基于酵母模板/载体的光催化剂制备及其处理印染废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水是水体污染中主要的有害、难处理工业废水之一。半导体光催化氧化法具有反应条件温和、净化彻底、绿色环保、经济高效等优点,是一种比较理想的印染废水治理技术。本论文利用酵母细胞作为生物模板和生物载体,分别制备了钨酸锌空心球和酵母-硫化锌(YC-ZnS)两种新型光催化剂,运用多种表征手段和测试方法阐明了两种材料的主要物理化学性能和制备机理,并在此基础上考察了两种新型光催化剂对模拟印染废水的处理工艺条件。主要结果概括为:
     (1)选用酵母细胞作为模板制备了ZnWO4空心微球。多种表征结果表明:ZnWO4空心微球系闪锌矿ZnWO4晶体;颗粒分散度良好,形貌较为一致,较好地保持了酵母细胞椭圆形的形貌,大小约为3.7x2.0gm。机理分析证实ZnWO4空心微球光催化剂的形成机理可分为4步:酵母表面功能性基团的活化—生物吸附实现细胞表面水合锌离子层的形成—ZnWO4纳米颗粒在酵母细胞表面的逐步成长—煅烧去除酵母细胞。
     (2)以低浓度罗丹明B (RhB)模拟染料废水为目标降解物,对ZnWO4空心微球的光催化性能进行研究,实验证实影响降解率的主要因素是pH、染料初始浓度和催化剂用量。ZnWO4空心微球光催化处理罗丹明B模拟染料废水的最佳工艺条件为:催化剂用量2g/L,pH为6,染料浓度为0.5×10-5mol/L。ZnWO4空心微球在光催化循环实验中表现出较稳定的光催化活性。
     (3)成功地以酵母细胞为载体制备了负载型光催化剂酵母-硫化锌(YC-ZnS),表征结果表明:产物颗粒分散度良好,形貌一致,很好地保持了酵母细胞的基本形态,大小为2-3×3-5μm;颗粒结构为一层厚度为450-500nm的纳米ZnS粒子负载于酵母细胞表面;负载态ZnS为闪锌矿p-ZnS;荧光特性研究证实了颗粒表面的负载物为具有荧光性能的ZnS。YC-ZnS的制备机理研究证实:光催化剂ZnS在酵母上的成功负载在很大程度上依赖于酵母细胞壁所提供的反应表面。
     (4)对YC—ZnS的沉降性及其对染料亚甲基蓝(MB)的吸附性能进行了测定和探讨。吸附实验表明:YC-ZnS对亚甲基蓝的吸附规律较好地符合Freundlich等温吸附模型。优化后吸附实验条件为:23℃、pH7及YC—ZnS用量为4.5g/L,最大吸附量可达471.2μg/g。通过YC-ZnS与ZnS微球和酵母细胞的沉降性能的比较研究表明:YC—ZnS具有较好的悬浮性能,其在水溶液中的悬浮性能略差于酵母细胞,但远远强于所制备的ZnS微球。
     (5)以低浓度亚甲基蓝模拟染料废水为降解物,对YC-ZnS的光催化性能进行优化研究,主要考察了溶液初始pH值、催化剂用量、染料浓度,辐射距离和反应温度对YC—ZnS光催化降解亚甲基蓝模拟染料废水的影响,得到了优化后的光催化处理体系条件参数是:pH为8,辐射距离5cm,YC-ZnS用量3g/L。
     本文制备的两种新型光催化剂在材料设计中实现了生物细胞和纳米材料各自优势的巧妙结合,制备过程绿色环保,工艺简单,所制备的产物对印染废水的催化效率高,可以较好地达到改善环境和资源利用生态化的目的。本研究在纳米技术、生物科学和环境工程的交叉研究领域中做出了一些尝试,对其他生物相关的新型材料在环境工程领域的研究有一定参考价值。
As a harmful industrial water body, printing and dyeing wastewater has been a technically refractory pollution. Semiconductor photocatalytic oxidation process is deemed as an ideal treatment technology for printing and dyeing wastewater as it exhibits outstanding superiority such as mild reaction conditions, thorough purification, environmental protection, high economic efficiency, and etc. In this thesis, employing yeast cells as bio-templates and biological carriers, we prepared ZnWO4 hollow microspheres and yeast—zinc sulfide (YC-ZnS).And new photocatalysts were characterized by various means and methods to learn their main physical and chemical properties and to propose probable formation mechanisms. On this basis, we obtained the parameters of photocatalytic process of two photocatalysts in the treatment of low concentrations dyeing wastewater. Main results were summarized as follows:
     (1) We used yeast cells as biotemplates in the synthesis of ZnWO4 hollow microspheres. Results from characterizations indicated that ZnWO4 hollow microspheres were sphalerite ZnWO4 crystal; particles were in good dispersion which faithfully retained the morphology of yeast templates; and the size was approximate 3.7×2.0μm. Based on the experimental results, the formation mechanism of the ZnWO4 hollow microspheres was proposed into four steps:activation of functional groups on yeast cells—hydration zinc ion level formation on the cell surface through biological adsorption—growth of ZnWO4 nanoparticles on the yeast cellwall—calcinations to elimination yeast templates to form hollow microspheres.
     (2) Rhodamine B was taken as the degradation goal in the photocatalytic examination of ZnWO4 hollow microspheres. The dye photodecolorization process was studied considering the influence of experimental parameters such as pH、the initial dye concentration and catalyst amount used. The conditions when ZnWO4 with the best photocatalytic activity towards the Rhodamine B wastewater were 2g/L catalyst used, pH 6 and the dye concentration 0.5×10-5mol/L. And the ZnWO4 hollow microspheres displayed stable photocatalytic activity in the photocatalytic circulation experiments.
     (3) Employing yeast cells as carriers, a novel loaded photocatalyst YC-ZnS was successfully synthesized. Results from characterizations showed that the product particles were in good dispersion with consistent appearance; YC-ZnS particles maintained the morphology of yeast cells fairly well and the size was about 2-3×3-5μm; structurally the particle was consisted of a yeast cell inside covered with nanometer ZnS granule layer of 450-500nm thickness. The loaded ZnS was the sphaleriteβ-ZnS, and fluorescence characterization confirmed the loaded ZnS with fluorescence properties. The study on the preparation mechanism of YC-ZnS proved the successful loading of ZnS onto yeasts relied greatly on the reactive surface provided from the yeast cells.
     (4) Both the settling property of YC-ZnS in solution and its adsorption performance to the dye methylene blue were studied. Isotherm modeling revealed that Freundlich equations described well the adsorption of methylene blue onto YC-ZnS. The optimized adsorption conditions were:23℃, pH7 and the YC-ZnS amount used was 4.5g/L. Under these conditions, the adsorption capacity of YC-ZnS may reach 471.2μg/g. Compared with ZnS microspheres and yeast cells, the settling properties of YC-ZnS were also examined and simulated. It was found that the suspending performance of YC-ZnS was slightly less than yeast cell, but by far better than the ZnS microspheres.
     (5) Taking methylene blue as the degradation goal, we studied the photocatalytic process conditions of YC-ZnS. Factors affecting the photocatalysis of YC-ZnS were evaluated in details, such as the pH value, the catalyst amount used, the initial dye concentration, the illumination distance and the reaction temperature. Then we obtained the optimized conditions of photochemical catalysis system as followed:pH 8, the illumination distance is 5cm, and the yeast-ZnS amount used was 3g/L
     In this article we prepared two new photocatalysts, blending together both the superiorities of the biological cells and the nanomaterials in the material design. It was proved that the preparation processes were simple and environmentally friendly, and the synthesized products exhibited high photocatalytic efficiency in the treatment of the printing and dyeing wastewater. Hence we might achieve goals in the green solution of environmental pollution and the ecological development of resources as well. This paper has made some attempts in the multidiscipline among nanotechnology, biological science and environmental engineering. And it may be of reference value to the application of other organism-related new material in the research of environmental engineering.
引文
[1]曹宝,罗宏,王秀波.中国水污染物排放特征及其环境经济分析[J].中国人口.资源与环境,2010,20(3):261-264
    [2]杨占红.不同方法深度处理印染废水的比较研究[J].工业水处理,2010,7:15-18
    [3]赵雪,何瑾馨,展义臻.印染废水处理技术的研究进展[J].化学工业与工程技术,2009,30(2):38-43
    [4]张林生,张胜林,夏明芳.印染废水处理技术及典型工程[M].北京:化学工业出版社,2005:20-48
    [5]单国华,贾丽霞.印染废水及其处理方法研究进展[J].针织工业,2009,7:62-67
    [6]耿云波,刘永红,赵鹏飞.印染废水生物处理技术的应用现状及研究进展[J].工业用水与废水,2010:1-4
    [7]喻学敏,张龙,刘伟京,等.印染废水处理过程中污染物及毒性分析[J].环境污染与防治,2009,30(6):26-33
    [8]相会强,李冬.纳米材料在印染废水处理中的应用进展[J].染料与染色,2007,44(6):46-49
    [9]刘庆禄,林波.纳米材料与技术在废水处理中的应用及前景[J].环境科学与管理,2007,32(11):98-101
    [10]Zhang G J. The Advancement on Photocatalytic Oxidation Technology[J]. Journal of Jining University,2008,29(6):38-41
    [11]李铃.光催化氧化处理印染废水新进展[J].三峡环境与生态,2008,1(2):34-36
    [12]高振伟,周易,陈永娟,印染废水的光催化氧化研究现状及其进展[J].工业安全与环保,2008,34(6):10-12
    [13]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社2006:74-90
    [14]Niemeyer C. M., Mirkin C. A.纳米生物技术:概念应用和前景[M].译者:马光辉,苏志国,王平.北京:化学工业出版社,2008:11-23
    [15]Curtis A, Wilkinson C. Nanotechniques and approaches in biotechnology [J]. Trends in Biotechnology,2001; 19(3):97
    [16]陈彦田,刘天庆,薛长颖.生物材料纳米形貌表面对微生物细胞——荧光甲胞菌特性的影响[J].生物医学工程杂志,2005;22(3):443-447
    [17]刘春艳.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008:2-51
    [18]张金龙,陈峰,何斌.光催化[M].上海:华东理工大学出版社,2004:139-153
    [19]Chiu C., Halman R., Lanoy M., etc. Refined analytical procedures to detect and measure PCDD/PCDF, PAH, PCB, CB, and CP in environmental samples[J]. Chemosphere,1987, 16 (8-9):1619-1624
    [20]梁德荣.半导体光催化反应研究[J].科技情报开发与经济,2008,18(11):134-135,146
    [21]谷学谦,董秀芹.光催化氧化降解有机废物研究进展[J].化学工业与工程,2004,21(2):142-145
    [22]木易.光催化产业渐入理性发展阶段——访中科院理化所只金芳博士[J].新材料产业,2008,10:71-74
    [23]Tuprakay S., Liengcharernsit W. Lifetime and regeneration of immobilized titanium for photocatalytic removal of aqueous hexavalent chromium[J]. Journal of Hazardous Materials,2005,124(1-3):53-58
    [24]Cary J H,Lawrence J., Tosine H M.Bull. Environ. Cantain. Toxicoll.1976,16:697-701
    [25]王晓兵,寇玉鹏,梁慧君,等.纳米Ti02光催化降解活性染料研究[J].河南师范大学学报,2008,36(2):70-74
    [26]Franke R, Franke C. Model reactor for Photocatalytic degradation of persistent chemicals in ponds and wastewater. Chemosphere,1999,39(6):2651-2659
    [27]张霞,钟炳,刘郎.S042-/Ti02超强催化剂的XPS研究[J].染料化学学报,1997,25(2):180-1842
    [28]王怡中等.甲基橙溶液多相光催化降解研究[J].环境科学,1998,19(1):1-4
    [29]赵玉光,王宝贞等.生物-光催化反应器系统处理印染废水的[J].环境科学学报,1998,18(4):373-379
    [30]范山湖,孙振范,邬泉周等.偶氮染料吸附和光催化氧化动力学[J]物理化学学报,2003,19(1):25-29
    [31]汤国虎.纳米硫化镉的最新研究进展[J].中国陶瓷,2009,20(11):23-26
    [32]王敦青,焦秀玲,陈代荣.硫化锌性质、用途及制备方法概述[J].山东化工,2003,32(2):12-15
    [33]郑梅琴,颜桂炀,郑柳萍,等.水热法制备纳米ZnS的光催化性能研究[J].广州化学,2007,32(2):8-10
    [34]吴晓,汪浩.ZnS微米球的水热合成及光催化性能研究[J].无机化学学报,2010,26(3):453-458
    [35]郭莉,王丹军,李东升,等.ZnS微球的水热法合成与光催化活性[J].材料工程,2008,10:287-295
    [36]Zhao X, Yao W Q, Zhu Y F, et al. Fabrication and Photoelectrochemical Properties of Porous ZnWO4 Film [J].Journal of Solid State Chemistry,2006,179:2562-2570
    [37]Xie L. J.,Ma J. F., Xu G J., Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodmine B[J].Materials Chemistry and Physics,2008,110(2-3):197-200
    [38]Kato H., Kudo A., New tantalate photocatalysts for water decomposition into H2 and O2 [J]. Chemical Physics Letters.1998,295(5-6):487-492
    [39]Tang J.W., Zou Z.G., Ye J. H. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation[J]. Angewandte Chemie International Edition,2004,43 (34):4463-4466
    [40]Tang J.W, Zou Z.G, Ye J.H. Photophysical and Photocatalytic Properties of AgInW2O8 [J]. The Journal of Physical Chemistry B,2003,107(51):14265-14269
    [41]Huang G. L.,Zhu Y. F. Synthesis and Photocatalytic Performance of ZnW04 Catalyst[J]. Materials Science and Engineering B,2007,139:201-208
    [42]Dong T. T, Zhao H. L, Fu X Z. Characterizations and Properties of Eu3+-doped ZnWO4 Prepared via a Facile Self-propagating Combustion Method[J]. Materials Research Bulletin,2008,43(7):1694-1701
    [43]Chen S. J., Zhou J. H., Chen X.T. Fabrication of Nanocrystalline ZnWO4 with Different Morphologies and Size via Hydrothermal Route[J].Chemical Physics Letters, 2003,375:185-190
    [44]向群,徐甲强,施利毅.钨酸钠米棒的水热合成条件对荧光及催化性能的影响[J].硅酸盐学报,2008,36(9):1304-1309
    [45]唐琼,林海波,光催化氧化法在造纸废水处理中的应用与发展[J].四川理工学院学报(自然科学版),2008,21(5):77-80
    [46]姚清照,刘正宝.光电催化水处理技术研究进展[J].工业水处理,1999,19(6):15-16,25
    [47]Franco A., Neves M.C., Ribeiro Carrott M.L..Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites[J].Journal of Hazardous Materials,2009,(6):545-550
    [48]Li J. Y, Ma W.H., Lei P. X., Detection of intermediates in the TiO2-assisted photodegradation of Rhodamine B under visible light irradiation[J] Journal of Environmental Sciences 2007,(19):892-896
    [49]王俊慰,谷晋川,杨萍.矿物负载纳米Ti02制备技术的进展[J].甘肃石油和化工,2007,(2):1-3
    [50]黄晓峰.纳米材料的难回收性及其负面影响[J].化工职业技术教育,2006,(3):34-36
    [51]韩月,卢徐节,陈方雨,等;印染废水处理技术现状研究[J].工业安全与环保,2008,34(7):12-14
    [52]Chun Young-Gab, Kim Chang-Soo, Peck Dong-Hyun, et al. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes[J]. Journal of Power Sources.1998,71(1-2):174-178
    [53]吕英英,顾晓天,周家宏,等.N、S共掺杂型二氧化钛光催化降解有机污染物的性能研究[J].南京师大学报,2008,31(4):67-73
    [54]包南,刘峰,张峰,等.铁掺杂二氧化钛纳米晶的超声模板法制备及其光催化活性[J].功能材料与器件学报,2008,14(2):462-466
    [55]刘高源,任建敏,赵子龙,等.印染废水深度处理技术及其评价[J].重庆工商大学学报,2008,25(6):618-622
    [56]M.Cristina Y, Jaime R.,Juanita F., et al. Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO [J].Chemosphere,2000,41(8):1193-1197
    [57]徐高田,校华,曾旭,等.纳米Ti02光催化剂多面球填料对印染废水的脱色效果[J].中国给水排水,2007,23(9):96-98
    [58]王月娇,张灿英.无机空心微球制备技术最新进展[J].山东陶瓷,2008,31(5):17-23
    [59]贺军辉,陈洪敏,张林.无机微/纳空心球[J].化学进展,2007,19(10):1488-1494
    [60]Lou X. W., Archer L. A., Yang Z. C.,Hollow Micro-/Nanostructures: Synthesis and Applications [J]. Advanced Materials,2008,V20(21):3987-4019
    [61]John D. Aiken Ⅲ, Richard G Finke.A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis [J] Journal of Molecular Catalysis A: Chemical,1999,V145(1-2),1-44
    [62]Wang D.B., Song C. X., Lin Y. S,et al. Preparation and characterization of TiO2 hollow spheres[J].Materials Letters,2006,V60(1):77-80
    [63]Liu L., Cui Y. M.,Li B.,et al. Study on the surface erosion route to the fabrication of TiO2 hollow spheres[J]. Applied Surface Science,2010,V256(8):2596-2601
    [64]Dong L.H, Chu Y, Zhang YP.,et al. Surfactant-assisstant and facile synthesis of hollow ZnS nanosphere[J]. Journal of Colloid and Interface Science,2007,V308(1):258-264
    [65]Gu L., Cao X. B., Zhao C.,et al. Gram-scale preparation of hollow spheres of ZnS by scarifying ZnO crystallites within core-shell-structured ZnS/ZnO precursors [J]. Colloids and SurfacesA:Physicchemical and Enginneering Aspects,2008,V326(1-2):98-102
    [66]Zhan S. H., Chen D. R., Jiao X. L. Co-electrospun SiO2 hollow nanostructured fibers with hierarchical walls [J] Journal of Colloid and Interface Science. 2008,V318(2):331-336
    [67]王月娇,张灿英.无机空心微球制备技术最新进展[J].山东陶瓷,2008,31(5):17-22
    [68]匡毅,郭艳华.空心微球的制备及应用进展[J].胶体与聚合物,2007,25(3):41-42
    [69]杜朝锋,黄英,秦秀兰.模板技术在纳米材料制备中的应用与发展[J].材料导报,2006,20(6):38-42
    [70]乐园,陈建峰,汪文川.空心微球型纳米结构材料的制备及应用进展[J].化工进展,2004,23(6):596-599
    [71]孙伟,谢广文.模板法空心金属微球的制备与表征[J].青岛科技大学学报(自然科学版).2008,29(2):103-105
    [72]Zhao X.F.,Teresa Y.Cheung,et al. Synthesis of BaMoO4 hollow spheres[J]. Journal of Materials Science.2007,42:6716-6719
    [73]Yin J.L, Qian X.F.,Yin J.,et al. Preparation of polystyrene/Zirconia core-shell microspheres and zirconia hollow shells[J].Inorganic Chemistry Communications, 2003,6(7):942-945
    [74]Xu H.L., Wang W. Z. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall[J].Angewandte Chemie.2007,119(9):1511-1514.
    [75]俞凌杰,袁方利,王熙.软模板法制备Fe304空心结构微球[J].过程工程学 报.2008,8(2):394-398
    [76]谢毅,杜永芳,肖夏,等.晶体自范性和自生成模板法结合生长组装多级纳米结构[J].中国科学技术大学学报.2008,38(6):569-575
    [77]Fei J. B.,Cui Y.,Yan X. H.,et al. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment[J]. Advanced Materials.2008,20(3):452-456
    [78]David S. A.,Burkett S. L.,Mendelson N. H.,et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature.1997,385:420-423
    [79]Mato Knez,Bittner A. M.,Fabian Boes,et al. Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires [J].Nano Letters.2003,3(8):1079-1082
    [80]He J.,Kunitake. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers [J].Chemistry of Materials.2003,15 (23):4401-4406
    [81]Behrens S.,Wu Jin,Habicht W., et al.Silver Nanoparticle and Nanowire Formation by Microtubule Templates [J]. Chemistry of Materials.2004,16(16):3085-3090
    [82]Dong Q., Su H. L., Zhang D., et al. Biosynthesis of Hierarchical Nanocomposites Using Silk Fibroin Fibers and Patterning of Silver Nanoparticles [J].Micorporous and Mesoporous Materials.2007,98(3):344-351
    [83]Fan Tong-xiang,Sun Bing-he,Gu Jia-jun, et al. Biomorphic Al2O3 fibers synthesized using cotton as bio-templates [J].Scripta Materialia.2005,53(8):893-897
    [84]Dong Q., Su H.L., Zhang D., et al. Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol-gel technique [J].Scripta Materialia.2006,55(9):799-802
    [85]Dong Q., Su H. L., Zhang D., et al. In Situ Depositing Silver Nanoclusters on Silk Fibroin Fibers Supports by a Novel Biotemplate Redox Technique at Room Temperature [J].The Journal of Physical Chemistry B.2005,109(37):17429-17434
    [86]Reuther C, Hajdo L, Tucker R, et al. Biotemplated Nanopatterning of Planar Surfaces with Molecular Motors [J].Nano Lett.2006,6(10):2177-2183
    [87]Zampieri A, Mabande G T. P, Selvam T., et al. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors [J].Materials Science and Engineering: C. 2006,26(1):130-135
    [88]Valentin P. Valtchev, Monique Smaihi, Anne-Catherine Faust, et al. Equisetum arvense Templating of Zeolite Beta Macrostructures with Hierarchical Porosity [J].Chemistry of Materials.2004,16(7):1350-1355
    [89]Huang J.Y., Wang X. D, Wang Z. L. Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties[J].Nano Letters.2006,6(10):2325-2331
    [90]Mark Sonny S., Bergkvist M., Yang Xin, et al. Bionanofabrication of Metallic and Semiconductor Nanoparticle Arrays Using S-Layer Protein Lattices with Different Lateral Spacings and Geometries [J].Langmuir.2006,22(8):3763-3774
    [91]Bergkvist M, Mark Sonny S., Yang Xin, et al. Bionanofabrication of Ordered Nanoparticle Arrays:Effect of Particle Properties and Adsorption Conditions [J].The Journal of Physical and Chemistry B.2004,108(24):8241-8248
    [92]Corey R and Richard A.V, Jason B, Gregory T. B, et.al. Metal Nanoshell Assembly on a Virus Bioscaffold [J].Nano Letters.2005,5(6):1187-1191
    [93]Zhou H, Fan T, Zhang D. Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates[J]. Microporous and Mesoporous Materials.2007,100 (1-3):322-327
    [94]Nomura T, Morimoto Y, Tokumoto H, et al. Fabrication of silica hollow particles using Escherichia coli as a template[J].Materials Letters.2008,62(21-22):3727-3729
    [95]Bai B., Wang P. P., Wu L., et al. A novel yeast bio-template route to synthesize Cr2O3 hollow microspheres[J].Materials Chemistry and Physics.2009,114(1):26-29
    [96]Cui J. J., He W., Liu H. T., et al. Ordered hierarchical mesoporous anatase TiO2 from yeast biotemplates. Colloids and Surfaces B[J]. Biointerfaces.2009,74(1):274-278
    [97]Yang L., Guan W. S., Bai B., et al. Developing a new method for the formation of NiO hollow microspheres using yeasts as bio-templates[J]. Advanced Materials Research.2009,79-82:1867-1870
    [98]Tian X.Y., He W., Cui J. J., et al. Mesoporous zirconium phosphate from yeast biotemplate[J]. Journal of Colloid and Interface Science.2010,343(1):344-349
    [99]Zhou W.J., He W., Ma J. Y, et al. Biosynthesis of mesoporous organic-inorganic hybrid Fe2O3 with high photocatalytic activity [J]. Materials Science and Engineering:C. 2009,29 (6):1893-1896
    [100]Zhou W. J., He W., Zhang X. D., et al. Biosynthesis and characterization of mesoporous organic-inorganic hybridiron phosphate[J]. Materials Chemistry and Physics.2009,116 (2-3):319-322
    [101]He W., Tian X. Y., Du Y., et al. Biologically formed hollow cuprous oxide microspheres [J]. Materials Science and Engineering.2010,30(5):758-762
    [102]Zhou H., Fan T. X., Zhang D., et al. Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures[J]. Chemistry of Materials. 2007,19(9):2144-2146
    [103]Zhang Y, Shi Er-Wei, Chen Z. Z.,et al. Fabrication of ZnO hollow nanospheres and "jingle bell" shaped nanospheres[J]. Materials Letters.2008,62(8-9):1435-1437
    [104]Hussein M. Z., Azmin W.H.W.N., Mustafa M., et al. Bacillus cereus as a biotemplating agent for the synthesis of zinc oxide with raspberry- and plate-like structures[J]. Journal of Inorganic Biochemistry.2009,103(8):1145-1150
    [105]Mogul R., Getz Kelly J. J., Cable M. L., et al. Synthesis and magnetic characterization of microstructures prepared from microbial templates of differing morphology [J]. Materials Letters.2006,60(1):19-22
    [106]Wang J., He Shiying, Xie Shengli, et al. Probing nanomechanical properties of nickel coated bacteria by nanoindentation[J]. Materials Letters.2007,61(3):917-920
    [107]Davis S. A., Burkett S. L., Mendelson N.H., et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J]. Nature 385, 1997,30:420-423
    [108]Fang C., Fan Y, Kong J.M., et al. DNA-templated preparation of palladium nanoparticles and their application. Sensors and Actuators B[J]. Chemical.2007,126 (2):684-690
    [109]Rehman A., Raza Z. A., Saif-ur-Rehman, et al. Synthesis and Use of Self-Assembed Rhamnolipid Microtubules as Templates for Gold Nanoparticles Assembly to Form Gold Microstructures[J]. Journal of Colloid and Interface Science.2010,347(2):332-335
    [110]Davis S. A., Burkett S. L., Mendelson N. H., et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J].Nature 385,1997,420-423
    [111]Shenton W., Douglas T., Young M., et al. Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus[J]. Advanced Materials.1999,11(3):253-256
    [112]Fowler C. E., Shenton W., Stubbs G, et al. Tobacco Mosaic Virus Liquid Crystals as Templates for the Interior Design of Silica Mesophases and Nanoparticles[J]. Advanced Materials.2001,13(16):1266-1269
    [113]Dujardin E., Peet C., Stubbs G, et al. Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates [J]. Nano Letters.2003,3 (3):413-417
    [114]Chia S., Urano J., Tamanoi F., et al. Patterned Hexagonal Arrays of Living Cells in Sol-Gel Silica Films[J]. J. Am. Chem. Soc.2000,122 (27):6488-6489
    [115]Wang Xinjun, Wan Fuquan, Han Kun, et al. Large-scale synthesis well-dispersed ZnS microspheres and their photoluminescence, photocatalysis properties[J], MaterialsCharcterization.2008,59(12):1765-1770
    [116]Shenton W., Davis S. A., Mann S.. Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition[J]. Advanced Materials. 1999,11 (6):449-452
    [117]Fowler C. E., Shenton W., Stubbs G, et al. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles[J]. Advanced Materials.2001,13 (16):1266-1269
    [118]Dujardin E., Peet C., Stubbs G., et al. Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates[J]. Nano Letters.2002,3(3):413-417
    [119]Lee S. Y., Culver J.N., Harris M.T.. Effect of CuCl2 concentration on the aggregation and mineralization of Tobacco mosaic virus biotemplate[J]. Journal of Colloid and Interface Science.2006,297(2):554-560
    [120]Liu C., Chung S.H., Jin Qiaoling, et al. Magnetic viruses via nano-capsid templates[J]. Journal of Magnetism and Magnetic Materials.2006,302 (1):47-51
    [121]Portney N. G,Martinez-Morales A. A.,Ozkan M..Nanoscale Memory Characterization of Virus-Templated Semiconducting Quantum Dots[J]. ACS Nano.2008,2(2):191-196
    [122]罗磊,李志光,涂飞跃等.Research advance on immobilization technology for titanium dioxide photocatalyst[J]. Science & Technology in Chemical Industry.2008, 16(4):60-64
    [123]罗磊,李志光,涂飞跃,等.Ti02光催化剂的负载技术研究进展[J].化工科技,2008,16(4):60-64
    [124]莎木嘎,娜仁图雅,赵志宏,等.Study on Preparation and Activity of ZnS/R Solid-State photocatalyst Loaded by Anion Exchange Resin[J].内蒙古农业大学学报:自然科学版.2008,29(3):183-187
    [125]吴玉程,宋林云,刘晓璐,等.碳纳米管负载纳米Ti02复合材料的制备及组织结构表征[J].功能材料.2008,39(3):497-502
    [126]Pan J. Y.,Zhu C. C.,Gao Y. L. Enhanced field emission characteristics of zinc oxide mixed carbon nano-tubes films[J]. Applied Surface Science.2008,254 (13):3787-3792
    [127]杜轶鹏,郝春成.碳纳米管负载纳米硫化锌的制备与表征[J].青岛科技大学学报(自然科学版).2007,28(6):474-476
    [128]周德庆.微生物学教程(第二版),北京:高等教育出版社.2002:47-52
    [129]沈萍,陈向东微生物学(第二版)北京:高等教育出版社.2006:63-73
    [130]曹文平,武晓刚,郭一飞,etc. Application and Progress on Treatment of Wastewater Using Yeasts[J].中国生物工程杂志.2007,27(11):99-104
    [131]Yu J., Tong,M., Sun,X.,etc. Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker's yeast[J].Bioresource Technology.2008,99(7):2588-2593
    [132].Kaushik P., Malik A. Fungal dye decolourization: Recent advances and future potential[J]. Environment International.2009,35(1):127-141
    [133]Aaron Dodd, Allan McKinley, Takuya Tsuzuki,et al. Mechanochemical synthesis of nanoparticulate ZnO-ZnWO4 powders and their photocatalytic activity[J]. Journal of the European Ceramic Society.2009,29(1):139-144
    [134]Wu Y, Zhang S. C., Zhang L. W.,et al. Photocatalytic Activity of Nanosized ZnW04 Prepared by the Sol-gel Method[J].Chemical Research in Chinese Universities.2007,23(4):465-468
    [135]Bi J. H.,Wu L.,Li Z. H.,et al. A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles[J] Journal of Alloys and Compounds.2009,480(2):684-688
    [136]Dong T. T., Li Z. H., Ding Z. X., et al. Characterizations and properties of Eu3+-doped ZnW04 prepared via a facile self-propagating combustion method[J]. Meterials Research Bulletin.2008,43(7):1694-1701
    [137]Lin S., Chen J. B., Weng X. L., et al. Fabrication and photocatalysis of mesoporous ZnWO4 with PAMAM as a template[J]. Materials Research Bulletin.2009, 44(5):1102-1105
    [138]Bai B., Wang P. P, Wu L., et al. A novel yeast bio-template route to synthesize Cr2O3 hollow microspheres[J]. Materials Chemistry and Physics.2009,114 (1):26-29
    [139]Yang L.,Guan W. S., Bai B., et al. Yeast-directed Hydrothermal Synthsis of ZnMoO4 Hollow Microspheres and its Photocatalytic Degradation of Auramine O[J].IEEE Computer Society.Los Alamitos,2009
    [140]Yang L., Guan W. S., Bai B., et al. Synthesis of yeast-assisted Co3O4 hollow microspheres-A novel biotemplating technique[J]. Journal of Alloys and Compounds. 2010,504 (1):10-13
    [141]Yang L. M., Liya E. Yu, Madhumita B. Ray. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis[J].Water Research,2008,V42(13):3480-3488
    [142]李红,王君.亚甲基蓝在Ti02上的吸附及对其催化超声降解的影响[J].染料与染色.2005,42(6):52-54
    [143]吴子豹,黄妙良,杨媛嫒,等.负载型Ti02复合材料对甲基橙的吸附行为及光催化降解动力学[J].精细化工.2007,24(1):21-26
    [144]颜克亮.白腐菌菌体对染料的生物吸附脱色及机理研究[J].生物技术.2007,17(5):68-71
    [145]Sobisch T., Lerche D. Application of a new separation analyzer for the characterization of dispersions stabilized with clay derivatives[J]. Chemistry and materials science.2000, 278:369-374
    [146]Han R.,et al. Study of equilibrium,kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite[J]. Chemical Engineering Journal,2009, 145(3):496-504
    [147]张婷,俞树荣,冯辉霞,等.凹凸棒石基复合吸附剂的制备及其对水中亚甲基蓝的吸
    附研究[J].中国非金属矿工业导刊.2007,6:29-31
    [148]刘转年,赵西成.超细粉煤灰基吸附剂吸附次甲基蓝动力学研究[J].西安建筑科技大学学报:自然科学版.2007,39(6):867-872
    [149]马子川.新生态 MnO2吸附剂对酸性媒介染料废水脱色特性研究[J].环境污染治理技术与设备.2002,3(1):19-22
    [150]蔡冬鸣,任南琪,李圭白.δ-MnO2吸附染料亚甲基蓝的动力学和机理[J].哈尔滨工业大学学报.2008,40(2):213-216
    [151]Coutinho C. A., Harrinauth R. K., Gupta V. K. Settling characteristics of composites of PNIPAM microgels and TiO2 nanoparticles[J]. ScienceDirect.2008,318:111-121
    [152]Wang J. S., Qi H. Y., You C. F. Experimental study of sedimentation characteristics of spheroidal particles[J]. Particuology.2009,7:264-268
    [153]Shabestari S. G., Keshavarz M., Hejazi M. M. Effect of strontium on the kinetics of formation and segregation of intermetallic compunds in A380 aluminum alloy [J]. Journal of alloys and compounds.2009,477:892-899
    [154]Vesaratchanon Jan S., Nikolov Alex, Wasan Darsh T. Sedimentation of concentrated monodisperse colloidal suspensions:Role of collective particle interaction forces[J]. Journal of colloid and interface science.2008,322:180-189
    [155]冯守爱,赵江红,朱珍平.碳纳米管辅助下ZnS光催化过程中光腐蚀机理的研究[J].化工新型材料.2008,36(11):54-57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700