J ASHS, 1991, 116: 253-260
    23. Caner C, Aday M S, Demir M. Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging[J]. Eur Food Res Technol, 2008, 227: 1575-1583
    24. Alique R, Martínez M A, Alonso J. Influence of the modified atmosphere packaging on shelf life and quality of Navalinda sweet cherry[J]. Eur Food Res Technol, 2003, 217: 416-420
    25. Kader A A. Flavor quality of fruits and vegetables[J]. J Sci Food and Agri, 2008, 88: 1863-1868
    26. Reuck K D, Sivakumar D, Korsten L. Integrated application of 1-methylcyclopropene and modified atmosphere packaging to improve quality retention of litchi cultivars during storage[J]. Postharvest Biol Technol, 2009, 52: 71-77
    27. Jain S M, Priyadarshan P M. Breeding plantation tree crops: tropical species. New York: Springer Science+Busimess Media, 2009. 83-120
    28. Zagory D, Kader A A. Modified atmosphere packaging of fresh produce[J]. Food Technol, 1988, 42(9): 70-74, 76-77
    29. Gaspar J, Couto F A V, Salom?o L C C, et al. Effect of low temperature and plastic films on post-harvest life of guava (Psidium guava L) [J]. Acta Hort, 1997, 452: 107-114
    30. Kader A A. Maturity, ripening and quality relationships of fruit-vegetables[J]. Acta Hort, 1996, 434: 249-255
    31. Somogyi L P, Ramaswamy H S, Hui Y H. Biology, principles, and Applications[M]. Lancaster: Technomic Publishing Company, 1996. 135-167
    32.卢立新,王志伟.气调包装果蔬贮藏寿命预测[J].食品科学,2004,25(6):179-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700