东北地区牡丹生态适应性及抗寒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡丹(Paeonia Sect. Moutan DC)是原产中国的传统名花,被誉为“百花之王”,具有“繁荣昌盛、幸福美满”等文化寓意。牡丹经过一千多年的发展,在我国的自然栽培应用区不断扩大,在东北地区也表现出良好的推广应用前景。然而,在东北地区寒冷的特殊气候条件下,牡丹引种、栽培以及育种等方面的研究还相当缺乏,制约这一地区牡丹发展的一个技术瓶颈还无法突破。为此,本研究基于东北地区的自然生态条件,对东北地区现有的牡丹品种资源进行系统的调查,研究了牡丹的生理生态特性,提出牡丹抗寒评价指标,并对不同的品种群的生态适应性与抗寒性进行了对比分析,为牡丹寒地引种、栽培及其发展提供重要参考依据。主要研究内容包括:
     1.从2007年9月至2011年3月间,采用实地调查与史料考证相结合,对东北地区牡丹引种及生态适应性进行了调查与研究,发现:1)东北地区牡丹引种地分布在N47°线以南,共计约200个品种和类型、2.7万余株;2)随着纬度的升高,东北地区牡丹生长发育物候期逐步延迟,枝叶衰老、休眠期逐步提前。纬度越高,生理活动时间越短;开花数量逐步减少,花型退化,以单瓣少瓣为主;枝条木质化逐渐变短,芽数减少;叶片形态指标变化不大;3)品种群间存在明显差异,紫斑牡丹有相对良好的适应性,在现有引种最北地(大庆)仍可露地自然越冬并开花;传统品种牡丹在长春以北地区需人工防护才能越冬后开花,多数品种冻害严重。
     2.以长春牡丹园为试验点,对13个品种牡丹进行叶片形态指标和光合特性测定,结果表明:牡丹品种间及品种群间叶片比叶质量差异显著,传统品种牡丹叶大且厚,比叶质量高;紫斑牡丹叶片薄,比叶质量低,但叶绿素含量高。净光合速率(Pn)品种间有差异,但品种群间差异不显著;光合日变化显示少数品种有光合“午休”现象,多数品种为单峰曲线;气孔导度(Gs)、胞间二氧化碳浓度(Ci)、蒸腾速率(Tr)日变化结果与光合日变化吻合;品种群间水分利用效率(WUE)差异显著,紫斑牡丹有更高的水分利用效率,表明抗旱适应性好。
     3.在牡丹越冬期间以长春牡丹园12个品种为试材,开展了牡丹自然越冬、低温胁迫下枝条电导率测定及半致死温度(LT50)计算、脯氨酸及多糖含量、枝条水分蒸腾及生长恢复观察试验。结果表明:自然越冬条件下,传统品种牡丹地上枝条全部枯死,仅有少数品种从地面下抽发新枝开花;而紫斑牡丹多数品种枝条存活率在60%以上,且能正常开花3朵以上。低温胁迫下相对电导率拟合Logistic方程,拟合度R2在0.90以上;LT50随外界温度变化而变化,紫斑牡丹品种在越冬期间LT50一直低于传统品种且差异显著;采用方程参数估算组织损害区间,表明牡丹抗寒性还有很大潜力;冷冻后恢复生长结果与方程推算LT50结果一致;首次取得牡丹枝条冬季含水量动态变化情况,明确了牡丹枝条冬季水分散失速率以及变化规律,初步解释“抽条”现象是由低温造成枝条组织受损,引起水分散失,进而造成枝条枯死,不是越冬期间枝条自身蒸腾造成的“抽条”;越冬期间枝条脯氨酸含量、可溶性多糖含量,生长期叶片膜透性测定,可以作为牡丹抗寒性的参考指标。牡丹抗寒能力的体现是个复杂的系统,受到自身遗传特性及外界环境因子的综合作用,以越冬期间最冷月份的枝条半致死温度为测定指标,判断牡丹抗寒性较为可靠。
     总之,本研究表明东北地区牡丹引种生态适应性主导因子是极端低温;随纬度的升高牡丹生长发育积温降低,枝条木质化降低,开花质量和数量下降,需人工保护措施辅助栽培;光合特性能反映牡丹对光能利用率及光合产物积累对生长发育的影响;越冬期间采用枝条电导率测定,Logistic方程拟合估算LT50的方法评价抗寒性具有可靠性和可行性;牡丹生态适应性及抗寒性在品种(群)间存在差异,紫斑牡丹应是东北地区主要推广应用的品种和类型。
Tree peony (Paeonia Sect. Moutan DC) is Chinese traditional flower, and it originates from China, as " The king of flowers ", and connotes the meanings of "prosperity and happiness" and other cultural meanings. After more than 1,000 years of development, the application of natural cultivated area of Chinese tree peony is constantly expanding and also shows good prospect in the Northeast China. However, because of cold weather conditions in Northeast China, it still lacks of the research on introduction, cultivation and breeding of tree peony, so that the development of the regional tree peony can not break through a technical bottleneck. For this purpose, this research is based on the natural ecological conditions in Northeast China, carrying out a systematic investigation to the existing tree peony cultivars resources in Northeast region, studying the physiological and ecological characteristics of tree peony, putting forward the cold resistance evaluation index about tree peony, and conducting a comparative analysis on different cultivar groups about the ecological adaptability and cold resistance, providing an important reference for the introduction, cultivation and development of the tree peony. The main contents include:
     1. From September 2007 to March 2011, thus study took the combination of field survey and historical textural, and conducted a survey and research on the introduction and the ecological adaptability of the tree peony in the Northeast China region. Then, this study found that:1) The introduction of Northeast China tree peony is distributed below latitude 47 degrees north, a total of about 200 cultivars and types,27,000 plants; 2) Increasing with the latitude, growth and development of Northeast China tree peony phenology period progressively delay (the phenology of growth and development of tree peony would progressively delaied), and foliage senescence, dormancy gradually advanced. The higher the latitude is, the shorter the time of physiological activity is, the number of flowers gradually reduces, floral type degradation/degenerates, mainly with simple flower and few petals of flower. Lignified branches are gradually shorten, the number of buds reduces. Little has changed on leaf morphological index; 3) Significant differences between the cultivar groups, and the flare mudan have relatively good adaptability. The existed introducing can naturally expose overwintering and flower in northernmost region (Daqing); traditional cultivars of tree peony need artificial protection to overwinter to the north of Changchun, most cultivars often suffer from seriously frozen injury.
     2. Test point is located in Changchun Mudan Garden. This study chooses 13 cultivars to determine the leaf morphological index and photosynthetic features. The results show that:the leaf mass, among the tree peony cultivars, varieties of inter-group difference is significant, the traditional varieties of peony leaves are large and thick, higher specific leaf weight; flare mudan leaves are thin, lower specific leaf weight, but high chlorophyll content. Net photosynthetic rate (Pn) varieties are different, but the variety of inter-group difference is not significant; diurnal variation shows a small number of varieties of photosynthesis "midday depression", the majority of species as a single peak curve; stomatal conductance (Gs), intercellular carbon dioxide concentration (Ci), and transpiration rate (Tr) on the result of changes are consistent with changes in photosynthesis; water use efficiency between species groups (WUE) are significantly different. Flare mudan has higher utilization efficiency of water. It show good adaptability of drought resistance.
     3. In the winter period, test points is located in Changchun Mudan Garden. The author selects 12 cultivars of tree peony for the test materials, carries out tree peony natural winter observation, measurement under low temperature stress branches and semi-lethal temperature conductivity (LT50) calculation. The polysaccharide content of proline is measured to determine the branch transpiration and growth recovery observed test. The results show that:In the natural winter conditions, the branches of traditional cultivars of tree peony on the ground are all dead, and only a few of cultivars grow from the ground under the branches and flowers, and flare peony survival rate of most cultivars is 60% or more branches, and can flower 3 or above normal. Relative conductivity under low temperature stresses on fitting Logistic equation, goodness of fit R2 above 0.90. LT50 changes with the outside temperature. During the winter LT50 of the cultivars of flare mudan has been lower than traditional cultivars, and the difference is significant. Tissue damage estimates range equation parameters, and shows that there is great potential for cold resistance of tree peony. Freezing peony recovers the growth and it consistents with the estimated LT50. For the first time i have got the dynamic changes of water content of tree peony branches in winter, knowing the changes of water of tree peony branches loss rate in winter. Preliminary interpretation of " Shoot drying" phenomenon is caused by the low-temperature branch tissue damage, leading to water loss, which is resulted into dead branches, not the branches themselves during winter transpiration caused by the " air-dried ". During the winter determined proline content and soluble polysaccharide content in shoots, leaf growth stage determines the membrane permeability, and can be used as reference for the evaluation tree peony cold resistance. It is a complex system that cold resistance capacity of the tree peony is expressed by their genetic characteristics and the combined effects of environmental factors. During the coldest month of winter, branches semi-lethal temperature for the determination of indicators determine the cold resistance of peony more reliable. Selected branches of the lethal temperature measured as an index to evaluate the cold resistance of tree peony is more reliable.
     In summary, this study shows that extreme low temperature is the dominant factor on ecological adaptation of tree peony introduction to Northeast China. As latitude increases, effective temperature in need decreases, branches lignification become lower, flowering quality and quantity decline. Protection measures should be assisted by artificial cultivation. The photosynthetic characteristics of light energy utilization efficiency can reflect the accumulation of photosynthetic products and the impact on the tree peony growth and development; during the overwinter period, the author uses branches to measure the conductivity and fits the Logistic equation, then estimates LT50, and this method is reliable and feasible to evaluate cold resistance. There are the differences of the ecological adaptability and cold resistance in tree peony cultivars (group); flare mudan should be the main cultivars popularized and applied in Northeast China.
引文
[1]陈德海,徐虹,连玉武主编.现代植物生物学实验[M].北京:科学技术出版社,2005.12
    [2]陈俊愉,程绪坷.中国花经[M].上海:上海文化出版社,1990
    [3]陈俊愉主编.中国花卉品种分类学[M].北京:中国林业出版社,2001
    [4]陈俊愉,陈瑞丹.对园林植物引种驯化的再认识[C].2007年中国园艺学会观赏园艺专业委员会年会论文集.2007,8
    [5]陈让廉.铜陵牡丹[M].北京:中国林业出版社,2004
    [6]陈银屏.圆柏属植物扰冷冻适应性机制的开究[D].兰州大学.博士学位论文,2006
    [7]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217
    [8]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯.1991,27(2):84-9
    [9]陈仲芳,张霖,尚富德.利用层次分析法综合评价湖北省部分桂花品种[J].园艺学报2004,31(6):825-828
    [10]成仿云,陈德忠.紫斑牡丹新品种选育及牡丹品种分类研究[J].北京林业大学学报,1998(2):27-32
    [11]成仿云,李嘉珏,陈德忠,张佐双著.中国紫斑牡丹[M].北京:中国林业出版社,2005
    [12]成仿云,李嘉珏.中国牡丹的输出及其在国外的发展[J].西北师范大学学报(自然科学版),1998,34(3):103~108.
    [13]成仿云,李嘉任,陈德忠.中国野生牡丹自然繁殖特性研究[J].园艺学报,1997,24(11):180-184.
    [14]成仿云.牡丹国内外生产状况及市场特点[J].中国花卉园艺,2002(3):11-13
    [15]成仿云.紫斑牡丹有性生殖过程研究[D].北京林业大学博士论文,1996
    [16]程金水.园林植物遗传育种学[M].北京:林业出版社,2000.
    [17]崔红,于晶,高秀芹,等.3个紫斑牡丹品种的抗寒生理特性研究[J].东北农业大学学报,2009,40(7):24-27
    [18]曹梦梅.甘肃兰州紫斑牡丹移栽牡丹江市的养护与防寒措施[J].特种经济动植物,2009,2:24-25.
    [19]董丽.北京园林中几种常绿阔叶植物越冬适应性的研究[D].北京林业大学博士学位论文,1998,6:53-63
    [20]范双喜,谷建田,韩莹.园艺植物高温逆境生理研究进展[J].北京农学院学报,2003,18(2):147-151.
    [21]方岩,赵润生,张立群,等.地栽月季引种选育栽培技术研究[J].山西大学学报,1998,21(2):188-192.
    [22]费砚良,刘青林,葛红主编.中国作物及其野生近缘植物·花卉卷[M].北京:中国农业出版社,2008,5
    [23]冯立国,丰震,赵兰勇,生利霞.野生玫瑰与玫瑰栽培品种光合特性的比较[J].林业科学,2007,43(2): 31-37
    [24]高志民,王雁,王莲英.牡丹芍药繁殖与育种现状[J].北京林业大学学报,2001,23(4):75-79
    [25]高志红,章镇,韩振海.果梅种质枝条抗寒性鉴定[J].果树学报,2005,22(6):709-711
    [26]高秀芹,顾春雷,赵利群,等.紫斑牡丹越冬防寒技术研究[J].山西林业科技,2010,39(4):7-8.
    [27]盖钧镒主编.试验统计方法[M].北京:中国林业出版社,北京:2002
    [28]龚询,武全安.濒危植物黄牡丹受威因素初探[J].植物引种驯化集刊,1995,8:141~146.
    [29]郭爱华,陈钰,姚月俊.杏品种抗寒性主成分分析[J].山西农业大学学报(自然科学版)2007,27(3),235~237
    [30]郭卫东,张真真,蒋小韦,等.低温胁迫下佛手半致死温度测定和抗寒性分析[J].园艺学报,2009,36(1):81-86
    [31]郝建军,康宗利,于洋主编.植物生理学实验技术[M].北京:化学工业出版社,2007.1
    [32]洪德元,潘开玉.芍药属牡丹组的分类历史和分类处理[J].植物分类学报,1999,37(4):351-368.
    [33]洪德元,潘开玉.芍药属牡丹组分类补注[J].植物分类学报2005,43(3):284-287
    [34]洪德元.芍药属一新种——卵叶牡丹[J].植物分类学报,1995,33(1)
    [35]洪涛,戴振伦.中国野生牡丹研究(三):芍药属牡丹组群新分类[J].植物研究,1997,17(1):1-5
    [36]洪涛,齐安·鲁普·奥斯蒂.中国野生牡丹研究(二):芍药属牡丹组群新分类[J].植物研究,1994,14(3):237-240.
    [37]洪涛,张家勋,李嘉珏等.中国野生牡丹研究(一):芍药属牡丹组群新分类[J].植物研究,1992,12(3):223~234.
    [38]洪楠主编.SPSS for Windows统计分析教程[M].北京:电子工业出版社,2000,9:284-299
    [39]胡永红.低能耗切花菊品种的选择及其耐低温的生理基础[D].北京林业大学博士学位论文,1997,6
    [40]侯小改,段春燕,刘改秀,等.土壤含水量对牡丹光合特性的影响[J].华北农学报,2006,21(2):91-94
    [41]呼凤兰,杜俊杰.果树需冷量及休眠期生理生化变化的研究[J].陕西果树,2006(3):36~37
    [42]胡建忠主编.植物引种栽培试验研究方法[M].郑州:黄河水利出版社,2002,80-81
    [43]黄永红,沈洪波,陈学森.杏树抗寒生理研究初报[J].山东农业大学学报,2005,36(2):191~195.
    [44]黄家权.抗寒基因的克隆及根癌农杆菌介导的ICE1基因转化柑橘的研究[D].华中农业大学博士学位论文,2005,12
    [45]黄新.牡丹引种至巢湖的主要性状及光合生理的研究[D].安徽农业大学硕士学位论文,2006,8
    [46]简令成,孙龙华,贺善文等.柑橘叶片细胞结构的适应性变化[J].园艺学报,1984,11:79~83
    [47]简令成,孙龙华,林忠平.微管的冷稳定性与植物抗寒性关系的研究[J].植物学报,1989,31:737-741.
    [48]简令成,孙龙华.抗冻植物避免细胞内结冰机制的探讨—液泡内吞作用和水外排渠道的发现[J].植物学集刊,1991(5):107-113
    [49]简令成,王红.钙(Ca+2)在植物抗寒中的作用[J].细胞生物学杂志,2002(3):166-171
    [50]简令成.杭物抗寒机理研究的新进展[J].植物学通报,1992,9(3):17-22
    [51]蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用—光响应曲线的新方法[J].植物学通讯,1999,16(6):712-718.
    [52]缴丽莉,路丙社,周如久,等.遮光对青榨槭光合速率及叶绿素荧光参数的影响[J].园艺学报,2007,34(1):173-178
    [53]金研铭,徐惠风,李亚东等.牡丹引种及其抗寒性的研究[J].吉林农业大学学报,1999.21(2):37-39
    [54]景新明,郑光华.4种野生牡丹种子休眠和萌发特性及与其致濒的关系[J].植物生理学通讯, 1999,25(3):214-221.
    [55]李春牛,董凤祥,王贵禧,等.平欧杂交榛抗抽条能力及抽条临界含水量的研究[J].林业科学,2010,23(3):330-335.
    [56]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,1999:18-19.
    [57]李合生主编.现代植物生理学[M].北京:高等教育出版社,2004.4
    [58]李惠芬,叶晓青,陈尚平,等.南京地区牡丹品种主要性状评价研究初报[J].江苏林业科技,1998,25(增刊):156-159.
    [59]李俊才,刘成,王家珍,等.洋梨枝条的低温半致死温度[J].果树学报,2007,24(4):529-532.
    [60]李嘉珏,陈德忠,何丽霞,等.西藏大黄牡丹引种试验调查初报[J].植物引种驯化集刊,1995,10:105-110
    [61]李嘉珏.牡丹南移的探讨[J].花木盆景,1991(3):17.
    [62]李嘉珏.中国牡丹分类研究的新进展[J].中国牡丹与芍药,1992,2:4-7.
    [63]李嘉珏.中国牡丹起源的研究[J].北京林业大学学报,1998,20(2):22-26.
    [64]李嘉珏.中国牡丹与芍药[M].北京:中国林业出版社,1999.
    [65]李熙莉,李平平,岳桦.紫斑牡丹研究进展[J].北方园艺,2007(5):129-130
    [66]李欣.10种紫斑牡丹在哈尔滨地区的抗寒性研究[D].东北林业大学硕士论文,2009,06
    [67]李晓储,黄利斌.城市林业与林木引种[J].林业科技开发,2005,19(2):3-6
    [68]李永华,翟敏,李颖旭等.干旱胁迫下牡丹叶片光合作用与抗氧化酶活性变化[J].河南农业科学,2007(5):91-93
    [69]李玉敏,高志民.论中国花卉产业的可持续发展[J].世界林业研究,2001,(3):40-46
    [70]李宗艳.滇中地区牡丹的生态分析[J].云南林业科技.2003,103(2):47-49.
    [71]李宗艳,张海燕.武定狮子山公园引种牡丹的生态适应性研究[J].林业调查规划,2003,28(3):79-81.
    [72]李建国,陈国海,贺庆棠,等.华北落叶松生态适应性的定量分析与评价[J].生态学报,1996,16(2):180-186
    [73]李永义,刘耀权,阿拉坦其其格.牡丹引种栽植试验初报[J].内蒙古农业科技,1998,3:21
    [74]利容千,王建波主编.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.12
    [75]梁开明,曹洪麟,徐志防,等.台湾青枣及野生种的光合作用日变化及光响应特征[J].园艺学报,2008,35(6):793-798.
    [76]梁松洁,张金政,张启翔,等.北方地区藤本类忍冬叶表皮结构及其生态适应性比较研究[J].植物研究,2004(10):434-439
    [77]林树燕,张庆峰,陈其旭.10种园林植物的耐阴性[J].东北林业大学学报,2007,35(7):32-34.
    [78]刘康,韦柳兰,王开曦,等.矮牡丹种群结构的研究[J].西北植物学报,1994,14(3):232-236.
    [79]刘颖,沈益新,顾洪如,等.电导法配合Logistic方程比较不同结缕草品系抗寒性的研究[J].草原与草坪[J].2010,30(1):33-36.
    [80]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合响应曲线数据分析中的应用[J].中国农学通讯,2005,21(8):76-79.
    [81]刘克长,刘怀屺,等.牡丹花前温度指标的确定与花期预报[J].山东农业大学学报,1991,22(4):397-402
    [82]柳新红,何小勇,苏冬梅,等.翅荚木种源抗寒性综合评价体系的构建与应用[J].林业科学, 2007,43(10):45-50.
    [83]路丙社,刘忠华,董源.阿月浑子引种研究[M].中国林业出版社.北京:2006,5:91~100
    [84]卢存福.第七届国际植物抗寒会议概况[J].植物学通报,2004,21(5):617
    [85]吕长平,徐艳,成明亮.土壤含水率对牡丹生理生化特性的影响[J].湖南农业大学学报,2007,33(5):580-583
    [86]马燕,陈俊愉.几种蔷薇属植物抗寒性指标的测定[J].园艺学报,1991,18(4):351-356
    [87]马淼,陈蓓蕾,骆世洪.濒危植物新疆沙冬青叶解剖结构及其光合特性[J].石河子大学学报,2005,12:24
    [87]孟庆瑞,徐秀英,杨建民等.杏花器官抗寒性初步研究[J].河北农业大学学报,2006,29(3):22-25.
    [88]孟军,陈云龙,李会强,等.牡丹叶片光合作用光温响应的模拟[J].河南农业科学,2009,10:115-118
    [89]潘杰,简令成.植物寒害和抗寒机制中膜与蛋白质研究的进展[J].植物学通报,1990,7:1-5
    [90]庞士铨.植物逆境生理学基础[M].东北林业大学出版社.1989
    [91]钱敏之,张炳坤,刘宏涛.神农架野生紫斑牡丹引种调查研究[J].武汉植物学研究,1991,4
    [92]任丽.十种中原牡丹引种哈尔滨地区抗寒性研究[D].东北林业大学硕士论文,2009,09,07.
    [93]任丽,岳桦.4种中原牡丹在哈尔滨地区的抗寒性研究[J].植物研究,2010,30(2):228-237.
    [94]桑运荣,王传宽,郎广林,等.水曲柳的光合作用效率[J].东北林业大学学报,1999(2):15~18.
    [95]单宏伟,郑爱琴,张长征.北方温室牡丹促成栽培技术研究[J].北方园艺,2006,(4):129-130
    [96]宋锋惠,史彦江,吴正保,等.枣树枝条的抗寒性测定分析[J].新疆农业科学,2009,46(6):1212-1215
    [97]田国忠,李怀方,裘维蕃.植物过氧化酶研究进展[J].武汉植物学研究,2001,19(4):332-344
    [98]汪德娥,王宗海.牡丹南移栽培与催花技术研究[J].林业科技通讯,1999,12:10-13.
    [99]王华,王飞,陈登文等.低温胁迫对杏花SOD活性和膜脂过氧化的影响[J].果树科学,2003,17(3);197-201.
    [100]王莲英,袁涛.中国牡丹与芍药[M].金盾出版社,1999
    [101]王莲英.中国牡丹品种图志[M].北京:中国林业出版社,1997.
    [102]王淑春,周竹英,何增会.果树设施栽培需冷量及管理技术[J].河北林业,2002,3
    [103]王文敏.哈尔滨牡丹引种露地栽培研究[J].黑龙江园林,1988(3):26-33.
    [104]王雁.北京市园林植物耐荫性研究[D].北京:北京林业大学园林学院,1996.
    [105]王作超,刘亚力,费友,等.中原牡丹在长春地区的防寒措施[J].吉林农业,2010,250(12):131.
    [106]王飞,李嘉瑞,陈登文.用电导法配合Logistic方程确定杏花期的抗寒性[J].西北农业大学学报,1997,25(5)
    [107]王孝宣,李树德,东惠茹等.低温胁迫对番茄苗期和开花期脂肪酸的影响[J].园艺学报,1997,24(2):161-164
    [108]王忠敏.牡丹周年开花的基本原理与技术措施[J].中国园林,1991,7(2):48-52,54
    [109]王宗正.低温处理对牡丹开花和展叶的影响[J].园艺学报,1996,233(3):307-308
    [110]王世端.牡丹在园林中的应用[J].中国园林,1986,3:43-45
    [111]吴家森,宋福强,陈荣,卢伟民.3种七叶树属植物叶片气体交换特征和叶绿素荧光特性比较 [J].植物研究,2008,28(4):438-441
    [112]徐康,夏宜平,徐碧玉,等.以电导法配合Logistic方程确定茶梅‘小玫瑰’的抗寒性[J].园艺学报,2005,32(1):148-150
    [113]徐燕,薛立,屈明.植物抗寒性的生理生态学机制研究进展[J].林业科学,2007,43(4):88-94.
    [114]许大全.光合作用与气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [115]许瑛,陈发棣.菊花8个品种的低温半致死温度及其抗寒适应性[J].园艺学报,2008(4):559-605
    [116][明]薛凤翔著.李冬生点注.牡丹史[M].合肥:安徽人民出版社.1983,1-177.
    [117]闫中园,金研铭.不同品种紫斑牡丹的抗寒性研究与比较[J].安徽农业科学,2009,37(24):11511-13.
    [118]杨国正,展茗,骆炳山.抗虫棉、彩色棉花光合特性及其生态、生理因子的相关性研究[J].华中农业大学学报,2004,23(2):197~201
    [119]杨向娜,魏安智,杨途熙,等.仁用杏3个生理指标与抗寒性的关系研究[J].西北林学院学报,2006,21(3):30-33
    [120]叶子飘.光合作用对光合C02响应模型的研究进展[J].植物生态学报,2010,34(6):727-740。
    [121]叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报,2008,32(6):1356-1361.
    [122]于强,谢贤群,等.植物光合生产力与冠层蒸散模拟研究进展[J].生态学报,1999,19(5):744-753.
    [123]杨江山,常永义,种培芳.3个樱桃品种光合特性比较研究[J].园艺学报,2005,32(5):773-777
    [124]喻衡.牡丹[M].上海:上海科学技术出版社,1998.
    [125]袁涛.中国牡丹部分种及品种(群)亲缘关系的研究[D].北京:北京林业大学园林学院,1999.
    [126]岳桦,李欣,任丽,等.不同紫斑牡丹品种抗寒性差异分析[J].东北林业大学学报,2009,37(5):62-63.
    [127]岳桦,王欠欠.六个紫斑牡丹品种光合特性初步研究[J].黑龙江农业科学,2011(1):39-41.
    [128]郑国生,何秀丽.夏季遮荫改善大田牡丹叶片光合功能的研究[J].林业科学,2006,42(4):27-32
    [129]郑国生.牡丹(Paeonia suffruticosa)开花生理特性与冬季成花机理的研究[D].山西农业大学博士学位论文,2003,8
    [130]郑国生,盖树鹏,盖伟玲.低温解除牡丹芽休眠进程中内源激素的变化[J].林业科学,2009,45(2):48-52
    [131]张启翔.梅花品种抗寒性的比较分析[J].北京林业学院学报,1985(2):47-56
    [132]张启翔.梅花远缘杂交与抗冻生理研究[D].北京林业大学博士论文,1990,6
    [133]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    [134]张放,张良诚,李二玉.柑橘开花、幼果期的异常高温胁迫对叶片光合作用的影响[J].园艺学报,1995,22(1):11~15.
    [135]张革艳.北方地区引利,牡丹的栽培技术[J].北方园艺,2007(8):167-168
    [136]张军科,桑春果,李嘉瑞等.杏品种资源抗寒性关系的研究[J].西北农业大学学报,1999,19(4):371~372.
    [137]张黎,施孝贞.银川灌区紫斑牡丹引种试验[J].农业科学研究,2005,26(1)34~36
    [138]张立军,樊金娟主编.植物生理学实验教程[M].北京:中国农业大学出版,2007.8
    [139]张日清,何方.植物引种驯化理论与实践述评[J].广西林业科学,2001(1)1-6
    [140]张宪政.植物叶绿素含量的测定一丙酮乙醇混合法[J].辽宁农业科学,1986,(3):26-28.
    [141]张小全,徐德应.C02增长对杉木中龄林针叶光合生理生态的影响[J].生态学报,2000,20(3):390~396
    [142]张忠义,陈树园,王妙玲,等.洛阳牡丹品种种质资源定量评价方法研究[J].河南农业大学学报,1996,(6):12-16.
    [143]张永侠,于晶,赵丽群,等.四种抗寒性不同的紫斑牡丹品种越冬期间枝条的生理生化变化[J].东北林业大学学报,2009,40(4):56-59.
    [144]赵兰勇主编.中国牡丹栽培与鉴赏[M].北京:金盾出版社,2004.5
    [145]赵利群,王伟,高秀芹.7个紫斑牡丹品种寒地生长节律[J].东北林业大学学报,2009,37(11):59-61.
    [146]赵雪梅,成仿云,唐立红,等.赤峰地区紫斑牡丹的引种与抗寒性研究[J].北京林业大学学报,2011,33(2):84-90.
    [147]赵海军,郑国生.牡丹春节催花实用技术[M].北京:中国农业出版社,2002
    [148]翟敏,李永华,杨秋生.盆栽和地栽牡丹光合特性的比较[J].园艺学报,2008,35(2):251-256
    [149]周志钦,潘开玉,洪德元.牡丹组野生种间亲缘关系和栽培牡丹起源研究进展[J].园艺学报,2003,30(6):751~757
    [150]朱慧芬,张长芹,龚沟.植物引种驯化研究概述[J].广西植物,2003,23(1):52-60.
    [151]朱根海,刘祖祺,朱培仁.应用Logistic方程确定植物组织低温半致死温度的研究[J].南京农业大学学报,1986,3:11-16.
    [152]A.Welling, P.Rinne, A.Vihera-Aarnio, S.Kontunen-Soppela, P.Heino, and E. T. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.) [J]. Palva (2004) J. Exp. Bot.55,507-516
    [153]Berry J,temperature Bjorkmano.Photosynthetic response and adaptation to in higner plants[J]. Ann. Rev. Plant Physiol.,1980,31:491-543:
    [154]Cheng FY.Advances in the breeding of tree peonies and a cultivar system for the cultivar group [J].Internationl journal of breeding,2007,1(2):89-104
    [155]David Livingston, R. Prenakumar and S. P. Talury.Carbhydrate concentrations in crown fractions from winter oat during hardening at sub-zero temperatures [J]. ANNALS OF BOTANY,2005, 96(2):331-335.
    [156]Edward N. Ashworth. Properties of peach fower buds which facilitate supercooling[J]. Plant Physiol.1982,70:1475-1479.
    [157]Esen Tasgin,Okkkes Atici and Barbaros Nalantoglu.Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves[J].Plant Growth Regulation,2003,41:231-236.
    [158]Farquar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 1982,33:317-345
    [159]G. Goldstein, F. Rada,and A.Azocar.Cold hardiness and supercooling along an altitudinal gradient in Andean giant rosette species. Occologia (Berlin),1985,68:147-152.
    [160]H Chuang, WM Neuhausser, D Julius-Neuron. The Super-Cooling Agent Icilin Reveals a Mechanism of Coincidence Detection by a Temperature-Sensitive TRP Channel.2004-Elsevier
    [161]Hans Lambers, F.Stuart Chapin, Thijs L.Pons. Plant Physiological Ecology.张国平,周伟军译.植物生理生态学[M].浙江大学出版社,2003,5:14-57
    [162]Iskawa M, Sakai A. Freezing avoidance mechanisms by super cooling in some flower buds with reference to water relations[J]. Cell.1981,22:953
    [163]Kessenich GM. Handbook of the Peony. American Peony Society[J]. Hopkins,MN.1991.
    [164]Kessenich GM.The American Hybrid Peony.American Peony Society[J]. Hopkins, MN.1990.
    [165]Kessenich GM.The American Tree Peony.American Peony Society[J].Hopkins,MN.1988.
    [166]KessenichGM.TheBest of 75 Years and Printing. American PeonySociety[M].Hopkins,MN.1993.
    [167]L.T.Evans.Crop Evolution,Adaptation and Yield[M].王志敏,张英华,魏爱丽等译.中国农业大学出版社,2005,10:68-95
    [168]Li Jiajue.Chinese Tree Peony (Xibei, Xinan, Jiangnan Volume)[M].Beijing:China Forestry Publishing House,2005
    [169]LL Arris, PS Eagleson Evidence of a physiological basis for the boreal-deciduous forest ecotone in North America[J]. Plant Ecology,1989-Springer
    [170]MENG Qing-rui,LIANG Yin-quan,WANG Wen-feng,etl.Study on supercooling point and freezng point in floral organs of apricot[J].Agricultural Sciences in China.2007,6(11):1330-1335.
    [171]Michael Allaby. Oxford dictionary for ecology [M].上海:上海外语教育出版社,2001,313.
    [172]MICHAEL R. BECWAR, CHANNA RAJASHEKAR, KATHERINE J. HANSEN BRISTOW, AND MICHAEL J. BURKE. Deep Undercooling of Tissue Water and Winter Hardiness Limitations in Timberline Flora[J]. Plant Physiol.1981, (68):111-114
    [173]Milon F. George and Michael J.Burke.Cold handiness and deep supercooling in xylem of Shagbark Hickory[J].Plant Physil,1977,59:319-325.
    [174]MILON F. GEORGE and MICHAEL J. BURKE. Cold hardiness and deep supercooling in Xylem of Shagbark Hickory [J]. Plant Physiol.1977, (59) 3:19-325
    [175]Quamme HA. C Stushnoff,CJ Weiser.The relationship of exotherms to cold injury in apple stem tissue[J].J Am Soc.Hortic Sci.1972,97:608-613
    [176]Quamme HA. Mechanism of super cooling in overwintering peach flower buds[J]. Amer. Soc.hort. Sci.2003:57-61.
    [177]Quamme HA. Relationship of low temperature exotherm to apple and pear production in North Amexica[J].Can. J. Plant Sci.1976,56:493-500.
    [178]Rajeev Arora, Michael E. Wisniewski, and Ralph Scorza. Cold Acclimation in Genetically Related (Sibling) Deciduous and Evergreen Peach (Prunus persica [L.] Batsch) [J]. Plant Physiol. (1992) 99,1562-1568
    [179]Rajiashekar C. Membrerance strutral transition:Probable relation to frost damage in hardy herbaceous species. Low temperature stress in crop plants[C].Academic Press,1979; 255-274.
    [180]Rogers A.Peonies Portland,oregon:Tmber Press,1995.
    [181]Rubio FC,Canmacho FG,Sevilla JMF,Chisti Y,Grima EM.A mechanistic model of photosynthesis in microalgae[J].Biotechnology and Bioengineering,2003,81:459-473.
    [182]Stergios, B.G. and G.S.Howell. Evaluation of viability tests for cold stressed plants [J].J.Am.Soc.Hort.Sci.1973,98:325-330
    [183]Timoathy C. Hawes,Jeffrey S.Bale, Peter Convey and Roger Worland. Ecologically realistic modalities in arthropod supercooling point distributions [J]. POINT OF VIEW EUR.J.Entomol.2006, 103:717-723.
    [184]Watling, J.R., Press, M.C., Quick, W.P.. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J]. Plant Physiology,2000,123(3):1143-1152.
    [185]Wang et al. J. Amer. Soc. Hort. Structural Adaptations in Overwintering Leaves of Thermonastic and Nonthermonastic [J].Sci.2OO8 133 768-776
    [186]Wei-juan Wang, Yu-zhen Chen, Mei-qin Liu and Cun-fu Lu. Effects of cold-hardening on compatible solutes and antioxidant enzyme activities related to freezing tolerance in Ammopiptanthus mongolicus seedlings [J]. Forestry Studies in China,2008(10),101-106
    [187]Wister JC.The Peonies and Printing American Peony Society[J].Hopkins,MN.1995.
    [188]Wang Qiuying, Nick P. Cold accilimation can induce microtubular cold stability in a manner distinct from abscisic acid[J].Plant Cell Physiology,2001,42:999-1005
    [189]Welling A, Moritz T, Palva E T, et al. Indepent activation of cold acclimation by low temeperature and shor photoperiod in hybrid aspens[J]. Plant Physiology,2002,129:1633-1641
    [190]Weiser C.J. Cold Resistance and Injury in Woody Plants Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage[J].Science,1970-sciencemag.org
    [191]Walter Larcher.翟志席,郭玉海,马永译.植物生态生理学[M].北京:中国农业大学出版社,1997,11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700