用户名: 密码: 验证码:
沙冬青与根瘤菌和丛枝菌根真菌(AMF)共生关系影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荒漠珍稀常绿固沙植物沙冬青(Ammopiptanthus mongolicus (Maxim.))在北京乃至北方地区引种应用的研究较少。根瘤菌和丛枝菌根真菌(AMF)有助于沙冬青在贫瘠、干旱的土壤中生长,从单一方面,对两者各有较多的研究。然而,从共生菌角度将两方面结合起来对这种三位一体的共生关系的研究很少。本论文在同课题组前人对沙冬青引种研究的基础上,利用土著根瘤菌株、丛枝菌根真菌(AMF),对引种过程中的共生菌种培养筛选,并对三者共生关系的影响因素进行深入研究,结合扫描、透射电镜和X-射线能谱分析技术,对根瘤发育过程以及Ca~(2+)在此过程中的动态分布进行了分析,以更进一步的揭示Ca~(2+)在根瘤发育和固氮功能发挥中的作用以及对沙冬青生长的影响,填补了国内外该领域研究的空白,具有一定的创新意义。主要研究结果如下:
     1.确定菌剂的培养条件。分离得到18个沙冬青根瘤菌株,分离出沙冬青一种土著优势菌种Glomous.claroideum Schenk& Smith,并通过纯培养制成AMF菌剂。通过根瘤回接试验确定了3株比较优良的根瘤菌株ZW1、AZ1和DK1-2。筛选出产孢量最高的河沙做AMF菌剂的培养基质和0.4mmol.L-1的P水平作为最适的培养浓度。进一步试验发现,此P水平同样适用于接种AMF菌剂的沙冬青生长。
     2.研究了不同矿质元素对沙冬青生长的影响,发现缺乏N、P、K、Mg、Ca、Fe等元素对沙冬青观赏形态特征和生长量影响极大,生长受不同程度的抑制,尤其当缺乏N、P、K时,生长近乎停滞;对根瘤菌与沙冬青共生所需的N营养进行了研究,在不同N水平下对沙冬青接种根瘤菌剂,发现N水平在0-3.75mmol.L-1下,根系结瘤良好。
     3.通过AMF、根瘤菌双接种初步筛选后,利用对其生长效应较好的根瘤菌株ZW1、AZ1和AMF菌剂G.c、G.v,对沙冬青再次进行接种比较,筛选出对其生长效应有比较显著促进效果的共生菌组合ZW1+G.v。试验发现单接种土著菌剂G.c对沙冬青没有促进效果,但与两个根瘤菌株双接种后,能显著地促进其侵染效果,明显提高了沙冬青对G.c的依赖性,显示了土著菌剂之间的相互协同促进作用。较之单接种和对照,双接种对沙冬青的整体生长量、菌根侵染和根系结瘤等综合效应都有显著促进,但相互之间有明显差异,说明根瘤菌株和AMF菌剂之间也存在选择匹配与协同作用。菌剂ZW1+G.v组合对沙冬青的综合促进作用最明显,生长量是对照的171.0%,但未使沙冬青对其依赖性达到中等强度,可能与试验环境条件有关。
     4.筛选出对AMF、根瘤菌和沙冬青共生互作效应有促进效果的类黄酮。对三种AMF菌剂单接种以及AMF与根瘤菌双接种组合施加2种不同浓度的类黄酮apigenin、hesperitin,发现同一种类黄酮的不同浓度(1.5μmol.L~(-1)和0.15μmol.L~(-1)、15μmol.L~(-1) )处理对不同单接种菌剂效果不一样,差异显著,两种类黄酮之间也存在差异。综合来说,以1.5μmol.L~(-1)类黄酮对沙冬青生长量、结瘤、菌剂的菌根侵染和菌丝酶活性效果较为显著。15μmol.L~(-1)处理hesperitin对部分菌剂的酶活性和菌丝生长表现出明显的抑制作用,但对菌根侵染率和植株生长没有明显作用。说明AMF--根瘤菌--沙冬青共生体系对类黄酮的种类比较敏感,但对其浓度更为敏感。结果证明,对于具体菌剂组合,选择合适的类黄酮能促进AMF和根瘤菌之间的协同效应。
     5.对沙冬青根瘤菌的侵染途径与根瘤发育的过程进行了研究;研究信号物质结瘤因子粗体物(nf)、类黄酮、Ca~(2+)诱导根毛变形的情况以及ABA对根毛变形和沙冬青生长与结瘤的影响。根瘤菌主要从根毛入侵,形成侵染线,深入到根内中柱附近的内皮层细胞形成根瘤原基,发育成瘤。试验发现前三者均对根毛变形有诱导作用,nf浓度与活性越高,所诱导的根毛变形率也越高。类黄酮处理中1.5μmol.L~(-1)高于0.15μmol.L~(-1),而hesperitin处理高于同一浓度的apigenin处理。在0-10mmol.L~(-1)时,根毛变形率随Ca~(2+)浓度上升而升高,在Ca~(2+)溶液中加入结瘤因子后,根毛变形率显著升高。但Ca~(2+)在20 mmol.L~(-1)时,根毛变形率有所下降。植物激素ABA在低浓度时对沙冬青根毛变形和沙冬青生长与结瘤作用不明显,但高浓度(1、5μmol.L~(-1))时抑制作用非常显著,根毛变形率和植株生长量、结瘤量都迅速下降,加入ABA抑制剂钨酸钠可缓解其抑制作用。根瘤菌株ZW1所处理的植株生长量比AZ1处理的变化幅度更大,对ABA更为敏感,可能与两者原产地的环境状况有关。
     6.研究了根瘤不同发育时期显微与超微结构的变化,光学电镜观察到根瘤菌侵染过程,其根瘤具有永久分生组织,属于无限型类型。透射电镜观察研究显示,根瘤细胞的发育过程可分为:侵染前期、侵染线形成入侵期、侵染初期、发育期、成熟期、成熟后期和衰老早期、衰老后期。侵染前期分生细胞和相邻的内皮层细胞中出现胞质桥,为即将侵染做准备。早期侵染细胞中,细胞核较大,质体(含淀粉粒)丰富,细胞壁、细胞膜沉积,形成大量的侵染线,内陷成袋状深入到细胞内部释放根瘤菌,根瘤菌小,数量少,没有聚羟基丁酸(PHB白色颗粒),圆形或椭圆形,迅速分裂增殖。发育至成熟侵染细胞中,根瘤菌发育成类菌体,一至多个包被在周膜中;个体较大、数量较多、形状多样,逐渐充满整个细胞,类菌体中含有较多的PHB颗粒。成熟后期菌体互相挤压在一起,PHB消失;至衰老前期类菌体膜质分离, PHB又大量出现,细胞质减少,透明度增加。在衰老的侵染细胞中,类菌体解体,呈团絮状或膜泡状结构,PHB则基本没有。
     7.对不同时期根瘤的Ca~(2+)进行了定性定量分析,揭示了Ca~(2+)对根瘤发育、结构变化与功能的影响。通过透射电镜、扫描电镜观察到Ca~(2+)分布的变化和X-射线能谱仪对总Ca的定量分析,证实根瘤发育与Ca~(2+)的含量和分布密切相关。在根瘤菌初侵染期,高浓度的Ca~(2+)对侵染线在细胞间隙的推进、入侵与降解和根瘤菌的增殖发育有促进作用。发育期,Ca~(2+)分布量大为降低,但仍然非常丰富,对类菌体与其周膜、宿主细胞进行信息和物质交换有促进作用。在成熟期,Ca~(2+)和总钙量降至最低,恢复到植物细胞正常状态下的Ca~(2+)浓度与分布量,从而保持共生体系细胞结构的稳定性,利于类菌体保持固氮酶活性,发挥固氮作用。成熟后期至衰老初期,Ca~(2+)的猛然上升导致在细胞质中大量积聚,破坏了细胞中的平衡状态,细胞和类菌体开始衰老。衰老后期Ca~(2+)量仍然保持较高状态,类菌体解体,根瘤进入衰亡状态。而在初侵染组织和中下部成熟侵染组织中,均出现部分细胞的细胞质浓缩消解、类菌体过早衰败的细胞程序化(PCD)死亡现象,而两个部位的Ca~(2+)均是大量积聚,相对含量过高,因此猜测其分布量导致类菌体和细胞衰亡。原因可能是根瘤自身通过细胞中的酶和Ca~(2+)量的变化来调正结构和功能需求,使中心组织内适当的保留一部分非侵染细胞。在根瘤整个发育进程中,细胞内Ca~(2+)的分布是不均匀的,Ca~(2+)的变化具有明显的时间和空间异质性,这与其参与不同的生理活动有关,在根瘤发育和固氮功能的发挥上起着非常重要的作用。
The study of the cultivation and application of the precious and rare desert plant Ammopiptanthus mongolicus (Maxim.) in Beijing and the whole north area in China was less. Almost no one made the study from the symbiosis between the microorganism and the plant and influencing factors on the Symbiosis. So it is of great theoretical value and practical meaning to startup the study of symbiosis effect. In present work, based on the former study of the introduction, the paper got deep into branching out the direction of the item. Used the native rhizobia strains and the native AMF of A. mongolicus,combined with commercial AMF, the singal factors contain nod factors, flavonoid, Ca~(2+) and ABA on root hair deformation before nodules formation were analyzed. The optical electron microscope, scanning electron microscope (SEM), transmission microscope and energy-dispersive X-ray analysis(EDX) were used to analyze the changes of the structure and ultrastructure with nodules’growth. The qualitative and quantitative analysis of Ca~(2+) also were studied to make clear its function in root nodules’growth and nitrogen fixation. The main experimental results are as follows:
     1) 18 rhizobia strains of A. mongolicus were isolated and purificated from the different locations in northwest desert of China.3 nitrogen fixing effective strains contains ZW1、AZ1 and DK1-2 were selected out from these strains by re-nodulation. A native predominant AMF(Glomous.claroideum Schenk& Smith)was selected. The sand and 0.4 mmol·L~(-1)P level were selected for AMF spors growth from different cultivated media and different P level.
     2) The compatible N, P concentration were selected for the symbiosis of A. mongolicus and AM fungi and rhizobia. Under the lack of different nutrition element, we found the lack of N、P、K、Mg、Ca and Fe affect the shape and characters badly, the plant growth was restrained, especially lack of N、P、K, the growth almost stagnated. Under the level between 0-3.75 mmol·L~(-1) of N, the nodules grew well; at the level of 0.4 mmol·L~(-1) of P, AMF promoted the plant growth best.
     3) Combined with commercial fungi G.v, the study used the rhizobium strains ZW1、AZ1and AMF strains G.c,G.v, inoculated singlely or by combinations to A. mongolicus, and the best combination ZW1+G.v was sorted out for the plant growth. All the groups showed the better results on plant growth,nodulation and AMF infection to control,but the results had differences in those combinations,showed the importance of selection and cooperation between AMF and rhizobia. The plant biomass with group of ZW1+G.v was 171.0% to control, but didn’t make the plant nearly have a strong dependence on the ZW1+G.v.
     4) The proper flavonoid was selected out for promotion on the interplay between the symbiosis and plant growth. Study showed that the biomass and nodule number of A. mongolicus, AMF infection rate, and hyphal enzyme activity of ALP and SDH were significantly promoted by flavonoids’action on Rhizobia & AMF. Flavonoid treatments had more obvious differences with Rhizobia &AMF treatments than control in these aspects,and obvious differences were found in different flavonoids (apigenin and hesperitin) or in different concentrations (0.15 umol L-1, 1.5 umol L-1and 15 umol L-1 )of the same flavonoid, and result with 1.5 umol L-1 is most significant in all of the groups. 15 umol L-1 of hesperitin had some inhabition on AMF infection, and hyphal enzyme activity of ALP and SDH on some groups,but didin’t show inhabition or promotion on plant growth on the same group.The results showed that the promotion effects of nodulation of Rhizobia and AMF infection were more significant when an appropriate amount of flavonoid was added in the Rhizobia & AMF treatments.
     5) By the preliminary study on the root nodule formation of the A. mongolicus, various changes of A. mongolicus roots were observed. It was observed clearly that the position where rhizobia invaded the root of A. mongolicus was almost at the top of root hair and then entered the cortex. Signal factors contained nod factor(nf), flavonoids,Ca~(2+) and ABA on inducing the root hair deformation were studied. The former three factors demonstrated positive function. The higher the nod factors concentration and the activity, the more significantly it affected. 1.5μmol.L-1 of hesperitin was best in all flavonoid treaments, the percentage of seedlings with root hair deformation reached to 67.5% after 3 days.10 mmol.L-1 of Ca~(2+) with nf was most promotional in all treatments with or without nf, and the deformation rate fell by 20mmol.L-1 of Ca~(2+) even with nf. The results of them indicated that nf, flavonoid and Ca~(2+)might play an important role in the recognition between rhizobium and its host plant.The function of ABA is opposite to nf. The higher the ABA concentration, the more significantly it inhibited in root root hair deformation,nodule number and the plant growth.The ABA inhibitor tungstate could conversed this situation.
     6) Root nodule development was studied with optics microscope and transmission electron microscopy. The nodule contains exodermis, cortex (contains vascular bundle), vagina matrix and vortex tissue,and it belongs to indefinite type. The infection threads were very abundant in the nodule cells and very wide in distribution. The rhizobia in young infected cells were small, few in number, spherical generally located near the cell walls or nucleus. The rhizobia in mature infected cells were larger,great in number, varied in shape,and distributed throughout the nodule cells.It also had much poly-hydroxy butanoic acid (PHB),the spherical rhizobia were seen to reproduce by fissiparism. The rhizobial morphology in senescent infected cells was irregular,their cytoplasm occured contraction and increased in electron—density, decomposed and had fibrilsome materials. it is not only so, their inside structures also became unclean,some rhizobia even became into a membrane—vesicular structures.
     7) The scanning electron microscope (SEM), transmission microscope and energy-dispersive X-ray analysis(EDAX) were used to make the qualitative and quantitative analysis of Ca~(2+) with the changes of the structure and ultrastructure by nodules’development to make clear the function of Ca~(2+) in root nodules’growth and nitrogen fixation. As a result,the content of Ca~(2+) was uplifted from the early forming stage to early senescent stage. In early development, the total distribution was much more comparatively. They distributed in cell walls, intercellular space, plasma membrane and bacteria premembrane, most presented in spots, lines or gobbet, illuminated the support and facilitation function of Ca in pushing the infection threads get into cells and promoted the rhizobia reproduction and growth,it also promoted the singal and materials communion between the rhizobia and plant cells. In mature cells, a normal of Ca~(2+) sediment could be seen,this was better for structural stability and exertion of function of bacteria in the nodule. In early senescent cells,too much Ca~(2+) localized in the cytoplasm near the bacteria,showed its promotion on bacteria and cells senility. Ca~(2+) scattered in disorder and droped a lot in senescent cells. As a result of SEM and EDAX, the tendency of Ca total content in different nodule development was the same as before. And the content from high to low in different structures was epidermis cells,vortex tissue and before nodule senility,but when nodule became senile seriously,the content from high to low was vortex tissue,cortex and epidermis cells.Rule of the total changes of intensity signal of EDAX and number of“calcium rich”zones were consistent with in SEM, calcium accumulated abundantly in the epidermis cells, which formed a calcium rich layer in four stages of nodule development.The study found that Ca~(2+) signal was related tightly with the nodule’s development and its function, so their seedlings growth were also affected.
引文
1. 安黎哲,徐世建,冯虎元等.沙冬青和柠条渗透调节物质的动态研究[J].中国沙漠,1999,19(增):250-254.
    2. 安尼瓦尔,潘伯荣,伊林克.亚洲中部荒漠特有植物沙冬青的濒危原因、迁地保护及其可持续利用[A].植物引种驯化集刊[C].北京:中国林业出版社,1991,1-9.
    3. 包玉英,孙芬,闫伟. 内蒙古荒漠地区丛枝菌根植物的初步研究[J].干旱区资源与环境 2005,19,3:180-184.
    4. 贝奇 Y P S.林木和果树生物技术[M].张培果等译.北京:中国林业出版社,113.
    5. 毕银丽 任婧.接种菌根对根际微生物群落和磷营养的影响[J].能源环境保护,2007,21(3):25-28.
    6. 伯杰森 E J 著,陈冠雄译.生物固氮研究法[M].北京:北京科学技术出版社,1987.
    7. 蔡晓布,盖京苹,钱成等.西藏高原 d 然长芒草地丛枝菌根真菌接种效应[J].应用生态学报,2006,17(11):2121-2126
    8. 曹恭,梁鸣旱.平衡栽培体系中的植物营养综述[J].土壤肥料,2002(4):1-4.
    9. 曹季丹,唐玉贵,覃尚明等.VA 菌根与根瘤菌对含羞草科植物苗木接种效应研究[A].广东开平国际菌根研讨会交流论文,1994:1-10.
    10. 曹玉清等.固沙植物的内生菌根[J].干旱区研究,1985,2(2):50-53
    11. 常从云.大豆—根瘤菌共生固氮乙炔还原活体测定方法的研究[J].大豆科学,1986,5 (4) :357-366.
    12. 陈能场.黄维南.黄酮类物质在豆科植物结瘤固氮中的作用[J.]植物生理学通讯,1994,30(5):368-374.
    13. 陈绍荣,梁述平,吕应堂.钙和钙调素信号传导作用的分子机制[J].林忠平.走向 21 世纪的植物分子生物学[C ].北京 :科学出版社,2000.266-270.
    14. 陈文新.豆科植物根瘤菌-固氮体系在西部大开发中的作用[J].草地学报 2004,12(1):1-2.
    15. 程桂荪.根瘤菌和内生菌根混合接种对三叶草增产的效应[J].土壤,1986,18(3):132-136.
    16. 慈忠玲,于福杰,魏学增.珍稀濒危树种─沙冬青体细胞胚胎发生的组织学观察[J].内蒙古林学院学报),1994,(1):36-39.
    17. 丁琼,王华,贾桂霞等.沙冬青种子萌发及幼苗生长特性[J].植物生态学报,2006,30 (4): 633-639.
    18. 丁晓丽.大沙冬青组织培养的探讨.干旱区研究,1988,4:44-46.
    19. 董昌金,赵斌.丛枝菌根真菌与根瘤菌互作及类黄酮对互作效果的影响[J].应用生态学报,2004a,15 ( 9):1585-1588.
    20. 董昌金,赵斌.类黄酮物质apigenin 和 daidzein 诱导 AM 真菌侵染十字花科植物芥菜[J]. 科学通报,2004b,24(10):953-960.
    21. 董昌金, 姚发兴,赵斌. 类黄酮对 AM 真菌侵染菌丝生长及酶活性的影响.土壤学报,2006,43(3):473-477.
    22. 董昌金,郑世学,.球囊霉属几种 AM 真菌抱子表面消毒与萌发的研究[J].菌物系统,2003,22(3):410-416.
    23. 董昌金.根瘤菌与 AM 真菌双接种对大豆植株生长的影响[J].湖北农业科学,2004c,(5):41-43.
    24. 窦新田,程恒昌,李树藩等.大豆根瘤菌在黑龙江省接种效果与接种有效性的研究[J].中国农业科学.1989,22(5):62-70.
    25. 樊庆笙.固氮微生物学[M]. 北京:农业出版社,1991.
    26. 房增国,左元梅,李隆,等.玉米—花生混作体系中不同施氮水平对花生铁营养及固氮的影响[J].植物营养与肥料学报,2004,10(4):386-390.
    27. 费云标,孙龙华.沙冬青高活性抗冻蛋白的分离和鉴别[J].植物学报,1994,36(8):649-650.
    28. 费云标.抗冻蛋白基因结构与基因工程[J].生物工程进展,1992,12(3):33-35
    29. 冯金朝,周宜君,周海燕等.沙冬青对土壤水分变化的生理响应[J].中国沙漠,2001,21(21):223-22.
    30. 高丙利,韩素芬.刺槐根瘤菌结瘤因子的初步研究.中南林学院学报,199717(2):38-46
    31. 高丽锋,胡志昂.根瘤菌 NOD 因子的感知与信号传导[J]. 中国生物工程杂志,2002,10 22(5):65-68.
    32. 弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京,中国林业出版社:1997.
    33. 龚明福,韦革宏,吕双庆等.骆驼刺根瘤菌的超微结构研究[J].西北植物学报 2005,25(5:932-936
    34. 关桂兰,李仲元,王卫卫.新疆干旱区豆科植物结瘤的固氮特性[J].植物生理学报,1986,12(4):324-332
    35. 国家环保局.中国科学院植物所珍稀濒危保护植物名录(第一册).北京科学出版社,1985.
    36. 郭永忠,李振永,张源润,李生宝.沙冬青容器育苗及造林技术研究[J].山东林业科技,2004(6):22-23.
    37. 韩善华,王双,李琪,等.沙冬青叶肉细胞中一种特殊内含物的发育[J].植物学报.1994,36(11):855-859
    38. 韩善华,张红.红豆草根瘤侵染细胞中液泡内含物的超微结构特征[J].西北植物学报,2005,25(8):1512-1516.
    39. 韩善华.PHB 颗粒在红豆草根瘤细菌发育中的动态变化[J].微生物学报,1995,35 (2) :136-140.
    40. 韩善华.大豆根瘤非侵染细胞的主要功能[J].大豆科学,2006,03 :304-308.
    41. 韩善华.冬季沙冬青液泡内膜状内含物的超微结构研究[J].电子显微学报,1994,(4):241-246
    42. 韩善华.红豆草根瘤侵染细胞的超微结构变化[J].植物学报,1990,32 (10):809-811.
    43. 韩素芬 林树燕 郑富强. 根瘤菌入侵刺槐的途径研究[J].南京林业大学学报:自然科学版. 2003,27(4):59-61
    44. 何丽君,慈忠玲,孙旺珍.稀濒危植物沙冬青 Ammopiptanthus mongolicus(Maxim.)(chengf.)组织培养再生植株的研究[J].内蒙古农业大学学报,2000,21(4):28-30.
    45. 贺学礼,Yosef,Steinberger,Peter,Herman.荒漠灌木根际 AM 真菌动态分布研究(英文) 西北农林科技大学学报(自然科学版) [J],2001,29(4):24-28
    46. 贺学礼,赵丽莉,杨宏宇.毛乌素沙地豆科植物丛枝菌根真菌分布研究[J].自然科学进展.2006,16(6):684-688.
    47. 贺学礼.荒漠植物根际 AM 真菌的空间分布和定殖(英文) [J]. 植物生态学报,2002,26(2):223-229.
    48. 胡小加,黄沁洁.根瘤菌侵染不同油菜品种研究初报[J].中国油料作物学报,1998,20(2) :79-83.
    49. 黄大日方,林敏.农业微生物基因工程[M].北京;科学出版社,2001:13-16.
    50. 黄家风,李克梅,王爱英,刘升学.豆科植物-根瘤菌共生固氮的分子机理[J].石河子大学学报(自然科学版) [J],2002,6 (1):74-79
    51. 黄旭明,袁炜群,王惠聪,等.抗裂性不同的荔枝品种果皮发育过程中钙的分布动态研究.园艺学报,2005,32 (4):578-583
    52. 黄志宏,吕柳新.微生物与植物共生结瘤固氮的分子遗传学研究进展[J].福建农林大学学报(自然科学版),2002 ,31(1):67-73.
    53. 江勇,贾士荣,费云标等.抗冻蛋白及其在植物抗冻生理中的作用[J].植物学报,1999,41(7):677-685
    54. 蒋志荣,金芳,安力,王力.沙冬青生根组织培养的研究[J].甘肃农业大学学报,1997,32(3):244-246
    55. 蒋志荣.沙区常绿灌木沙冬青的防风固沙改土效能研究[J].甘肃农业大学学报,1994,29(1):83-86
    56. 荆玉祥,张宝田. 发育过程中田菁根瘤超微结构的变化[J].植物学报,1988,30 (2) :207-209.
    57. 靖元孝.根瘤菌结瘤因子的研究进展[J].生命的化学,1997,17(1):17-19.
    58. 赖文,林齐维,谢继石.“百脉一号”根瘤菌的分离及回接实验[J].种子,2000,(5);73-74.
    59. 李慧卿,马文元,李慧勇.沙冬青抗逆性及开发利用前景分析研究[J].世界林业研究,2000,13(5):67-71.
    60. 李淑敏,李隆,张福锁.蚕豆/玉米间作接种 AM 真菌与根瘤菌对其吸磷量的影响[J].中国生态农业学报.2005,13(3):136-139.
    61. 李淑敏,李隆,张福锁.丛枝菌根真菌和根瘤菌对蚕豆吸收磷和氮的促进作用[J].中国农业大学学报.2004,9(1):11-15.
    62. 李淑敏,孟令波,张晶.丛枝菌根真菌和根瘤菌对蚕豆吸收有机磷的促进作用[J].北方园艺.2004,4:54-55.
    63. 李晓林,曹一平.VA 菌根菌丝对三叶草固氮的影响[J].北京农业大学学报,1992,
    18(3):299-302.
    64. 李晓鸣.VA 菌根真菌,根瘤菌双接种对大豆增产效果的影响[J].生物技术,1992,2(6):38-40
    65. 李新蓉 .沙冬青属植物繁殖生物学研究[D] .2006.
    66. 刘 莉,周俊初,陈华癸.不同化合态氮浓度对大豆根瘤菌结瘤和固氮作用的影响[J].中国农业科学,1998,31(4):87-89
    67. 刘贯山,陈咖.钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用[J].植物学通报,2003,
    20(2):160-167.
    68. 刘果厚.阿拉善荒漠特有植物沙冬青濒危原因的研究[J].木本植物研究,1998,18(3):341-345.
    69. 刘家琼,丘明新. 我国荒漠特有的常绿植物——沙冬青的生态生理及解剖学特征[J].植物学报,1982,24(6):568-574.
    70. 刘家琼,邱明新,杨堃等.沙冬青植物群落研究[J].中国沙漠,1995,15(2):109-115.
    71. 刘家琼,周湘红.几种固沙植物过氧化物酶、过氧化氢酶活性及其同工酶的初步分析[A].中国科学院(1991—1992)沙坡头沙漠试验研究站年报[C].兰州:甘肃科技出版社,1993
    72. 刘建福,杨道茂,欧阳明安,王丽娜,张勇,曾明. 澳洲坚果根系溶提物对 AM 真菌孢子萌发和菌丝生长的影响[J]植物生态学报,2005,29(6):1038-1042.
    73. 刘润进,李敏,石兆勇.AM 真菌对花生与甘薯产量的影响 v.中国生态农业学报,2003,11(1):36-37.
    74. 刘润进,李晓林.丛枝菌根及其应用[J].北京:科学出版社,2000
    75. 刘生龙,王理德,高志海,等.八种珍稀濒危植物引种试验[J].甘肃林业科技,1995,(3):10-13.
    76. 刘嵩涛,洪国藩.结瘤基因的表达调控[J].微生物学通报,1998,25(3):160.
    77. 刘炜,冯虎元.丛枝菌根共生关系的信号机制研究进展[J].西北植物学报,2006,26(10):2173-2178.
    78. 刘晓云,陈文峰,陈文新.根瘤菌的系统发育及其分类研究进展[J].微生物学通报,2002,29 (5):73-76.
    79. 刘玉红,王善敏,王荷生. 试论沙冬青属的染色体地理[J].地理研究,1996,15(4):40-47.
    80. 龙良鲲,姚青,羊宋贞,朱红惠. 扩繁条件对两种 AMF 菌剂接种势的影响[J].微生物学通报, 2007,34(2):04-207.
    81. 卢存福,王红,简令成等.植物抗冻蛋白研究进展[J].生物化学与生物物理进展,1998,25(3):210-216.
    82. 潘伯荣,黄少甫.植物学报,1993,35(4):314-317.
    83. 潘伯荣,伊林克,安尼瓦尔.我国干旱荒漠区珍惜濒危植物资源的综合评价及合理利[J].干旱区研究,1991,(3):29-39.
    84. 彭先斌等.大豆愈伤组织和细胞抽提液对菌根真菌孢子发芽和芽管伸长的影响[J].科学通报,1990,35(3):227-229.
    85. 彭抒昂, 岩堀修一. 梨果实发育中 Ca2 +在果肉细胞的定位及变化研究. 园艺学报, 2001,
    28 (6) : 497-503
    86. 上海植物生理学会.植物生理学实验手册[M].上海:上海科学技术出版社,1992.
    87. 盛敏,唐明,迪丽努尔等.西北盐碱土主要植物丛枝菌根研究[J].西北农林科技大学学报.2007,35(2):74-78.
    88. 石海平等.微生物发酵制取聚 β- 羟基丁酸研究简介[J].食品与发酵工业.1997,24 (2):79 -
    82.
    89. 宋鸿遇,曾维清.根瘤菌与豆科宿主的共生及信号交换[A].
    90. 宋鸿遇.共生固氮的分子基础[A].
    91. 宋健,宋希云,冯艳宾.拟南芥中低温诱导肌醇半乳糖苷合成酶基因表达作用初探[J].山东农业科学,2007 1:22-24.
    92. 苏友波,林春,张福锁等.不同 AM 菌根菌分泌的磷酸酶对根际土壤有机磷的影响[J].土壤,2003,35(4):334-338.
    93. 孙大业. 细胞信号转导(第三版)[M] 北京:科学出版社. 2001.
    94. 孙祥,于卓.沙冬青根系研究[J].干旱区研,1994,11(1):53-56.
    95. 田秀英,孙岱阳,刘凤英,等.沙冬青的生物学特性及开发利用[J].防护林科技,1997(1):43-45.
    96. 汪洪钢,吴观仪,李慧荃.VA菌根对绿豆吸磷固氮的影响[J].土壤学报,1983,20(2):205-208.
    97. 汪洪钢,吴观以,李慧荃. VA 菌根真菌与根瘤菌对离体绿豆根器官的侵染[J] .微生物学通报,1990,17(4) :193-195.
    98. 汪洪钢,吴观以,李慧荃.VA 菌根与根瘤菌的相互关系对花生生长的影响[J].微生物学通报,1985,12(2):49-51.
    99. 王朝晖,孙大业.植物钙调素研究进展[J].植物学通报,1997,14(1):1-7.
    100. 王凤茹.水分胁迫及复水过程中小麦叶片内钙的定位[J].植物生理学,2000,26(4):280-282.
    101. 王慧敏,刘西莉,李健强,王建辉,孙志永,陈文新 防沙治沙植物多功能根瘤菌种衣剂[J].中国农业科学,2000,33(5):1-7.
    102. 王继林,郭志中,于洪波,王三英.何虎林濒危灌木沙冬青育苗方式对比试验[J].中国沙漠,2000,(3):320-322.
    103. 王庆锁,李勇,张灵芝.珍稀濒危植物沙冬青研究概况[J].生物多性,1995,3(3):153-156.
    104. 王卫卫,胡正海.阿拉善荒漠区豆科植物共生固氮资源初步研究[J].水土保持通报,2001,21(4):30-33.
    105. 王亚琴, 张康健,黄江康. 植物衰老的分子基础与调控.西北植物学报.2003, 23 (1) :182-189.
    106. 王逸群,赵仁贵,王玉兰.豆科植物结瘤及其结瘤的分子基础[J].吉林农业科学,2001,26(5) :20 – 25.
    107. 王迎春,杨持.物种生活史策略的研究现状[J].内蒙古大学学报(自然科学版),2001,32(1):112-118
    108. 王有德,何全发,王兴东.珍稀濒危植物沙冬青育苗、造林试验研究(3)[J].宁夏农林科技,2004,(3):32-36
    109. 王有德,何全发,王兴东等.沙冬青生长、更新状况调研及利用前景探讨[J].宁夏农林科技,2004(3):28-31.
    110. 韦存虚,蓝盛银,徐珍秀.水稻花后衰退珠心和胚乳发育初期的 Ca2+超微细胞化学定位[J].电子显微学报.2002,21(1):34-39
    111. 尉秋实,马瑞君,王继和,李爱德,李昌龙.濒危植物沙冬青大田育苗试验[J].中国沙漠,2004.24(6):809-814
    112. 尉秋实,马瑞君,王继和,李昌龙.濒危植物沙冬青人工种群建立技术[J].甘肃林业科技,2004,29(3):7-11
    113. 沃尔克 N.土壤微生物学[M].中国科学院南京土壤研究室微生物室译.北京:科学出版社,1983,95.
    114. 吴均章,甘习华,韩素芬.根瘤菌诱发合欢根毛的增生和根表层传递细胞的形成[J].林业科学,2005,41 (6):179 - 181.
    115. 吴平,印莉萍,张立平等.植物营养分子生理学[M].北京:科学出版社,2001,103-105.
    116. 吴以德,黄维南,卓仁松. 金合欢根瘤类菌体周膜融合及其衰老解离的亚显微结构研究[J]. 科学通报,1986,08:622-626.
    117. 武维华.植物生理学[M].北京:科学出版社,2003:215-227.
    118. 肖家欣, 彭抒昂, 张红艳. 单性结实与自花结实柑橘果实发育中钙钾动态的研究. 园艺学报, 2004, 31 (1) : 7-10
    119. 徐化凌.黄河三角洲地区耐盐木本植物引进试验研究 [D].山东农业大学, 2006.
    120. 徐开未,张小平,陈远学等.石灰性紫色土上花生的平衡施肥探讨[J].西南农业学报,2003,16 (Suppl):108-112.
    121. 徐兴良,关秀清,刘公社.联合固氮菌与根瘤菌协同作用对小麦幼苗的影响[J].中国生态农业学报,2003,11(3):66-68
    122. 许国英,潘伯荣,谢明玲等.沙冬青生物碱成分研究[J].干旱区研究,1994,11(1):52-56.
    123. 严东辉,姚一建.菌物在森林生态系统中的功能和作用研究进展[J].植物生态学报, 2003,27(2):143-150.
    124. 杨弘远.钙在有花植物受精过程中的作用[J].植物学报:英文版,1999 41(10):1027-1035.
    125. 杨敏文.快速测定植物叶片叶绿素含量方法的探讨[J].光谱实验室,2002,19(4):478-481.
    126. 杨期和,葛学军,叶万辉,邓雄,廖富林.矮沙冬青种子特性和萌发影响因素的研究[J].植物生态学报,2004,28(5):651-65
    127. 伊林克,潘伯荣,王烨等.温带荒漠珍惜濒危植物的引种栽培[J].干旱区研究,1991,(2):1-7.
    128. 伊林克,潘伯荣,赵振东等.沙冬青植物引种试验研究[J].干旱区研究,1988,(4):37-43.
    129. 尹林克,王烨.沙冬青幼苗生长规律初步研究[J].干旱区研究,1990,7(1):59-61.
    130. 游志鹏,廖玫江,朱家璧. 结合态氮对根瘤菌生长液诱导的苜蓿根毛变形的抑制[J].植物生理学报,1998,24(3):215-219
    131. 余波,李志芳. 菌根真菌和根瘤菌对四季豆生长影响的效应初探[J].d 津农业科学.2003.9(4):21-24.
    132. 余叔文,汤章城.植物生理与分子生物学(第 2 版)[M].北京:科学出版社,1998,681-698.
    133. 宰学明,钦佩,吴国荣等.高温胁迫对花生幼苗光合速率、叶绿素含量、叶绿体Ca-(2+)-ATPase、Mg-(2+)-ATPase 及 Ca-(2+)分布的影响[J]. 植物研究,2007,27(4):416-420.
    134. 曾定.固氮生物学[M] .厦门:厦门大学出版社,1987.
    135. 曾昭海,胡跃高.共生固氮在农牧业上的作用及影响因素研究进展[J].中国生态农业学报,2006,10(4):21-24
    136. 张海瑜,张海予,李小红,温尚昆,杨苏声.费氏中华根瘤菌 042BS 结瘤调节基因的克隆及功能[J].检测微生物学报,2002,42(1):33-39.
    137. 张明才,何钟佩,田晓莉等.植物生长调节剂 BR 和 SHK-6 对大豆生物产量和根瘤固氮活性的激素调控研究[J].大豆科学,2004,23(2):96-100.
    138. 张琴,张磊,魏世清等.钙离子对紫花苜蓿及苜蓿根瘤菌耐酸能力的影响[J].应用生态学报,2007,18(6):1231-1236.
    139. 张学贤,张忠明,周俊初,李阜棣.紫云英根瘤菌结瘤因子的生物学功能.华中农业大学学报,1996,15(1):41-45.
    140. 张彦东,白尚斌,刘雪峰等.磷胁迫条件下落叶松幼苗对难溶性磷的利用[J].应用生态学报,2000,11(5):668—670.
    141. 张勇,谢丽源,熊丙全,曾明,余东.银杏根际丛枝菌根真菌生长与根系黄酮含量的相关性研究[J].菌物学报,2004,23(1):133-138.
    142. 张勇,谢丽源,熊丙全,曾明.银杏根系甲醇溶提物对离体培养条件下丛枝菌根真菌生长发育的研究[J].应用生态学报,2003,14(12):2233-2236.
    143. 赵博.荒漠有毒灌草资源的培育及综合利用——防治荒漠化的新思路[J].南京林业大学学报),1998,22(2):102-106
    144. 赵淑清,田春杰,何兴元.固氮植物的菌根研究[J].应用生态学报,2000,11(2):306-310
    145. 赵昕,阎秀峰.丛枝菌根真菌对植物次生代谢的影响[J].植物生态学报,2006,303:514-521.
    146. 赵之伟.VA 菌根共生的起源和进化[J ].生态学杂志,1998,17 (3) :37-41.
    147. 赵之伟.菌根真菌在陆地生态系统中的作用[J ]. 生物多样性,1999,7 (3) :240-244.
    148. 赵忠,马刊欣,段安安.毛白杨 VA 菌根与外生菌根关系的研究[J].林业科学,1994,
    30(2):111-115.
    149. 赵忠,王真辉.菌根真菌与根际微生物间的关系及其对宿主植物的影响[J].西北林学院学报,2001,16 (4) :70-75.
    150. 郑虎哲,张玉廷,崔春兰等.接种菌根菌和/或根瘤菌对紫花苜蓿的生长及 N·P 的吸收效果研究[J].安徽农业科学,2006,34(3):540-542.
    151. 郑伟文,宋亚娜.VA 菌根真菌和根瘤菌对翼豆生长,固氮的影响[J].福建农业学报,2000,15(2):50-55.
    152. 钟增涛,沈其荣,冉炜等.旱作水稻与花生混作体系中接种根瘤菌对植株生长的促进作用[J].中国农业科学,2002,35(3):303-308.
    153. 周三,周明,张硕等. 盐生野大豆的异黄酮积累及其生态学意义[J].植物生态学报,2007,31(5):930-936.
    154. 周卫,林葆.花生缺钙症状与超微结构特征的研究[J].中国农业科学,1996,29(4):53-57.
    155. 周卫,汪洪.植物钙吸收、转运及代谢的生理和分子机制[J].植物学通报,2007,24(6):762-778.
    156. 周小宇 郑慧芬 潘峰等. AMF 和饭豆根瘤菌对饭豆、玉米套种促生作用的研究[J].生物学杂志2003,20(3):12-13,28.
    157. 周晓蕾,陈滔滔,王保怀等.沙冬青抗冻蛋白热滞活性的 DSC 研究[J].物理化学学报,2001,17(1):66-69.
    158. 周宜君,刘春兰,冯金朝,等.沙冬青抗旱、抗寒机理的研究进展[J].中国沙漠,2001,21(2):312-315.
    159. 朱剑光,尉亚辉,吴艺舟.花生慢生根瘤菌的分离与鉴定[J].生物技术,2006,16(2):45-47.
    160. 朱宗元,马毓泉.阿拉善—鄂尔多斯生物多样性中心的特有植物和植物区系的性质[J].干旱区资源与环境,1999,13(2):1-15.
    161. AbdelGadir A H,Martin Alexander.Procedures to enhance heat resistance of Rhizobium[J].Plant and Soil,1997,188: 93-100.
    162. Abhijeet K,Halbe S,Nair L N. VAM of Casurina from konkan.In:Reddy SM,Srivastsva HP,Purohit DK eds.Microbial Biotechnology[M].Jodphur:Scientific Publishers. 1997,64-66.
    163. Ae N,Arihara J,Okada K.Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J].Science,1990,248:477-480.
    164. Agerer R.Studies on ectomycorrhizae XVII.The ontogeny of the ectomycorrhizal rhizomorphs of Paxillus involutus and Thelephora terrostris[J].Nova Hedwigia, 1988,47(34):311-334.
    165. Agerer R.Studies on ectomycorrhizae II.Introduction remarks on characteriza- tion and identification[J].Mycotaxon,1986,24:473-492.
    166. Ahn T K,Lee M W, Ka K H. Vesicular-arbuscular mycorrhizal spores found from the soils of the leguminous plants in Korea[J]. Korean Mycol,1992,20:95-108.
    167. Akihiro Suzuki, Mitsumi Akune, Mari Kogiso, Yoshihiro Imagama, et al. Control of Nodule Number by the Phytohormone Abscisic Acid in the Roots of Two Leguminous Species[J].Plant & Cell Physiology.Oxford,2004,45(7):914.
    168. Akiyama K, Matsuzaki K,Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature,2005,435:824-827.
    169. Akiyama K,Matsuoka,Hayashi H.Isolation and identification of a phosphate deficiency-induced Cglycosyl flavonoid that stimulates arbuscular mycorrhiza formation in melon roots[J].Mol.Plant Microbe Interact.2002,15:334-340.
    170. Albrecht C,Geurts R,Lapeyrie F,et al.Endomycorrhizae and rhizobial nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A[J].Plant J,1998,15(5):605-614.
    171. A L Davidson, W Newcomb.Changes in actin microfilament arrays in developing pea root nodule cells.Canadian Journal of Botany.2001,79(7):767-776.
    172. Ames R N,Reid C P,Porter L K,et al.Hyphal uptake and transport of nitrogen from two 15N-label led sources by Glomous mosseae,avesicular-arbuscular mycorrhizal fungus[J].NewPhytol,1983,(95):381-396.
    173. Andi S A L,Abreu C A,Abreu M F,et a1.Influence lead additions on Arbuscular myctrhiza and Rhizobium symbioses under soyben plant[J].So Fzdogy,2004,26(2): 123-l31.
    174. AndreevI M, Dubrovo P N, Krylova V v, et a1.Characterization of ATP-Hydrolyzingand ATP-Driven Proton-Translocating Activities Associated with the Peribacte- roid Membrane from Root Nodules of Lupinus luteus L.[J]. J.Plant Physiol., 1997, 151:563-569.
    175. Andreeva,I N,AndreevI M, Dubrovo P N,et al. Calcium Stores in Symbiosomes from Yellow Lupin Root Nodules[J].J.Plant Physiol.,1999,155:35-363.
    176. AndreevI M, Dubrovo P N, Krylova V V, et a1.Calcium Uptake by ymbiosomes and the Peribacteroid Membrane Vesicles Isolated from Yellow Lupine Root Nodules[J], J.Plant Physiol.,1998,153:610-614.
    177. Andreev I M, Andreeva, I N,Dubrovo, P N et al.Calcium Status of Yellow Lupin Symbiosomes as a Potential Regulator of Their Nitrogenase Activity:The Role of the Peribacteroid Membrane[J].Russian Journal of Plant Physiology, 2001,48(3):
    308-317.Translated from Fiziologiya Rastenii,2001,48(3):364-374.
    178. Andreev I M, Dubrovo P N, Krylova V V, et a1.Functional Identification of ATP-Driven Ca2+-Pump in the Peribacteroid Membrane of Broad Bean Root Nodules[J]. FEBS Lett.,1999,447:49-52.
    179. Andreev I M,Dubrovo P N,Krylova V V,et a1.Accumulationof Calcium and Its Involvement in the Control of Nitrogenase Activity in the Symbiosomes of Broad Bean Root Nodules[J],Fiziol.Rast.(Moscow),2000,47:14-20.
    180. Anne B Heckmann, Fabien Lombardo, Hiroki Miwa, et al.Lotus japonicus Nodulation Requires Two GRAS Domain Regulators,One of Which Is Functionally Conserved in a Non Legume1[C][W] J, Plant Physiology.2006,142(4):1739-1751.
    181. Armitage J P, Gallagher A, Johnston A W B.Comparision of the chemotactic behavior of Rhizobium leguminosarum with and without the nodulation plasmid[J].Mod Microbid,1988,2:743.
    182. Augé R M. Water relations,drought and vesicular arbuscular mycorrhizal symbiosis [J].Mycorrhiza,2001,11:3-42.
    183. Azcon R,El-Atrash E.Influence of arbuscular mycorrhizae and phosphorus fertilization on growth,nodulation and N2 fixation (15N) in Medicago sativa at four salinity levels[J].Biology and Fertility of Soils,1997,24:81-86.
    184. Bailey P H J,Currey J D,Fitter A H.The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Alliumcepa and root mutants of Arabidopsis thaliana[J]. Journal of Experimental Botany, 2002,53: 333-340.
    185. Balestrin R,Perotto S,Gasverde E,et al.Transcription of a gene encoding a lectine like glycol protein is induced in root cell sharboring arbuscular mycorrhizal fungi in Pisumsativum[J]. Molecular Plant-Microbe Interactions, 1999,(9):785-791.
    186. Baner W D G,Caetano-Anolles.Chemotaxis induced gene expression and competiliveness in the rhizosphere[J].Plant soil,1990,129:45.
    187. Barea J M, Azcón-Aguilar C,Azcón R.Vesicular-arbuscular mycorrhizaim provesboth symbiotic N2-fixation and N uptake from soil as 15N technique under field condition[J].NewPhytol,1987,106:717-727.
    188. Bari R, Datt Pant B, Stitt M, Scheible W R. PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants[J].Plant Physiology,2006,141: 988-999.
    189. Becard G,Douds D D,Pfeffer P E.Extensive in vitro hyphal growth of vesicular- arbuscular mycorrhizal fungi in presence of CO2 and flavonols[J].Appl Environ Microbiol,1992,8(3):821-825.
    190. Besma Ben Amor, Sidney L. Shaw, Giles E D ea tl. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation[J].The Plant Journal 2003, 34: 495-506.
    191. Bethlenfalvayg J,Pacovskyr S,Baynehg,et al.Interactions between nitrogen fixation,mycorrhizal col-onization,and host-plant growth in the Phaseolas- Rhizobium-Glomussymbiosis[J].Plant Physiol,1982,70(2):446-450.
    192. Blakeslee J J, Peer W A, Murphy A S.Auxin transport. Current Opinion in Plant Biology: Cell Signalling and Gene Regulation,2005,8:494-500.
    193. Brechenmacher L,Weidmann S,van Tuinen D,ea tl.Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions[J].Mycorrhiza,2004,14:253-262.
    194. Brendan K. Riely, Jeong-Hwan Mun, Jean-Michel Ane.Unravelling the molecular basis for symbiotic signal transduction in legumes[J]. Molecular Plant Pathology, 2006,7(3):197-20.
    195. Brewin N J.Development of the legume root nodule [J]. Ann Rev Cell Biol,1991, (7):191-226.
    196. Brundrett M C,Piche Y,Peterson R L.A new method for observing the morphology of vesicular-arbuscular mycorrhizae[J]. Canadian Journal of Botany,1984, 62:2128-2134.
    197. Buchanan B B, Gruissem W, Jones R L. Biochemitry andmolecular biology of plants [M]. Rockville: American Socioty of Plant Physiogists,2000.
    198. Burleigh S H, Harrison M J.Anovel gene whose expression in Medicagotruncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal(VAM) fungi and to phosphate nutrition[J].Plant Molecular Biology, 1997,(34):199-208.
    199. Buwalda J G,Stribley D P.and Tinker PB. Development of endomycorrhizal root systems: Detailed pattern of development of infection and the control of infecti- on level by host in young leek plants.New Phytol, 1984,96:411-427.
    200. Byod A,Siman M.Bacterial chemotaxis.Anna Rev Physiol,1982,44:501.
    201. Caetano-Anolles, Crist-Fstes G D K, Baner W D. Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation gene. J Bacterial, 1988,170:31-64.
    202. Caldeira M V W,Silva E M R,Da Franco A A,et al.The growth of arboreal legumes in response to inoculation with arbuscular mycorrhizal fungi. Ciencia Florestal, 1997,7(1):1-10.
    203. Callaham D,Del Tredici P,Torrey JG.Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia.Science, 1978,199: 899-902.
    204. Carrol P,Vance.Phosphorus acquisition and use: critical adaptations by plant s for securing a nonrenewable resource[J].New Phytologist,2003,157:423-447.
    205. Carroll B J, McNeil D L,Gresshoff P M.Asupetnodulations and nitrate-tolerant sybiosis (nts) soybean mutant.Plant Physiol,1985,78:34.
    206. Chiou T J, Aung K, Lin S I, Wu C C, et al. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. The Plant Cell,2006,8:412-421.
    207. Clarkson D.Factors affecting mineral nutrient acquisition by plants[J].Annul Rev Plant Physiol,1985,(36):77-115.
    208. Comerford N B. Soil phosphorus bioavailability [M]. In: Lynch J P Deikman J, eds. Phosphorus in plant biology: regulatory roles in molecular, cellular, organic, and ecosystem processes[J].Rockville,M D,USA:American Society of Plant Physiology,1998,136-147.
    209. Cooper J B,Long S R.Morphogenetis complementation of Rhizobium meliloti noduleation mutants by trans-zeatin secretion[J].Plant Cell.1994,6:215-225.
    210. Cooper K M,Tinker P B.Translocation of Mycorrhizae.and transfer of nutrients in vesicular-arbuscular mycorrhizas.New Phytol.,1978, 81:43-52.
    211. Craig A S,Crunwood R M ,Williamscnki.Ultrastructureal inclusion of rhizobial bacteeroids of lotus nodules and their yaxomomic significance[J].Arch micro- biol,1973,89:23-32.
    212. Crush J R.Plant growth responses to vesicular-arbuscular mycorrhizae Ⅶ:Growth and nodulation of some herbagelegumes[J].New Phytol,1974,73:745.
    213. Dahiya JS. Cajaflavone and cajanone released from Cajamis cajan (L. mill. sp) roots induce nod genes of Bradyrhizobiwn sp.Plant Soil.1991,134(2):297.
    214. Dahiya P, Sheerier D J, Kardailsky I V,et al.Symbiotic genesym31 controls the presence of a lectin-like glycol protein in the symbiosome compartment of nitrate-fixing pea nodules[J].Molecular Plant-Microbe Interactions,1998, (11): 915-923.
    215. Dangar T K ,Basu P S. Studies on seasonal variation of plant hormones , nitrogen fixation and indole acetic acid metabolism in root nodulus of Betea monosperma (Lam.) Taub[J]. Plant and Soil.1985,84 (1):147-1521.
    216. Das P K,Sahoo P N,Jenamk.Effect of VA-mycorrhiza and rhizobium inoculation on nutrient uptake,growth attributes and yield of greengram(Vigna radiate L.)[J].Environment and Ecology,199,15(4):830-833.
    217. De P S,Basu P S.Content of hormone and indole acetic acidmetabolism in root nodules of Tephrosea Purpurea Pers[J].Indian J.Plant Physoil.1995,Ⅷ,3: 228-232.
    218. Dehne H W,Backbaus G S Z.Pflanzenkr.Pflamenachutz,1981,93:4I5-424.
    219. Dela C.Nitrogen Fixation and Mycorrhizae in Acacia on Degraded Grasslands in Tropical and the Pacific.Awang K and Taylor D A.eds.Bangkok,Thailand:Winrock International.1992:59-71.
    220. Denarie J.Rhizobium lipochitooligosaccharide nodulation actor: Signaling molecules mediating recogntion and morphogenesis[J].Annu Rev Biochem,1996, 65: 503-535.
    221. Djordjevic M A, Redmond J W, Batley M et al. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii[J].EMBO J,1987,6:1173.
    222. Eckardt N A. Insights into plant cellular mechanisms: of phosphate transporters and arbuscular mycorrhizal infection[J].The Plant Cell,2005,17:3213-3216.
    223. El-Dessougi H,Zu Dreeele A,Claassen N.Growth and phosphorus uptake of maize cultivated alone,in mixed culture with other crops or afterincorporation of their residues[J].Journal of Plant Nutrition and Soil Science,2003,166:254-261.
    224. El-Hamdaoui, M.Redondo-Nieto, B. Torralba, ea tl.Influence of boron and calcium on the tolerance to salinity of nitrogen-fixing pea plants[J].Plant and Soil,2003. 251:93-103.
    225. Ezawa T,Hayatsu M,Saito M.A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza:up-regulation of secreted acid phosphatase gene in the host plant[J].Molecular Plant–Microbe Interactions,2005,18:1046- 1053.
    226. Faria S M,J M Sutherl,J I sptent.Plant Science.1986,45:143-147.
    227. Farmer E, Schulze-Lefert P.Biotic interactions:From molecular networks to inter-organismal communities[J].Current Opinion in Plant Biology.2005,8:343- 345.
    228. Feldmann F,Idczak E.Inoculation of Vabsiular-arbuscular Mycorrhizal Fungi for Use in Tropica1 Nurseries[M]. In: Norris J R,Read D J,VarmaA K(ed).Techniques for Mycorrhizal Research.Landon:Academic Presss,1992.799-817.
    229. Felle H H, Kondorosi E, Kondorosi A, Schultze M. The role of ion fluxes in nod factor signalling in Medicagosativa[J].Plant J,1998,13:455-463.
    230. Firmin J L, Wilson K E, Rossen L et al.Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plant[J].Nature (London), 1988,324:90.
    231. Fisher R F,Long S R.Rhizobium-plant signal exchange.Nature,1992,357:655-660.
    232. Fitter A H,Garbaye J.Interaction between mycorrhizal fungi and other soil organisms[J].Plant and Soil,1994,159:123-132.
    233. Franssen H J.Developmental aspects of the Rhizobium legume symbiosis[J].Plant Mol Biol,1992,19(1):89-107.
    234. Frazer L N, Moore D.The role of calcium accumulation and cytoskeletal elements in the perception and response of coprinuscinereus to gravity[J].COSPAR’94, Abstracts,1994,280.
    235. Frenzel A,Manthey K,Perlick A M,Meyer F,Puhler A,et al.Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes[J].Molecular Plant-Microbe Interactions,2005,8:771- 782.
    236. Fruhing M.The vici afaba leghemoglobin gene Vflb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculalum [J].Molecular Plant-Microbe Interactions,1997,(10):124-131.
    237. Geiger O,Ritsema T,Van Brussel A A N,et a1.Role of rhizobia LipooLigosaecba rides in root nodule formation on leguminous plants[J].Plant and Soil.,1994, 161:81-89.
    238. George E, Hussler K U, Vetterlein D.Water and nutrient translocation by hyphae of Glomus mosseae[J].Can J Bot,1992,(70):2130-2137.
    239. Gianinazzi-Pearson V,Dénarie J.Red carpet genetic programes for root endo- symbioses[J].Trends Plant Sci,1997,(2):371-372.
    240. Giovannetti M, Citernesi A S. Time course of appresorium formation on host plants by arbuscular mycorrhizal fungi. Mycol Res,1993,97(9):1140-1142.
    241. Gonzalez E,Solano R, Rubio V, Leyva A, Paz-Ares J.Phosphate transporter traffic facilitator is a plant-specific SEC12-related protein that enables the endopl- asmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis[J]. The Plant Cell,2005,17:3500-3512.
    242. Gordon-Weeks R, Tong Y, Davies T G E, Leggewie G.Restricted spatial expression of a high-affinity phosphate transporter in potato roots[J].Journal of Cell Science,2003,116:3135-3144.
    243. Guenoune, D, Galili, S, Phillips, D A, et al.The defense response elicited by the pathogen Rhizoctonia solani is suppressed by colonization of the AM-fungus Glomus intraradices[J].Plant Sci.2001,160:925-932.
    244. Guilemin J P,Abdel-Fattah G M,Trouvelot A,et al.Interactions between soil applied fungicides,endomycorrhiza fungal activity and plant gorwth[J].Soil Sci, 1993,l:161-172
    245. Guimil S,Chang H S,Zhu T,Sesma A, et al.Comparative transcriptomics of rice reveals an ancient pattern of response to microbia colonization[J].Proc Nat/Acad Sci USA,2005,102:8066-8070.
    246. Hansen H.Grossmann K.Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition[J].Plant Physiology,2002,12(1):1437-l448.
    247. Harley J L and Smith S E. Mycorrhizal Symbiosis.London: Academic Press.1983.
    248. Harrison M J,VanBuuren M L.Aphosphate transporter from the mycorrhizal fungus Glomus versiforme[J].Nature,1995,(378):626-629.
    249. Harrison M J.Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis[J].Annu Rev Plant Physiol Plant Mol Boil,1999,(50):361-389.
    250. Hartwin U A, Maxwell C A, Joseph C M, et al.Interaction among flavonoid nod gene inducers released from alfalfa seeds and roots[J].Plant physiol.,1989, 91(3):11-38.
    251. Harwood C S,Parales R E.The beta-ketoadipate pathway and the biology of self-identity[J].Annu Rev Microbiol,1996,50:553-590.
    252. Hatarpaul L,Chakravarty P,Subramaniam P. Studies in tetrapartite symbiosis: Role of ecto and endomycorrhizal fungi and Frankia on the growth performance of Alnusincana[J].PlantandSoil,1989,118:145-150.
    253. Hattingh M J,Gray L E,Gerdemann J W.Uptake and translocation of,32,P-labelled phosphate to onion roots by endomycorrhizal fungi[J].Soil Sci,1973,54:56-60.
    254. Heichel G H,Vance C P.Nitrate-N and rhizobium strain roles in alfalfa seedling nodulation and growth[J].Crop Sciene,1979,19(7):512-519.
    255. Heinz E B, Phillips D A and Streit W R. BioS, a biotin-induced, stationary phase, and possible LysR-type regulator in Sinorhizobium meliloti[J].Mol Plant Microbe Interact,1999,12:803-812.
    256. Hirsch A M,Kapulniky.Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis[J].Fungal Genet Biol,1999, 23 (3):205-212.
    257. Hirsch, A. M. Early nodulingenes are induced in alfalfa root out growths elicited by auxin transport inhibitors[J].Proc. Natl. Acad.Sci.,1989,86:1244- 1248.
    258. Hirseh A M.Developmental biology of legume nodulation[J].New Phytologist, 1992,122:211-237.
    259. Hitsch A M.Patterns of nodule development and nodulin gene expression in alfalfa and Afghanistan pea[A].In:Advances in Molecular Genetics of Plant- Microbe Interactions[C].Hennoecke H,Vermat D P S.Dordrecht:Kiuwer Academic Publicers,1991,317-324.
    260. Hodes L H,Gerdemann J W. Translocation of calcium and phosphate by external hyphae of vesicular arbuscular mycorrhizae[J].SoilSci,1978,126:125-126.
    261. Hohnjec N,Vieweg M F,Puhler A,et al.Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza[J]. Plant Physiol,2005,137:283-301.
    262. Horst Vierheilig.Regulatory mechanisms during the plant-arbuscular mycorrh- izal fungus interaction[J].Canadian Journal of Botany,2004,82(8):1166-1177.
    263. Horvath B,et al. Organization structure and symbiotic funciton of Rhizobium meliloti nodulation genes determining host specificity for alfalfa[J]. Cell, 1986,46 :335 - 343.
    264. Hubert H Felle, Eva Kondorosi, Adm Kondorosi, et al. Nod factors modulate the concentration of cytosolid free calcium differently in grow ing and non-growing root hairs of Medicago Sativa L[J].Planta,1999,209:207-212. Ishii T, Aikawa J, Nakamuta N, et al.Effect of citrus juice pomace extracts on in vitro hyphal growth of vesicular arbuscular mycorrhizal fungi and their in vitro infections of citrus roots[J].J Jap Soc Hort Sci,2000,69 (supp.):4-9.
    265. Ishii T, Narutaki A, Sawada K, et al.Growth stimulatory substances for vesicular arbuscular mycorrhizal fungi in Bahia grass (Paspalumnotatum Flugge) root[J].Plant Soil, 1997,196:301-304.
    266. Izmailov S F. Characterization of ATP-Hydrolyzing and ATP-Driven Proton- Translocating Activities Associated with the Peribacteroid Membrane from Root Nodules of Lupinusluteus L.[J].J.Plant Physiol.,1997,151:563-569.
    267. Jacques M. Vasse and Georges L.The Rhizobium-legume symbiosis:observation of root infection by bright-field microscopy after staining with methylene blue Truchet[J].Planta,1984,161:487-489.
    268. Johansen I,Jakobsen E.Jensen S.Hyphal transport of 15N-label led nitrogen by avesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N[J].NewPhytol,1992,(122):281-288.
    269. Kaldorf M, Schmelzer E, Bothe H.Expression of maize and fungal nitrater eductase genes in arbuscular mycorrhiza[J].Molecular Plant Microbe Interactions,1998, (6):439-448.
    270. Krylova V V,Andreev I M,Andreeva I N,et al.Verapamil-Sensitive Calcium Transporter in the Peribacteroid Membrane of Symbiosomes from Vicia faba Root Nodules.Russian Journal of Plant Physiology,2002,49(6):746-753. Translated from Fiziologiya Rastenii,2002,49(6):839-846.
    271. Kapublik Y.Flavone limitations to root nodulation and symbotic nitrogen fixation in alfalfa.Plant physiol,1987,84:1193.
    272. Kardailsky I V,Sherrier D J,Brewin N J,et al.Identification of a new pea gene,Ps N lec1,encoding a lectin-like glycoprotein isolated from the symbiosomes of root nodules[J].PlantPhysio,1996,(111):49-60.
    273. Kardailsky I.The pea late nodulin gene PsNOD6 is homologous to the early nodulin genes PsENOD3/ 14RNA and is expressed after the leghemoglobin genes[J].Plant Mol Biol,1993,23(5):1029-1037.
    274. Khan M K,Sakamoto K,Yoshida T.Dual inoculation of peanut(Arachis hypogaea)with Glomus sp. and microbe symbioses aids restoration of desertified ecosystems[J].A ppl. Envi ron. Microb.,1986,67:495-498.
    275. Khan M K. Dual inoculation of peanut (Arachis hypogaea) with Glomus sp. and Bradyrhizobium sp.enhanced the symbiotic nitrogen fixation as assessed by 15N-technique[J].Soil Science and Plant Nutrition(Japan),1995,41(4):769-779.
    276. Kijne J W.Thefine structure of pea root nodules.I.Sene8cenceanddisintegrationof the bacteroid tissue[J].Physiol Plant Path,1975,7:l7-2l.
    277. Kim K Y,Cho Y S.Sdan B K,et a1.Cold-storage of notrion inoculum of Gtanus intraradices enhance root edortization,phospharus and hot pepper[J].Plant and Soil,2002,238:267-272.
    278. Kosslak R M,Bookland R,Barkei J,ea tl.Induction of Bradyrhizobium japonicum common in nod genes byisoflavones isolated from glycine max[J].Proceedings the National Academy of Sciences of the United States of America,1987,84:7428-7432.
    279. Kothari S K, Marschner H and Romheid V.1991.Contribution of the VAM hyphae in acquisition phosphorus and zinc by maize grown in a calcareous soil[J].Plant Soil,131:177-185
    280. Layzell D B, and Hunt S. Oxygen and the regulation of nitrogen fixation in legume nodules[J].Physiol.Plant,1990,80:322-327.
    281. Larose G, Chenevert R, Moutoglis P,et al. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus[J].J.Plant Physiol,2002,159: 1329- 1339.
    282. LEIGH J A. Exopolysaccharides in plant-bacterial interactions[J].Ann Rev Microbiol, 1992,46:307-347.
    283. Lewin A,Rosenberg C,Meyer Z A H.Multiple host-specific loci of the broad- host-range Rhizobium sp. NGR234 selected usingthewidely compati-ble legume Vigna unguiculata [J].Plant.Mol.Biol,1987,(8):447-459.
    284. Li L,Zhang F S,Li X L,et a1.Interspecifie facilitation of nutdent uptake by intercropped maize and fafa bean.Nutdent Cycling in agro.cosystem ,2003,68:61- 71.
    285. Li X L,George E and Marschner H. Acquisition of phosphorus and copper by VAM hyphae and root to shoot transport in white clover[J].Plant Soil, 1991,136:49-57.
    286. Li X L,George E and Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VAM white clover fertilized with ammonium[J].New Phytol, 1991,119: 397-404.
    287. Li XL,George E and Marschner H.Extension of phosphorus depletion zone in VAM white clover in a calcareous soil[J].Plant Soil, 1991,136:41-48.
    288. Li L,Zhang F S,Li X L,et a1.Interspecifie facilitation of nutdent uptake by intercropped maize and alfalfa bean [J].Nutdent Cycling in agro.Cosystem.2003, 68:61-71.
    289. Libben Ga K R, Bogers R J. Root nodule morphogenesis [A]. In: The Biology of Nitrogen Fixation [C]. A Quispel. Anrster-dam: North Holland,1974,430-472.
    290. Liu H,Trieu A T,BlaylockL A,etal.Cloning and characterization of two phosphate transpoters from Medicagotruncatula roots:regulation in response to phosphate and to colonization by Arbuscular Mycorrhizal (AM) Fungi[J]. Molecular Plant Microbe Interactions,1998,(11):14-22.
    291. Long S R.Rhizobium symbiosis: nod factors in perspective [J].The Plant Cell, 1996,(8):1885-1896.
    292. Lovato P, Schuepp H, Trouvelot A, et al. Application of arbuscular mycorrhizal fungi (AMF) in orchard and ornamental plants[J].In:Varma A,Hock B.eds. Mycorrh- iza:Structure Molecular Biology and Biotechnology. Heidelberg: Springer Press,Allen M F.Press,1995,443-464.
    293. Luis Bolanos,Abdelaziz El-Hamdaoui,Ildefonso Bonilla. Recovery of development and functionality of nodules and plant growth in salt-stressed Pisum sativum- Rhizobium leguminosarum symbiosis by boron and calcium[J].Journal of Plant Physiology.2003,160(12):1493-1497.
    294. Marcel Bucher.Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist.2007,173(1) :11-26.
    295. Martinet E.Rhizobium genome. Critical Reviews in Plant Sciences, 1990, 9:59
    296. Matar A,Tonent J,Ryan J.Soil and fertilizer phosphorus and crop responses in the dry land Mediterranean zone [J].Advances in Soil Science,1992,18:81-146.
    297. Mcainsm R,Webba A R,Taylor J E ,et a l.Stimulus Induce Do Scillation Singuard Celcytosolic Fere Calcium[J].Plant Cell,1995,7:1207-1219.
    298. Nemec S,et al.Carbohydrate status of mycorrhizal and nonmycorrhizal citrus [M].Phytopathology,1981.
    299. Newcomb W, Sippel D, Peterson R L. The early morphogenesis of Glycine max and Pisum sativum root nodules[J].Can J Bot,1979,57:2603-6161.
    300. Nye P H,Tinker P B. Solute Movement in the Soil Root System[M].Oxford:Biaekwell Scientific Publlcations.1977.
    301. Ouyang L J,Whelan J,Weaver C D,et al. Protein Phosphorylation Stimulates the Rate of Malate Uptake across the Peribacteroid MembraneMembrane of Soybean Nodules, FEBS Lett., 1991, 293:188-190.
    302. Patel J J,Yang A F.Light and electron microscopic studies of nodule structure of alfalfa[J].Can J Microbiol,1981,27:36-43.
    303. Perrto S,Brewin N J,Bonfante P.Colonization of pea roots by the mycorrhizal fungus Glomus versiforme and by Rhizobium bacteria:Immunological comparison using monoclonal antibodies asprobes for plant cell surface components[J]. Molecular Plant-Microbe Interactions,1994,(7):91-98.
    304. Peters N K, Long S R. Alfalfa root exudates and compounds which promote or inhabit induction of Rhizobium melitoli nodulation genes[J]. Plant physiol, 1988, 88:396.
    305. Peters N K,Frost J W,Long S R.A plant flavone, luteolin, indues expression of Rhizobium melitoli nodulation genes[J].Science,1986,233:977.
    306. Pfeffer,P E,B.Bago,Y.Shachar-Hill. Exploring mycorrhizal function with NMR spectroscopy[J].New Phytologist,2001,150:543-553.
    307. Poovaiah B W.Biochemical and molecular aspects of calcium action[J].Actaorticulturae,1993,326:139-147.
    308. Pozo M J,Dumas-Gaudot E.Localized versus systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants[J].Journal of Experimental Botany,2002,53(368):525-534.
    309. Pun J V,Gupta R P,Bhandari S C, et al. Dual inoculation with Rhizobium and Glomus fasciculatumenhances growth, nodulation and nitrogen fixation in Leucaena leucocephala[J].Research and Development Reporter,1987,4(1):1-9.
    310. Quatrini P,Scaglione G,Incannella G, et al.Microbial inoculants on woody legumes to recover a municipal land fill site[J]. Water Air Soil Poll, 2003, 3: 189-199.
    311. Raghot hama K G.Phosphate acquisition [J]. Annual Review of plant Physiology and Plant Molecular Biology, 1999, 50: 665 -693.
    312. Rahman M K, Parson J W. Effect of inoculation with Glumus mosseae, Azorhizobium caulinodans and rock phophate on the growth of and nitrogen and phosphorus accumulation in Sesbania rostrata[J].Biology and Fertility of Soils,1997,25: 47-52.
    313. Raju P S,Chrk R B,Ellis JR.et al.Effects of species of VAM fungi on growth and mineral uptake of sorghum at different temperatures[J].Plant soil, 1990, 121: 165-170.
    314. Rao J R and Cooper J E.Rhizobia catabolise nod gene-inducing flavonoids via C-ring fission mechanisms[J].J Bacteriol,1994,176:5409-5413.
    315. Rao J R, Sharma N D, Hamilton,et al.Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus) [J].Appl Environ Microbiol 1991,57:1563-1565.
    316. Recourt K, Aanton A N, Van Brusel, et al. Accumulation of a nod gene inducer, the flavonoid naringenin in the cytoplasmic membrane of Rhizobium leguminosarumb v.viciaeis caused by the pH-dependent hydrophobicity of Naringenin[J].J Bact- eriol,1989,171:43-70.
    317. Reddell R,Yang Yun,Shipton W A.Cluster roots and mycorrhizae in Casurina cunning hamiana:their occurrence and formation in relation to phosphorous supply[J].Aust Bot,1997,45(1):41-51.
    318. Redinbaugh M G, Campbell W H.Purification and characterization of NAD(P)H: Nitrater eductase and NADH:nitrater eductase from com-roots[J].Plant Physiol,1981,(68):115-120.
    319. Redmond JW, Botley M, Djordjevic MA et al.Flavones induce expression of modulation genes in Rhizobium.Nature (London),1986,323:63.
    320. Repuena N,Fller P,Franken P.Molecul Archaracterization of GmFOX2,a evolution- arily highly conserved gene from the mycorrhizal fungus Glomus mosseae, down- regulated during interaction with rhizobacteria[J].Molecular Plant- Microbe Interactions,1999,(10):934-942.
    321. Requena N,Perez,Solis E,et al.Management of indigenous plant-microbe symbios- es aids restoration of desertified ecosystems[J].App.Environ.Microb.,2001,67: 495-498.
    322. Rhizobium and mycorrhiza in Missouri[M]. USA Agroforestry Systems,2004, 60 (2) : 137-142.
    323. Roemheld V and Marschner H.P1ant induced pH changes in the Rhizosphere of“Fe inefficient”soybean and corn cultivars[J].J Plant£Nutrition.1984,7:623-630.
    324. Roth, L E, Jeon, K W, and Stacey, G. Homology in endosymbiotic systems:the term "symbiosome."In Molecular genetics of plant-microbe interactions[J].St. Paul,Minn:The American Phytopathological Society Press,1988,220-225.
    325. Rudd J J,F R Anklin-Tongv E.Unravelling Response-Specificity in Cat'Signaling Pathways in Plant Cella[J].New Phytol,2001,151:7-33.
    326. Saini V K,Bhandarib S C,Tarafdara J C.Comparison of crop yield,soil microbial C,N and P,N-fixation,nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops[J].Field Crops Research, 2004,89(1):39-47.
    327. Saini V K,Bhandari S C, Tarafdar J C.Comparison of crop yield,soil microbial C,N and P,N2fixation,nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops[J].Field Crop.Res.,2004,89:39-47.
    328. Sauter J J, Kloth S.Changes in carbohydrates and ultrastructure in xylem ray cells of papulus in response to ch illing[J].Proto plasma,1987,137:45-55.
    329. Schlaman H R M.Suppression of nodulaton gene expression in bacteroids of Rhizobium leguminosarum biova viciae[J].J Bacteriol,1991,173(14) :4277-4287.
    330. Schultze M, et al.In-vitro sulfotransferase activity of Rhizobium meliloti nod Hprotein-lipo-chitooligosaccharide nodulation signals are sulfated after synthesis of the core structure[J].Proc.Natl.Acda.Sci,1995,95:2706-2709.
    331. Serral R, Vasquze D H, Dervon J J.Effects of salt on nitrogen fixation ,oxygen diffusion,and ion ditribution in soybean, common bean and alfalfa[J].Plant Nutr,1998,21(1):475-488.
    332. Shanna A K and Srivastava P C.Effects of VAM mad Zinc application on dry matter and zinc uptake of greengram (Influence of soil moisture regime on VA mycorrhiza L.(Wilczek)[J].Biol Fertil Soil,1991,11:52-56.
    333. Shaw S L, Long S R. Nod factor elicits two separable calcium responses in Medicago truncatula root hair cells[J].Plant Physiol,2003,131:976-984.
    334. Shibata R, Yano K. Phosphorus acquisition from non-labile sources in peanut and pigeonpea with mycorrhizal interaction[J].Applied Soil Ecology,2003,24: 133-141.
    335. Shockley F W,Mc Graw R L,Garrett H E.Growth and nutrient concentration of two native forage legumes inoculated with Rhizobium and Mycorrhiza in Missouri, USA[J].Agrofor.Syst.,2004,60:137-142.
    336. Sieverding E and Toro S T.Influence of soil moisture regime on VA-mycorrhiza. V.Performance of different VAM fungal species with cassava[J].J Agro Crop Sci, 1988,161:322-332.
    337. Smith S E, Read D J. Mycorrhizal Symbiosis[M].2nd Ed. London Academic Press 1997,1-605.
    338. Snedden W A, Fromm H. Calmodulin as a versatile calcium signal transducer in plants[J].New Phytol,2001,151:35-66.
    339. Soliman S,El-Ghandour L A,Khandra-Abbady A.Effects of nitrogen and phosphorus supply,and of Rhizobium and VAM fungus inoculants on dinitrogen fixation in soybean[J].Folia Microbiologica,1996,41(2):197-200.
    340. Stacey G.Sanjuan J. Spaink H et al.Rhizobium lipo-oligosaocharides Novel plant growth regulators.In Gressholl P Med.Plant Responses to the Environment[J].CRC press.1993.45-48.
    341. Subbarao N S,Tilak B R,Singh C S.Dual inoculation with Rhizobium sp.and Glomus fasciculatum enhances nodulation, yield and nitrogen fixation in chickpea(Cicer arietinumlinn.)[J].Plant and Soil,1986,95(3):351-359.
    342. Tahara S,Ingham J L.Simple flavones possessing complex biological activity. In:Atta-ur-Rahman ed.Studies in Natural Products Chemistry, Bioactive Natural Products (Part C).Elsevier,Karachi,2000,22:457-505.
    343. Tennant D.A test of a modified line intersect method of estimating root length [J].J.Ecol.,1975,63:995-1001.
    344. Thatot I H,Parida D,Padhi G S,et al. Effect of Rhizobium and AM fungi inoculation on growth and rhizosphere microbial population of Acacia niloticain iron mine waste soil[J].Naturalia Sao Paulo,1995,20(2):177-190.
    345. Tian C J,He X Y,Zhong Y, et al. Effect of inoculation with ecto and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robi- nia pseudoacacia[J].New Forest,2003,25:125-131.
    346. Tisserant B,Gianinazzi S,G ianinazzi-pearson V. Relationships between lateral root order,arbuscular mycorrhiza development,and the physiological state of the symbiotic fungus in Platanusa cerifolia[J].Can J Bot,1996.74:1947-1955.
    347. Tobar R,Azcón R,Barea J M.Improved nitrogen uptake and transport from 15N-label led nitrate by extermal hyphal of arbuscular mycorrhiza under water-stressed conditions[J].New Phytol,1994,126:119-122.
    348. Tu J C. Rhizobia root nodules of soybean as revealed by scanning and transimission electron microscopy[J].Phytopatholo,1975,65:447-454.
    349. Tyerman S D,Whitehead,L F,and Day D A.A Channel-Like Transporter for on the Symbiotic Interface of N2-Fixing Plants[J]. Nature,1995,378:629–632.
    350. Uniyalk,Thaparhs.Growth responses in Prosopis juli flora inoculated with VA mycorrhizal fungi and Rhizobium in sodic soil[J].Van-Vigyan, 1995,33(34):182- 184.
    351. Van Brussel A N.Induction of preinfection thread structures in the leguminous host plant by mito genic lipooligosaccharides of Rhizobium[J]. Science,1992, 257:70-71.
    352. van Rhijn P, Fang Y, Galili S, et al.Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved[J].Proc. Natl. Acad. Sci. U.S.A 1997,94:5467-5472.
    353. Vanlauwea B,Nwokea O C,Dielsa J.Utilization of rock phosphate by crops on a representative topoos equence in the Northern Guinea savanna zone of Nigeria:response by Mucuna pruriens,Lablab purpureus and maize [J].Soil Biology & Biochemistry,2000,32:2 063-2077.
    354. Váquez M M,Azcó R,Barea J M.Compatibility of a wild type and its genetically modified Sinorhizobium strain with two mycorrhizal fungi on Medicago species as affected by drought stress[J].Plant Sci.,2001,161:347-358.
    355. Vardhini V B, Rao S S R.Effect of brassinosteroids on nodulation and nitrogenase activity in Groundnut (Arachis hypogaea L.)[J].Plant Growth Regulation, 1999,28:165-167.
    356. Vasse j. Correlation between ultrstructural diffferetiation ofbacteroid and nitrogen fixation in alfalfa nodules [J].J Bacteriol,1990,172(8) :4295-4306.
    357. Vassilev N,Vassileva M,Azcon R, et al. Interactions of an arbuscular mycorrhizal fungus with free or co2encapsulated cells of Rhizob um trifoli and Yarowia lipolytica inoculated into a soil plant system[J].Biotechnol. Lett.,2001,23:149-151.
    358. Vijn I. Nod factors and nodulation in plants [J].Science,1993,260 :1764-1765.
    359. Vincent J L,Brewin N J.Immunolocalization of a cysteine protease in vacuoles, vesicles and symbiosomes of pea nodule cells[J].Plant Physiol.,2000, 123: 521- 530.
    360. Vincent J M.In Nitrogen Fixation Vol lll, eds[M].Newton W E and Oreme-Johnson H,University Park Press.USA,1980.
    361. Wais R J, Keating D H, Long S R. Structure-function analysis of nod factor- induced root hair calcium spiking in rhizobium-legume symbiosis.Plant Physiol, 2002,129: 211-224
    362. Walker SA,et al.Proc Natl Acad Sci USA,2000,97:1341-1343.
    363. Walter M H.Tripertite symbiotic association in nitrogyn-fixing plants of Mount Chang bai Nature Reserve in Northeast China[D].Doctor Dissertation.Shen yang: Institute of Applied Ecology,Academia Sinica.1993.
    364. Wang S P,Stacey G.Ammoruia regulation of nod genes in Bradyrhizobium japon- icum[J].Mol Gen Genet, 1990,233:329-331.
    365. Weisburg W G,Barns S M.and Peletier D A.16S ribosomal DNA amplification for phylogenetic study[J].Bacteriol,1991,173(2):697.
    366. Whitehead L F, Tyerman S D,et al.Transport of Fixed Nitrogen across Symbiotic Membranes of Legume Nodules[J].Symbiosis,1995,19:141-154.
    367. Wick S M, Helpler P K. Selective Localization of Intra Cellular Ca2+ with Pot Assium Antimonate[J].J Histochem Cytochem,1982,30:1190-1204.
    368. Willemot C.Stimulation of phospholipids biosynthesis during frost hardening of winter wheat.Plant Physiol,1975,55:356-359.
    369. Wyss P,Mellor R B,Wiemken A.Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis- specific polypeptides(mycorrhizas),immunologically cross reactive with nodulins[J].Planta,1990,182:22.
    370. Xavier L J C,Germida J J.Response of lentil underc onnditrolled cotions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy[J].Soil Biol.Biochem.,2002,34.
    371. Xavier L J C,G ermidaJ J.Se lectivei nteractionsb etweena rbuscularmycorrhizal fungi and Rhizobium leguminosarum bv.viceaee nhancep eay ielda ndn utrition[J]. Biol.Fert.Soils,2003,37.
    372. Xu S H J,An L Z,Feng H Y,et al.The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment[J].Journal of Arid Environ- ments,2002,51:437-447.
    373. Yang W C.In situlocalization of chalcone synthise mRNA in pea root nodule development[J].Plant J,1992,2(2):143-151.
    374. Yang W C.Insitu localization of chalcone synthase mRNAsin pea root nodules development[J].Plant Mo1 Plant2Microbe Interact,1991,4(4):464-68.
    375. Yinsuo Jia,Vincent Myles Gray and Colin John Srtraker.The influence of Rhizobium and Arbuscular Mcorrhizal Fungi on Nitrogn and Phosphorus Accumulation by Vicia Faba L.Annals of Botany, 2004,94:251-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700