根瘤菌对几种豆科植物根部传递细胞的诱导及其机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了证实根瘤菌对豆科植物根部传递细胞的诱导是否具有普遍意义,本文通过对豆科植物合欢(Albizia julibrissin)、紫云英(Astragalus simicus)、苜蓿(Medicago sativa)、三叶草(Trifolium pratense)、刺槐(Robinia pseudoacacia)、锦鸡儿(Caragana sinica)、豌豆(Pisum sativum)、大豆(Glycine max)无菌苗进行接菌和对照培养,取接菌苗根毛密集、形变明显的根段固定,同时取对照苗相应部位的根段固定。通过塑料半薄切片光镜观察和超薄切片透射电镜观察,结果表明:根瘤菌对这几种豆科植物根表层传递细胞均具有诱导作用。但传递细胞存在的部位这几种不同植物具有一定的差异,合欢根表层传递细胞主要分布在表皮和外皮层中;紫云英根表层传递细胞主要分布在表皮和根毛中;苜蓿根表层传递细胞主要分布在表皮或外皮层,有时也可以在表皮和外皮层中同时存在传递细胞甚至外皮层以内的一层皮层细胞中也可出现传递细胞,呈现表皮、外皮层和外皮层以内的一层皮层细胞同时诱发传递细胞的情况。三叶草根表层的传递细胞可分布在表皮,也可分布在外皮层中或在表皮和外皮层中同时存在。刺槐根表层传递细胞主要分布在表皮中,有时在外皮层和根毛中也出现。锦鸡儿根表层传递细胞主要分布在外皮层中,豌豆和大豆根表层传递细胞主要分布在表皮层中。
     根瘤菌除了对这几种豆科植物的根表层传递细胞具有诱导作用外,本研究还发现它对合欢和刺槐的侧根根毛具有诱导作用,即接菌合欢幼苗的侧根基部具较多弯曲形变的根毛,而对照幼苗的侧根不具根毛。接菌刺槐幼苗侧根的根毛不仅又密、又长且形变明显,而对照幼苗侧根根毛短、直而稀。
     通过对刺槐幼苗侧根根段的显微化学研究表明,接菌刺槐幼苗侧根具传递细胞的根段Fe~(3+)的含量明显高于对照幼苗相应根段,说明传递细胞可能有增加对Fe~(3+)吸收的作用。
     用紫云英和刺槐的结瘤因子粗提物处理紫云英和刺槐无菌幼苗,都能引起这二种幼苗的根毛形变,但未能引起根段的膨大和空瘤的形成。通过对其根毛形变明显的侧根根段作塑料半薄切片,结果显示:结瘤因子能诱发紫云英根表层传递细胞的产生,而刺槐未发现有传递细胞的产生。说明对紫云英而言,根瘤菌对其根表层传递细胞的诱导,可能是通过结瘤因子起作用的。而对刺槐而言,也许是结瘤因子浓度不够,或有更复杂的原因。
     观察到在大豆主根后生木质部导管周围分布有传递细胞,这能更好地说明导管具有主动运输和调节的功能。
This study has investigated the legumes of Albizia julibrissin; Astragalus simicus; Medicago sativa; Trifolium pratense; Robinia pseudoacacia; Caragana sinica; Pisum sativum; Glycine max to verify if it is a common phenomenon that rhizobia can induce the forming of transfer cells on the legume's root surface. After certain time of culture of the aseptic seedlings inoculated with Rhizobia, the root segments which had distinctive deformation of root hairs were selected to fix for prepare of specimens, meanwhile, the seedlings without Rhizobia are set and treated as the control. The semi-thin section and ultrathin section of prepared specimen were separately observed through optical microscope and transmission electron microscope. The result indicated that the rhizobia can induce the forming of transfer cells in all these plants, however, with different positions in different plants. The transfer cells of Albizia julibrissin distribute in the epidermis and exodermis. Those of Astragalus sinicus in epidermis and root hairs, those of Medicago sativa in epidermis or in the exodermis or in the epidermis exodermis and the cortex cells next the exodermis,Those of Triforlium pratense in the epidermis or in the exodermis or in the epidermis and exodermis at the same time, those of Robinia pseudoacacia in the epidermis exodermis and root hairs, those of Caragana sinicu in the exodermis.those of Pisum sativum and Glycine max in the epidermis.Except for the transfer cells, the rhizobia can also induce the lateral roots of Albizia julibrissin and Robinia pseudoacacia to produce more root hairs. There are more deformed root hairs on the lateral root's base part of inoculated Albizia julibrissin's seedlings than on the control. There are many longer and denser root hairs on the lateral roots of the Robinia pseudoacacia inoculated with rhizobia than on the controlThe microchemiscal study on the lateral root's segments of Robinia pseudoacacia shows that there are more Fe3+ exist in the root segment of inoculated seedlings than in the contral, as maybe explained the hypothesis that the transfer cells will increase the absorption of the Fe3+After the aseptic seedlings of Astragalus sinicus and Robinia pseudoacacia were treated by nod factors, they all can be resulted in root hairs deformation. But we did not oberserved their root segments swell or the empty nodules form. The observation of semi-thin section of root segments with distinctive root hair diformation show that transfer cells formed on the root surface of Astragalus sinicus while not on the surface of the Robinia pseudoacacia. This suggests that the forming of the transfer cells of Astragalus sinicus was induced by rhizobia because of the nod factors.We find that there are many tranafer cells of the Glycine max around vessel elements in the metaxylem of the main root, which can explain the phenomenon of vessel's active transport.
引文
01.周湘泉.豆类植物共生固氮研究近况和展望.南京林产工业学院学报,1983,(4):88-99
    02.周湘泉,韩素芬,豆科树种根瘤菌共生体系研究进展,林业科学,1989,(3):243--251
    03.韩素芬,甘习华,黄金生.接种根瘤菌后刺槐根表皮形态和超微结构的变化.林业科学,1998,34(4):109-110
    04.韩素芬,黄金生,甘习华,苏纪宇.刺槐根瘤发生的超微结构研究.南京林业大学学报,1996,20(4):17-20
    05 杨国平,朱军,徐苏芸等.根瘤菌结瘤因子的微量生物检测法.微生物学通报,1996,23(1):56-57
    06.杨国平,朱军,娄无忌.紫云英根瘤菌结瘤因子的初步研究.微生物学报,1994,34(5):406-408
    07.龙北国,王江海,宋鸿遇.紫云英根瘤菌胞外多糖缺失变种及其结瘤性状的变化.植物生理学报,1992,18(3):239-245
    08.高丙利,韩素芬.刺槐根瘤菌结瘤因子的初步研究.中南林学院学报,1997,17(2):38-40
    09.游志鹏,廖玫江,朱家壁.结合态氮对根瘤菌生长液诱导的苜蓿根毛形变的抑制,植物生理学报,1998,24(3):215-219
    10.樊庆笙主编.固氮微生物学,1991,农业出版社
    11.樊庆笙,生物固氮的近况和展望,农业微生物研究论文集,1991,74-81
    12.韩善华.豆科根瘤的超微结构研究.微生物学通报,1988,15(1):37-38
    13.李正理,张新英.植物解剖学.北京:高等教育出版社,1984:76-98
    14.施国兴,徐祥生.芡实种子萌发期子叶传递细胞发育的初步研究.西北植物学报,1993,13(2):123-127
    15.孙德兰,韩丽娟.莲胚子叶中维管束的发育和传递细胞.西北植物学报,1999,19(4):694-698
    16.王秀玲,高新起,颜振兰.被子植物生殖器官中的传递细胞.生物学通报,1999,24(9):24
    17.何可铮,王湘平,林顺权.枇杷胚胎早期发生过程中传递细胞的分布.福建农业大学学报,1995,24(2):277-280
    18.王春钢,席湘媛.绿豆受精前后胚囊的结构及传递细胞的分布.植物学报,1992,34(7):496-501
    19.席湘媛,叶宝兴.薏苡胚乳发育及营养物质积累的研究.植物学报,1995,37(3):118-124
    20.席湘媛,冷梅.薏苡胚乳传递细胞的超微结构.植物学报,1995,37(3):171-176
    21.席湘媛,松兰胚和胚乳的发育及营养物质的组织化学。植物学报,1993,35(1):35-43
    22.樊汝汶,黄金生.梓树属两个种花柱发育的细胞形态学比较研究.南京林业大学学报,1988(3):33-38
    23.樊汝汶,方炎明,黄金生.鹅掌楸属植物引导组织和花粉管的生长.西北植物学报,1995,
    24.林树燕,甘习华,黄金生,韩素芬。根瘤形成过程中刺槐根外皮传递细胞的诱发和超微结构观察。电子显微学报,2002,21(2):134-137
    25.林树燕,南京林业大学硕士学位论文,2002。
    26.代庆阳,苏学辉。杜仲叶脉韧皮部超微结构研究。四川师范大学学报,1994,15(4):356-359
    27.王湘平,林顺汉。枇杷胚胎早期发生过程中传递细胞的分布。福建农业大学学报,1995,24(3):277—280
    28.高荣岐,王群英,玉米胚乳传递细胞发育的显微和超微结构研究。山东农业大学学报,1996,27(3):171—176
    29.高荣岐,董树亭,胡昌浩.玉米胚乳传递细胞发育的显微和超微结构研究.山东农业大学学报,1996,27(3):324-331
    
    30.高新起,任秋萍,席湘媛。荞麦糊粉层传递细胞的超微结构研究。曲阜师范大学学报,2002,28(4):101—104
    31.郑国铝,生物显微技术,人民教育出版社,1978,141—142
    32.国凤利,北京大学生命科学学院博士学位论文,1994,24
    33.国凤利,胡适宜,天竺葵雌性生殖单位的超微结构。植物学报,1997,39(3):193—199
    34.胡适宜,朱徵,徐丽云,王百合花柱通道细胞细微结构的研究植物学报,1982,24:395—401
    35.胡适宜,朱徵,徐是雄,豇豆胚胎发育早期的胚柄及胚乳中的传递细胞。1983,25(1):1—7
    36.董建华,崔德才,席湘媛等,薏苡未萌发种子的糊粉层细胞及贮藏物质。植物学报增刊,1993,148—152
    37.曾定,固氮微生物学,厦门大学出版社,1987
    38.孙鸥,非豆科植物共生固氮的研究进展,中国科学院南京土壤研究所国际情报研究室编印1982
    39.陈因,陈永宾,唐锡华等编著,生物固氮,上海科学技术出版社,1985
    40. Allen, N.S. Bennett, M.N. Cox, D.N. Shipley, A. Ehrhardt, D.W. Long, S.R. Effects of Nod factors on alfalfa root hair Ca++ and H+ current and on cytoskeletal behavior. Current Plant Science & Biotechnology in Agriculture. 1994, 21: 107-113.
    41. Ardourel M,Demont N,et al. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses.,Plant Cell. 1994 Oct;6(10): 1357-74.
    42. Baureithel K, Felix G,et al. Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium.,J Biol Chem. 1994,269(27): 17931-8.
    43. Bee-Ferte M.P.,Krishnan H.B., Structures of nodulation factors from the nitrogen-fixing soybean symbiont Rhizobium fredii USDA257.,Biochemistry. 1994,33(39):11782-8.
    44. Bohdanowicz, J. Turala-Szybowska, K. Ultrastructure of endopolyploid antipodals in Aconitum vulparia Rchb. I. Antipodals in the mature embryo sac., Protoplasma. 1985,127 (3): 163-170.
    45. Bohdanowiez, J. Turala-Szybowska, K. Ulwastructure of endopolyploid antipodals in Aconitum vulparia Rchb. Ⅱ. Antipodals in the period of free nuclear endosperm. Protoplasma. 1987,140 (1): 13-21.
    46. Brewin N.J. Development of the legume root nodule.,Annu Rev Cell Biol. 1991;7:191-226.
    47. Briggs, C.L. The initiation, development and removal of embryo sac wall ingrowths in the developing seeds of Solanum nigrum L. an ultrastructural study. Annals of Botany. 1995,76 (4): 429-439.
    48. Carlson RW, Sanjuan J,et al.The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by type Ⅰ and Ⅱ strains of Bradyrhizobium japonicum.J Biol Chem. 1993,268(24): 18372-81.
    49. Charzynska, M. Murgia, M. Cresti, M. Microspore of Secale cereale as transfer cell type. ,Protoplasm 1990, 158: 26-32.
    50. Clarke KJ,Mccully ME.,The occurrence of wall papillae in root epidermal cells of axenically grown seedlings of zea mays.,Amer. J.Bot. 1985,72(9) 1483-1489
    51. Cook D.Dreyer D.et al Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti.Plant Cell. 1995,7(1):43-55.
    52. Cooper JB,Long SR.,Morphogenedc Rescue of Rhizobium meliloti Nodulation Mutants by trans-Zeatin Secretion.Plant Cell. 1994 Feb;6(2):215-225.
    53. Crespi MD.Junkevithch E.et al.,enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth.,EMBO J. 1994,13(21):5099-112.
    54. Davis R.W.,Smith J.D.,Cobb B.G.,A light and electron microscope investigation of the transfer cell region of maize caryopses.Can.J.Bot.,1990,68:471-479
    
    55. Denarie J. Riche P. Molecular signals in plant-microbe communication, Ann Arber,London:CRC Press, 1991,296-324
    56. Ehrhardt DW,Atkinson EM.et al.,Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors.Science. 1992,256(5059):998-1000.
    57. Evans D,Downie JA.,The nodi gene product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins; nucleotide sequence analysis of the nodi and nodJ genes.,Gene. 1986,43(l-2):95-101.
    58. .Fahn A.and Rachmilevitz J. Ultrastructure and nectar secretion in Lonicera japonica in:New research in plant anatomy.suppl.J.Linn.Soc.(Rolson N.K.B.et al.,1970,P,51-55) London.Academic Press.
    59. Faucher C,Maillet F.et al.,Rhizobium meliloti host range nodH gene determines production of an alfalfa-specific extracellular signal.,J Bacteriol. 1988 ,170(12):5489-99.
    60. Folsom M.W. and D.D. Cass. Changes in transfer Cell distribution in the ovule of soybean after fertilization. Can. J. Bot. 1986,64:965-972
    61. Goebel K. Erdwurzeln mit velamen. Flora(Jena),1922,115:l-26
    62. Gunning B.E.S.,Transfer cells and their role in transport of solution in plants.,Sci.Prog.Oxf.,1977:530-568
    63. Gunning B.E.S.and Briarty L.G.,Specialized "Transfer cells " in minor veins of leaves and their possible significance in phloem translocation. J.Cell Biol. 1968,37:C7-12
    64. Gunning B.E.S.,and J.S.Pate. "Transfer cells" -plant cells with wall ingrowth .specialized in relation to short distance transport of solutes-their occurrence.structure and development. Protoplasma, 1969,68,107-133
    65. Gunning B.E.S.and Pate J.S.,Cells with wall ingrowth (transfer cells) in the placenta of ferns. Planta, 1969,87:271-274
    66. Gunning B.E.S.,Pate J.S.and Green L.W.,Transfer cells in the vascular system of stems:Taxomomy,Association with nodes and structure.Protoplasma,1970,71:147-171
    67. Gunning B.E.S.,Pate J.S.,In:Robards.A.W.ed.Transfer cells dynamic aspects of plant ultrastructure.Megra W.Hill,London 1974,441-480
    68. Gunning B.E.S. & Steer M. W.,Ultrastructure and biology of plant cells. 1975,Fdward Arnold, London.
    69. Geelen D,Leyman B,et al.,NodS is an S-adenosyl-L-methionine-dependent methyltransferase that methylates chitooligosaccharides deacetylated at the non-reducing end.,Mol Microbiol. 1995 ,17(2):387-97.
    70. Goethals K,Mergaert P,et al.,Identification of a new inducible nodulation gene in Azorhizobium caulinodans.,Mol Plant Microbe Interact. 1992 ,5(5):405-ll.
    71. Gottfert M.,,Regulation and function of rhizobial nodulation genes.FEMS Microbiol Rev. 1993 ,10(l-2):39-63.
    72. Harrington, G.N. Franceschi, V.R. Offler, C.E. Patrick, J.W. Tegeder, M. Frommer, W.B. Harper, J.F. Hitz, W.D. Cell specific expression of three genes involved in plasma membrane sucrose transport in developing Vicia faba seed. Protoplasma. 1997, 197 (3/4): 160-173
    73. Harrington, G.N. Nussbaumer, Y. Wang, X.D. Tegeder, M. Franceschi, V.R. Frommer, W.B. Patrick, J.W. Offler, C.E. Spatial and temporal expression of sucrose transport-related genes in developing cotyledons of Viciafaba L Protoplasma. 1997, 200 (1/2): 35-50.
    74. Harris, N. Oparka, K.J. Walker-Smith, D.J. Plasmatubules: an alternative to transfer cells? Planta. 1982,156 (5): 461-465.
    75. Hu S.Y.,Zhu C.Ultrastructure and secretory activity of stigmatic and stylar transmiting tissue in Alpinia zerambet. Chinese J.Bot.l990,2(2):88-95
    
    76. Hu Z.M.,Hu S.Y.,Ultrastructure of the egg apparatus and the central cell of calystegia hederacea(convovulaceae) before and after fertilization.,Acta BotSin., 1998,40:487-492
    77. Hueros, G. Varotto, S. Salamini, F. Thompson, R.D. Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize. The Plant Cell. 1995,7 (6) -.747-757.
    78. Herdstra R.Geurts R.et al., Root Hair Deformation Activity of Nodulation Factors and Their Fate on Vicia sativa.Plant Physiol. 1994 ,105(3):787-797.
    79. Journet EP,Pichon M.et al. Rhizobium meliloti Nod factors elicit cell-specific transcription of the ENOD12 gene in transgenic alfalfa..Plant J. 1994 ,6(2):241-9.
    80. Jesen W.A. The ultrastructure and histochemistry of the synergids of cotton. Amer.J.Bot.,1965,52(3):238-256
    81. Kouchi H,Hata S., Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development.,Mol Gen Genet. 1993 ,238(l-2):106-19.
    82. Krause A.Siggrist CJA.et al.,Accumulation of transcripts encoding a lipid transfer-like protein during deformation of nodulation-competent Vigna unguiculata root hairs.,Mol Plant Microbe Interact. 1994 ,7(3):411-8.
    83. Kurkdjian AC. Role of the Differentiation of Root Epidermal Cells in Nod Factor (from Rhizobium meliloti)-Induced Root-Hair Depolarization of Medicago sativa.,Plant Physiol. 1995 ,107(3):783-790.
    84. Lerouge P.,Roche R.Faucher C.et al, Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal.Nature. 1990 ,344:781-4.
    85. Lewin A,Cervantes E.et al., nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala.Mol Plant Microbe Interact. 1990 ,3(5):317-26.
    86. Lopez-Lara IM,Drift VD.et al.,Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2.,Plant Mol Biol. 1995 ,29(3):465-77.
    87. Mccoy K.and Knox R.B.,The plasma membrane and generative cell organization in pollen of the mimosoid legume .,Protoplasma, 1988,143:85-92
    88. McDonald, R. Wang, H.L. Patrick, J.W. Offler, C.E. The cellular pathway of sucrose transport in developing cotyledons of Vicia faba L. and Phaseolus vulgaris L: a physiological assessment. Planta. 1995, 196 (4): 659-667.
    89. McDonald, R. Fieuw, S. Patrick, J.W. Sugar uptake by the dermal transfer cells of developing cotyledons of Vicia faba L: mechanism of energy coupling. Planta., 1996,198 (4): 502-509
    90. Meinecke E.P.,Beitrage zur anatomic der luftwurzeln der orchideen. Flora(Jena), 1894,78,133-203
    91. Metealfe.CR and Chalk L. Anatomy of the dicotyledons, 1979,vol. 1.2nd ed.Clarendon Press.Oxford.
    92. Miname E,Kouchi H,et al., Expression of the early nodulin, ENOD40, in soybean roots in response to various lipo-chitin signal molecules.,Plant J. 1996 ,10(l):23-32
    93. Owens SJ.,Horsfield N.J.,A light and electron microscopic study of stigmas in Ancilema and conunelina species( Commelinaceae).Protoplasma, 1982,112:26-36
    94. Pate J.S.,Gunning B.E.S. Vacular transfer cells in angiosperm leaves a taxonomic and morphological survey. Protoplasma,1969,68:135-156
    95. Pate J.S. Gunning B.E.S.and Milliken F.R.Function of transfer cells in the nodal regions of stems .particularly in relation to the nutrition of young seedlings.Protoplasma, 1970,71:313-334
    96. Pate J.S.and Gunning B.E.S.Transfer cells,Annu.Rev.Plant physiol.,1972,23:173-196
    
    97. Pate J.S., Yang A. F. (1981). Light and electron microscopic studies of noduls structure of alfalfa. Can J. Microbiol. 27:36-43
    98. Price NP.CarlsonRW. Rhizobial lipo-oligosaccharide nodulation factors: multidimensional chromatographic analysis of symbiotic signals involved in the development of legume root nodules.,Glycobiology. 1995,5(2):233-42.
    99. Relic B.Talmont F.,et al., Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum.,Mol Plant Microbe Interact. 1993 ,6(6):764-74.
    100. Relic B,Perret X,et al.,Nod factors of Rhizobium are a key to the legume door.,Mol Microbiol. 1994,13(l):171-8.
    101. Roche P.Faucher C.,Denarie J., Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals.Cell. 1991 ,67(6):1131-43.
    102. Rosa F.Sargent TD.et al.,Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis.,Dev Biol. 1988,129(l):114-23.
    103.Rost T.L.and Lersten N.R.,Transfer aleurone cells in sataria lutescens(Gramineao).Protoplasma, 1970,71:403-408
    104. Russell SD,Participation of male cytoplasm during gamete fusion in an angiosperm,Plumbago zeylanica Science,1980,210:200-201
    105. Sdowsky MJ,Cregan PB,et al.,The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans.,Proc Natl Acad Sci USA. 1991,15;88(2):637-41.
    106. Sanjuan J.Carlson RW.et al.,A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proc Natl Acad Sci USA. 1992,89(18):8789-93.
    107. Savoure A,Magyar A et al., Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions.,EMBO J. 1994,13(5):1093-102.
    108. Scheres B.Wick VD.et al.,The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction.,Cell. 1990,60(2):281-94.
    109. Schultze M.Quiclet-Sire B,et al., Rhizobium meliloti produces a family of sulfated lipooligosaccharides exhibiting different degrees of plant host specificity.,Proc Natl Acad Sci USA. 1992,89(1): 192-6.
    110. Schulz R.and Jehsen W.A. Capsella embryogensis:the egg.zygote and young embryo.Aner.J.Bot.l968b,55:807-819
    111. Shimony C.and Fahn A. Light-and electron-microscopical studies on the structure of salt glands of Tamarix aplylla L. J.Linn.Soc.(Bot) 1968.60:283-287
    112. Smit G,Koster CC,et al.,Uridine, a cell division factor in pea roots. Plant Mol Biol. 1995,29(4):869-73.
    113. Spaink HP.Sheeley DM.et al.,A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991,354(6349): 125-30.
    114. Spaink HP,Weinman J,et al., Genetic analysis and cellular localization of the Rhizobium host specificity-determining NodE protein.,EMBO J. 1989,8(10):2811-8.
    115. Stacey G,Luka S,et al., nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum.,J Bacteriol. 1994,176(3):620-33.
    116. Stokkermans TJ,Peters NK., Bradyrhizobium elkanii lipo-oligosaccharide signals induce complete nodule structures on Glycine soja Siebold et Zucc.,Planta. 1994;193(3):413-20.
    
    117. Stokkermans TJ .Ikeshita S,et al.,Structural requirements of synthetic and natural product lipo-chitin oligosaccharides for induction of nodule priraordia on Glycine soja.,Plant Physiol. 1995,108(4):1587-95.
    118. Sumer MJ.Casseele LV.,The development of the central cell of Brassica campestris prior to fertilization.,CanJ.Bot.l990,68:2553-2561
    119. Surin BP,Watson JM,et al., Molecular characterization of the nodulation gene, nodT, from two biovars of Rhizobium leguminosarum.,Mol Microbiol. 1990,4(2):245-52.
    120. Truchet G.,Roche P.,Lerouge P. et al. Sulphated lipo-digosaccharide signals of Rhizobiummeliloted elicit root nodule organogenesie in alfafa. Nature, 1991,351:670-673
    121. Vazquez M,Santana O,et al.,The NodL and NodJ proteins from Rhizobium and Bradyrhizobium strains are similar to capsular polysaccharide secretion proteins from gram-negative bacteria.,Mol Microbiol. 1993,8(2):369-77.
    122. Vijn I,Neves L., Nod factors and nodulation in plants.,Science. 1993,260(5115): 1764-5.
    123. Wark.M.C.,Fine structure of the phloem of Pisum sativum II .The companion cell and phloem parenchyma.Aust.J.Biol.Sci. 1965,13,185-194
    124. Wooding RB.P.and Nothcote D.H.,An anomalous wall thickening and it's possible role in the uptake of stem-fed tritiated glucose by Pinuspinea ,J.ultrastructure.Res.l965,12:463-472
    125. Zee S.Y.and O'Brien T.B.,Aleurone transfer cells and their structure feature .Aust.J.Biol.sci., 1971,24:391-395
    126. Ziegler H., Die Physidogie pflanzlicher Dr u sen. Ber.dtsch.bot.Ges. 1965,78:466-477

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700