基于镉超累积植物内生菌的重金属污染修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类活动,尤其是工业生产的发展,重金属污染变得日益严重。重金属是一类典型的环境污染物,具有致癌、致畸等危害,因而对人类健康和自然环境造成了极大威胁。近年来,利用物理化学方法治理重金属污染的的方法取得了很大发展,主要有淋洗法、化学沉淀法、电化学法、氧化还原法、离子交换法、膜技术法、反向渗透法、蒸发治理等方法。但这些方法治理费用高、效率低下、需要大量劳动力、且处理过程缺乏选择性。生物修复技术是指利用动植物和微生物等生物的某些特性来改良重金属污染的措施,相比于物理化学法,其具有有明显的安全性和经济性的优势,因此成为重金属污染修复的潜在技术之一。然而,现阶段制约生物修复这一技术进行实际应用的关键在于如何高效、快速地从自然界中筛选得到具有潜在修复作用的重金属抗性菌株。
     近期,关于内生菌,特别是重金属超累积植物内生菌与其宿主植物协同处理重金属污染的研究方面取得了明显进展。内生菌是指寄居在植物组织内而不对宿主植物产生伤害的一类微生物,其与宿主植物可能存在共生、互生等多种作用关系。大部分内生菌是通过植物的根围或叶部进入植物体内,部分可能一直存在于植物种子体内。超累积植物是指能在重金属污染土壤中生长良好并能累积大量重金属在其体内的一类特殊植物。重金属超累积植物的另一个功能是作为“过滤器”,自土壤微生物中筛选有潜在修复作用的重金属抗性菌株,让其定殖于体内以帮助其对抗重金属毒性。基于这一理论,本研究首次提出了快速、高效地从重金属超累积植物中筛选同时具有优良环境适应性和重金属修复能力的菌株用于实际重金属污染的生物修复。
     首先,本论文在传统植物内生菌分离方法的基础上建立了一种高效、快速的植物内生菌分离方法。与传统方法相比本方法主要应用表面活性剂十二烷基磺酸钠(SDS)和植物纤维素酶作为植物内生菌的提取增溶剂。应用传统方法和本方法从龙葵、齿果草、蚂蝗七、水鸡仔4种植物体内分别提取分离植物内生菌,结果表明SDS和植物纤维素酶能通过水解植物纤维组织有效地提高植物内生菌分离效果。
     随后,利用该方法从镉超累积植物龙葵体内分离获得了97株内生菌,其中根内生菌34株,茎内生菌36株,叶内生菌27株。除从茎中分离到的唯一一株内生菌是真菌以外,其他所有内生菌都是细菌。通过检测所有龙葵植物体内重金属镉含量和龙葵内生菌对重金属抗性发现:不同部位分离得到的内生菌对重金属镉的抗性程度不一,从镉含量较高部位分离得到的内生菌其相应的重金属抗性要高于从镉含量相对较低部位分离的内生菌的重金属抗性。这表明不同种类的内生菌有可能寄居于植物的不同部位。
     内生真菌LSE10是从镉超累积植物龙葵的茎中分离得到的唯一真菌。分子生物学鉴定表明它属于Microsphaeropsis sp.。在体外培养条件下,LSE10的生物量是同等条件下培养的非内生真菌Rhizopus cohnii.的2倍以上。利用LSE10作为生物吸附剂直接吸附废水中的重金属镉,结果表明其理论最大吸附能力高达247.5 mg/g (2.2 mmol/g),高于绝大多数已经报道的生物吸附剂或者其他类型吸附剂。红外光谱分析发现LSE10表面存在的羧基、氨基、巯基、羟基等化学基团在镉的
     生物吸附中起关键作用。具有多种优良重金属抗性的内生细菌EB L14是从镉超累积植物龙葵叶部分离得到的内生菌。生理生化鉴定以及16S rDNA的鉴定都表明它是杆菌属(Bacillus sp.)细菌。在相对较低二价重金属离子存在条件下EB L14的生物量反而高于无重金属存在条件下的生物量,即:表现出毒物兴奋效应。研究发现,该现象是ATP酶活性异常增高所带来的副作用。EB L14在二价重金属离子存在条件下通过提高ATP酶的活性向胞外排出有毒的重金属离子,而能量利用的异常增多导致了其生物量的过度增长。在24 h培养时间内,EB L14能特异性地从含浓度为10 mg/L不同重金属的培养基中分别去除75.78%的镉,80.48%的铅,以及21.25%的铜。在相同条件下EB L14对重金属铬几乎没有任何吸收和去除作用。对EB L14去除重金属机理研究表明:能够通过抑制其ATP酶的活力来提高它的重金属修复效率。EB L14优良的环境适应性和其高效的重金属去除能力,表明它在低浓度重金属生物修复领域具有较好的应用前景。
     在工业代谢抑制剂N,N′-二环己基碳二亚胺(DCC)或2,4-二硝基酚(DNP)存在的条件下,内生菌EB L14对镉的生物修复效果研究表明:虽然,在DCC或DNP存在的条件下,EB L14的生物量受到很大的抑制。但是其对重金属镉的去除率却分别从73.6%升高至93.7%和80.8%。在培养24小时后,通过分别分析其镉的总吸收去除浓度和细胞内镉浓度,发现DCC和DNP都是通过抑制EB L14的向胞外运输镉离子从而有效地增强了镉去除率。EB L14的这一特性强有力地证明在工业代谢抑制剂存在的情况下,内生菌EB L14具有实践应用于镉的生物修复的优势。
     本论文是首次尝试利用重金属超累积植物内生菌这一不但具有良好环境适应能力而且具有多种重金属去除机制的微生物直接用于重金属生物修复的研究。本研究有助于生物修复这一更安全、更经济的重金属污染处理方法能够走出实验室最终应用于实际重金属污染处理。
Heavy metals pollution by human activities, especially industrial activities, is posing significant threats to human health and the environment due to their high occurrence as a contaminant, low solubility in biota, and the classification of several heavy metals as carcinogenic and mutagenic.
     Many physicochemical strategies, such as filtration, chemical precipitation, electrochemical treatment, oxidation/reduction, ion exchange, membrane technology, reverse osmosis, and evaporation recovery, have been developed to remove heavy metals. However, most strategies appear to be expensive, inefficient, and labor-intensive, or the treatment process lacks selectivity. Bioremediation which involves the use of potential microbes to remove heavy metals has been considered to be a safe and economic alternative to physicochemical strategies. The crucial constraint of this technology is to obtain promising and useful metal-resistant strains from enormous microbes on earth.
     Recently, the benefits of endophytes, especially hyperaccumulator endophytes, alone and/or combining with plants have been successfully tried for toxic heavy metal removal from contaminated water and soil. Endophytes refer to the microbes which inhabit in the interior of plant tissues and form a range of different relationships including symbiotic, mutualistic, commensalistic and trophobiotic without causing any harm to the host. Most endophytes are originally from the rhizosphere or phyllosphere, while some may get entrance through the seed. Hyperaccumulator, a plant species that lives in the heavy metals contaminated soil can accumulate exceptionally with high quantities of certain heavy metal. It could also be functioned as‘filters’while selecting those promising and useful metal-resistant strains from soil microbes. Based on this theory, an novel technology for obtaining hose promising and useful metal-resistant strains from heavy metal hyperaccumulator endophytes (HMHEs) was developed and operated.
     In this study, a highly effective new method for isolation of endophytes was established, firstly. Surfactant, SDS and cellulase were applied for extraction endophytes from from their plant hosts. The endopytes of four tested plants (Solanum Nigrum L., alomonia Lour, Chirita fimbrisepala, Schizocapsa plantaginea) were isolated via traditional methods and new methods, respectively. The results indicated that surfactant and cellulase could effectively facilitate the isolation of endophytes by hydrolyzing the cellulose of the plants hosts.
     Several cadmium hyperaccumulator (Solanum Nigrum L.) plants were collected from the sewage discharge canal bank of Zhuzhou Smeltery (27°52′N, 113°05′E). By using the established isolation method, a total number of 97 endophytes were isolated from Solanum Nigrum L. 34, 36 and 27 endophytes were isolated from the roots, stems and leaves of the plants, respectively. Most of they were bacterial endopytes, only one fungus was isolated from the stem of the plants. The heavy metal resistances (minimal inhibitory concentration, MIC) of all the endophytes were tested. The endophytes from shoot and root demonstrated different degrees of cadmium resistance. These results suggest that different microbial communities may inhabit in the different compartments of the plant.
     Endophytic Fungus (EF) LSE10 was isolated from the cadmium hyperaccumulator Solanum Nigrum L. It was identified as Microsphaeropsis sp. When cultured in vitro, the biomass yield of this EF was more than twice that of None-endophytic fungus (NEF) Rhizopus cohnii. Subsequently, it was used as a biosorbent for biosorption of cadmium from the aqueous solution. The results showed that the maximum biosorption capacity was 247.5 mg/g (2.2 mmol/g) which was much higher than those of other adsorbents, including biosorbents and activated carbon. Carboxyl, amino, sulphonate and hydroxyl groups on EF LSE10 surface were responsible for the biosorption of cadmium.
     Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum Nigrum L. was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu, Cd and Pb) at a relatively lower concentration (10 mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24 h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of cadmium, lead and copper at the initial concentration of 10 mg/L. However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in low concentrations heavy metal bioremediation, which could be useful for developing efficient metal removal system.
     Bioremediations of cadmium by endophytic bacterium (EB) L14 (Bacillus sp.) in the presence of industrially used metabolic inhibitors (DCC or DNP) were investigated. In the presence of DCC or DNP, the biomass population of EB L14 was greatly inhibited. However, the cadmium removal of EB L14 increased from 73.6% (in the absence of DCC or DNP) to 93.7% and 80.8%, respectively. The analysis of total and intracellular cadmium concentrations during 24 h of incubation indicated that this enhanced cadmium removal was the inhibition effect of DCC or DNP on the cations export resistance system of EB L14. This unique property strongly indicated the superiority of this endophyte for practical application in cadmium bioremediation in the presence of industrially used metabolic inhibitors.
     This dissertation was the first attempt to directly use heavy metal hyperaccumulator endophytes (HMHEs) which not only possess the excellent adaptability but also have been equipped with various metal-sequestration systems for heavy metal bioremediation. This study offers the ability to fully achieve the application of bioremediation in practical heavy metal decontamination.
引文
[1] Malik A. Metal bioremediation through growing cells. Environment international, 2004, 30 (2): 261-278
    [2] Guo H, Luo S, Chen L, et al. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 2010, 101(22): 8599-8605
    [3] Xiao X, Luo S L, Zeng G M, et al. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresource Technology, 2010, 101(6): 1668-1674
    [4]段小梅.我国城市可持续发展中的环境问题.城市问题, 2002, 2(2): 48-52
    [5]王如松.论复合生态系统与生态示范区.科技导报, 2000, (6): 6-9
    [6] Li H, Li Z, Liu T, et al. A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads. Bioresource Technology, 2008, 99(14): 6271-9
    [7] Li H, Liu T, Li Z, et al. Low-cost supports used to immobilize fungi and reliable technique for removal hexavalent chromium in wastewater. Bioresource Technology, 2008, 99(7): 2234-41
    [8] Polder A, Savinova T N, Tkachev A, et al. Levels and patterns of Persistent Organic Pollutants (POPS) in selected food items from Northwest Russia (1998-2002) and implications for dietary exposure. Science of the Total Environment, 408(22): 53, 52-61
    [9] Linares V, Perello G, Nadal M, et al. Environmental versus dietary exposure to POPs and metals: a probabilistic assessment of human health risks. Journal of Environmental Monitoring, 12(3): 681-8
    [10] Ericson Jogsten I, Hagberg J, Lindstrom G, et al. Analysis of POPs in human samples reveal a contribution of brominated dioxin of up to 15% of the total dioxin TEQ. Chemosphere, 78(2): 113-20
    [11] Haraguchi K, Koizumi A, Inoue K, et al. Levels and regional trends of persistent organochlorines and polybrominated diphenyl ethers in Asian breast milk demonstrate POPs signatures unique to individual countries. Environment International, 2009, 35(7): 1072-9
    [12] Mira S, Gonzalez-Benito M E, Hill L M, et al. Characterization of volatile production during storage of lettuce (Lactuca sativa) seed. Journal of Experimental Botany , 61(14): 3915-24
    [13] Cabral J P. Can we use indoor fungi as bioindicators of indoor air qualityHistorical perspectives and open questions. Science of the Total Environment, 408(20): 4285-95
    [14] Barac T, Taghavi S, Borremans B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnology, 2004, 22(5): 583-8
    [15]陈志良,罗军,王成刚等.土壤有机农药污染的降解机理与生物修复技术.环境污染治理技术与设备, 2003, 8(4): 73-77
    [16]卢桂宁,陶雪琴,杨琛等.土壤中有机农药的自然降解行为.土壤, 2006, 38(2): 130-135
    [17]张伟,张忠明,王进军等.有机农药污染的植物修复研究进展.农药, 2007, 46(4): 217-222
    [18] Luo S, Yong W, Xiao X, et al. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol, 2011, 89(5): 1637-1644
    [19] Rajkumar M, Ae N, and Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 2009, 77(2): 153-160
    [20] Bai H, Zhang Z, Yang G, et al. Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technology, 2008, 99(16): 7716-7722
    [21] Anand P, Isar J, Saran S, et al. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 2006, 97(8): 1018-1025
    [22]储玲,刘登义,王友保等.铜污染对三叶草幼苗生长及活性氧代谢影响的研究.应用生态学报, 2004, 15(1): 119-122
    [23]张朝华,贾存英.铜与缺铜对机体的影响.微量元素与健康研究, 2003, 20 (1): 58-59
    [24]黄秋婵,韦友欢,黎晓峰.镉对人体健康的危害效应及其机理研究进展.安徽农业科学, 2007, 35 (9): 2528-2531
    [25]鲁洪娟,倪吾钟,叶正钱等.土壤中汞的存在形态及过量汞对生物的不良影响.土壤通报, 2007, 38(3): 597-600
    [26]万双秀,王俊东.汞对人体神经的毒性及其危害.微量元素与健康研究, 2005, 22(2): 67-69
    [27]齐宝宁,李旭光,吕晓丽等.土壤表面铅、砷、镉和汞对人体健康的危险性.国外医学:医学地理分册, 2008, 29(2): 89-92
    [28]徐进,徐立红.环境铅污染及其毒性的研究进展.环境与职业医学, 2005, 22 (3): 271-274
    [29]张书海,林树生.交通干线铅污染对两侧土壤和蔬菜的影响.贵州环保科技, 2000, 6(4): 21-23
    [30]徐勤松,施国新.六价铬污染对水车前叶片生理生化及细胞超微结构的影响.广西植物, 2002, 22(1): 92-96
    [31]王威,刘东华.铬污染地区环境对植物生长的影响.农业环境保护, 2002, 21 (3): 257-259
    [32]徐衍忠,秦绪娜,刘祥红.铬污染及其生态效应.环境科学与技术, 2002, 25 (B12): 8-9
    [33]谢正苗,廖敏.砷污染对植物和人体健康的影响及防治对策.广东微量元素科学, 1997, 4(7): 17-21
    [34]许嘉琳,杨居荣.砷污染土壤的作物效应及其影响因素.土壤, 1996, 28(2): 85-89
    [35]蔡保松,陈同斌,廖晓勇.土壤砷污染对蔬菜砷含量及食用安全性的影响.生态学报, 2004, 24(4): 711-717
    [36]白雪晴,王智群,李然等.儿童感染性眼病的病原学及其耐药性分析.中华眼科杂志, 2009, 45 (2): 141-5
    [37]王绍文.中和沉淀法处理重金属废水的实践与发展.环境工程, 1993, 11(5): 13-18
    [38]张志,赵永斌.微电解—中和沉淀法处理酸性重金属矿山地下水的试验研究.有色金属:选矿部分, 2002, (2): 45-47
    [39]雷鸣,田中干也,廖柏寒.硫化物沉淀法处理含EDTA的重金属废水.环境科学研究, 2008, 21(1): 150-154
    [40]王绍文,齐龙武.硫化物沉淀法处理重金属废水的实践与发展.城市环境与城市生态, 1993, 6(3): 41-44
    [41]王辛龙,万先达.湿法磷酸净化的新进展.磷肥与复肥, 2001, 16(2): 32-33
    [42]李东伟,袁雪,王克浩.化学沉淀-铁氧体法处理重金属废水试验研究.重庆建筑大学学报, 2007, 29(2): 90-91
    [43]李娜,靳晓洁.含重金属废水处理技术的研究进展概述.电力科学与工程, 2008, 24(4): 42-44
    [44]陈海燕.微电解电化学法处理高浓度电镀废水.广东化工, 2004, 31(2): 49-50
    [45]林海波,伍振毅,黄卫民.工业废水电化学处理技术的进展及其发展方向.化工进展, 2008, 27(2): 223
    [46]马前,张小龙.国内外重金属废水处理新技术的研究进展.环境工程学报, 2007, 1(7): 10-14
    [47]胡海祥.重金属废水治理技术概况及发展方向.中国资源综合利用, 2008, 26 (2): 22-25
    [48]黄君涛,熊帆,谢伟立.吸附法处理重金属废水研究进展.水处理技术, 2006, 32(2): 9-12
    [49]李江,甄宝勤.吸附法处理重金属废水的研究进展.应用化工, 2005, 34(10): 591-594
    [50] Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 2006, 97 (9): 1061-1085
    [51] Rahman I, Saad B, Shaidan S, et al. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process. Bioresource Technology, 2005, 96 (14): 1578-1583
    [52]李春华.重金属污染控制中的离子交换特点.水处理技术, 1992, 18(3): 193-198
    [53]刘冰扬,赵建民.离子交换法处理含铜废水的实验研究.南京理工大学学报:自然科学版, 1995, 19(2): 184-188
    [54]王瑞祥.离子交换法处理含络合铜废水的研究.电镀与涂饰, 2002, 21(4): 36-38
    [55]武贵桃,王淑娟.离子交换法去除与回收电镀废水中铬酸的实验研究.河北省科学院学报, 2000, 17(1): 43-45
    [56] Farhadian M, Vachelard C, Duchez D, et al. In situ bioremediation of monoaromatic pollutants in groundwater: A review. Bioresource Technology, 2008, 99 (13): 5296-5308
    [57] Radhika V, Subramanian S, and Natarajan K. Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Water Research, 2006, 40 (19): 3628-3636
    [58] Gadd G. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Current Opinion in Biotechnology, 2000, 11 (3): 271-279
    [59] Barkay T and Wagner-D bler I. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Advances in Applied Microbiology, 2005, 57 1-52
    [60] Schüler D and Frankel R. Bacterial magnetosomes: microbiology,biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 1999, 52 (4): 464-473
    [61] Tebo B, Ghiorse W, van Waasbergen L, et al. Bacterially mediated mineral formation; insights into manganese (II) oxidation from molecular genetic and biochemical studies. Reviews in Mineralogy and Geochemistry, 1997, 35 (1): 225
    [62] Webb S, Dick G, Bargar J, et al. Evidence for the presence of Mn (III) intermediates in the bacterial oxidation of Mn (II). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (15): 5558
    [63] Xu L, Luo M, Li W, et al. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. Journal of Hazardous Materials, 2011, 185(3):1169-1176
    [64] Sultan S and Hasnain S. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technology, 2007, 98 (2): 340-344
    [65] Shakoori A, Makhdoom M, and Haq R. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology, 2000, 53 (3): 348-351
    [66] Volesky B. Biosorption and me. Water Research, 2007, 41 (18): 4017-4029
    [67] Pérez Silva R,ábalos Rodríguez A, Gómez Montes De Oca J, et al. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresource Technology, 2009, 100 (4): 1533-1538
    [68] Puranik P and Paknikar K. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnology Progress, 1999, 15 (2): 228-237
    [69] Zouboulis A, Loukidou M, and Matis K. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry, 2004, 39 (8): 909-916
    [70] Yin P, Yu Q, Jin B, et al. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Research, 1999, 33 (8): 1960-1963
    [71] Ledin M. Accumulation of metals by microorganisms--processes and importance for soil systems. Earth-Science Reviews, 2000, 51 (1): 1-31
    [72] Chang J, Law R, and Chang C. Biosorption of lead, copper and cadmium bybiomass of Pseudomonas aeruginosa PU21. Water Research, 1997, 31 (7): 1651-1658
    [73] Hu Q, Qi H, Bai Z, et al. Biosorption of cadmium by a Cd2+-hyperresistant Bacillus cereus strain HQ-1 newly isolated from a lead and zinc mine. World Journal of Microbiology and Biotechnology, 2007, 23 (7): 971-976
    [74] Vullo D, Ceretti H, Daniel M, et al. Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. Bioresource Technology, 2008, 99 (13): 5574-5581
    [75] Yan G and Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 2003, 37 (18): 4486-4496
    [76] Arica M, Kacar Y, and Gen. Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads: preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresource Technology, 2001, 80 (2): 121-129
    [77] Aksu Z. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Separation and Purification Technology, 2001, 21 (3): 285-294
    [78] Cruz C, da Costa A, Henriques C, et al. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresource Technology, 2004, 91 (3): 249-257
    [79] Sheng P, Ting Y, Chen J, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 2004, 275 (1): 131-141
    [80] Barkay T and Schaefer J. Metal and radionuclide bioremediation: issues, considerations and potentials. Current Opinion in Microbiology, 2001, 4 (3): 318-323
    [81] Labrenz M, Druschel G, Thomsen-Ebert T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 2000, 290 (5497): 1744
    [82] Wang C, Maratukulam P, Lum A, et al. Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface. Applied and Environmental Microbiology, 2000, 66 (10): 4497
    [83] Baker A and Brooks R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, Ecology and Phytochemistry.Biorecovery., 1989, 1 (2): 81-126
    [84] Baker A, Brooks R, Pease A, et al. Studies on copper and cobalt tolerance in three closely related taxa within the Genussilene L.(caryophyllaceae) from Zaire. Plant and Soil, 1983, 73 (3): 377-385
    [85] Baker A, Reeves R, and Hajar A. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist, 1994, 127 (1): 61-68
    [86] Salt D, Blaylock M, Kumar N, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology, 1995, 13 (5): 468-474
    [87] Chen T, Wei C, Huang Z, et al. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chinese Science Bulletin, 2002, 47 (11): 902-905
    [88] Yang X, Ye H, Long X, et al. Uptake and accumulation of cadmium and zinc by Sedum alfredii Hance at different Cd/Zn supply levels. Journal of Plant Nutrition, 2005, 27 (11): 1963-1977
    [89]韦朝阳,陈同斌,黄泽春.大叶井口边草——一种新发现的富集砷的植物.生态学报, 2002, 22(5): 777-778
    [90]薛生国,陈英旭,林琦.中国首次发现的锰超积累植物——商陆.生态学报, 2003, 23(5): 935-937
    [91]魏树和,周启星,王新.一种新发现的镉超积累植物龙葵(Solanum nigrum L).科学通报, 2004, 49(24): 2568-2573
    [92]刘云国,尹志平.土壤镉污染生物整治研究.湖南大学学报:自然科学版, 2000, 27(3): 34-38
    [93]王华,曹启民,桑爱云.超积累植物修复重金属污染土壤的机理.安徽农业科学, 2006, 34(22): 5948-5950
    [94] Zhao F, Dunham S, and McGrath S. Arsenic hyperaccumulation by different fern species. New Phytologist, 2002, 156 (1): 27-31
    [95] Zhao F, Lombi E, and McGrath S. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2003, 249 (1): 37-43
    [96] Vara Prasad M and de Oliveira Freitas H. Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 2003, 6 285-321
    [97] Robinson B, Brooks R, Howes A, et al. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining.Journal of Geochemical Exploration, 1997, 60 (2): 115-126
    [98] Rajkumar M, Nagendran R, Lee K, et al. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 2006, 62 (5): 741-748
    [99] Kloepper J and Beauchamp C. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology, 1992, 38 (12): 1219-1232
    [100] Misaghi I and Donndelinger C. Endophytic bacteria in symptom-free cotton plants. Phytopathology, 1990, 80 (9): 808-811
    [101] James E, Olivares F, Baldani J, et al. Herbaspirillum, an endophytic diazotroph colonizing vascular tissue Sorghum bicolor L. Moench. Journal of Experimental Botany, 1997, 48 (3): 785
    [102] Lodewyckx C, Vangronsveld J, Porteous F, et al. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 2002, 21 (6): 583-606
    [103] Schulz B and Boyle C. The endophytic continuum. Mycological Research, 2005, 109 (6): 661-686
    [104] Bell C, Dickie G, Harvey W, et al. Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 1995, 41 (1): 46-53
    [105] Doty S. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist, 2008, 179 (2): 318-333
    [106] Hurek T, Handley L, Reinhold-Hurek B, et al. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions, 2002, 15 (3): 233-242
    [107] Lemanceau P, Bakker P, De Kogel W, et al. Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Applied and environmental microbiology, 1993, 59 (1): 74
    [108] Brooks D, Gonzalez C, Appel D, et al. Evaluation of Endophytic Bacteria as Potential Biological-Control Agents for Oak Wilt. Biological Control, 1994, 4 (4): 373-381
    [109] Sessitsch A, Reiter B, and Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canadian Journal of Microbiology, 2004, 50 (4): 239-249
    [110] Siciliano S, Fortin N, Mihoc A, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Applied andenvironmental microbiology, 2001, 67 (6): 2469
    [111] Ryan R, Germaine K, Franks A, et al. Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters, 2008, 278 (1): 1-9
    [112] Weyens N, Van der Lelie D, Taghavi S, et al. Phytoremediation: plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology, 2009, 20 (2): 248-254
    [113] Van Aken B, Yoon J, and Schnoor J. Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Applied and environmental microbiology, 2004, 70 (1): 508
    [114] Barac T, Taghavi S, Borremans B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnology, 2004, 22 (5): 583-588
    [115] Idris R, Trifonova R, Puschenreiter M, et al. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and environmental microbiology, 2004, 70 (5): 2667
    [116] Corder S and Reeves M. Biosorption of nickel in complex aqueous waste streams by cyanobacteria. Applied biochemistry and biotechnology, 1994, 45 (1): 847-859
    [117] Stierle A, Strobel G, and Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, New-york Washington, 1993, 260 214-214
    [118]王建锋,吕华鹰,苏文金.植物内生真菌产紫杉醇的研究.微生物学通报, 2000, 27(1): 58-60
    [119] Moore F, Barac T, Borremans B, et al. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Systematic and applied microbiology, 2006, 29 (7): 539-556
    [120] Mcinroy J and Kloepper J. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil, 1995, 173 (2): 337-342
    [121] Gutierrez-Zamora M and Martinez-Romero E. Natural endophytic association between Rhizobium etli and maize (Zea mays L.). Journal of Biotechnology, 2001, 91 (2): 117-126
    [122] Stoltzfus J, So R, Malarvithi P, et al. Isolation of endophytic bacteria from riceand assessment of their potential for supplying rice with biologically fixed nitrogen. Plant and Soil, 1997, 194 (1): 25-36
    [123] Gyaneshwar P, James E, Mathan N, et al. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology, 2001, 183 (8): 2634
    [124]阎伯旭,齐飞.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展, 1999, 26(3): 233-237
    [125] Tanprasert P and Reed B. Detection and identification of bacterial contaminants from strawberry runner explants. In Vitro Cellular & Developmental Biology-Plant, 1997, 33 (3): 221-226
    [126] Sturz A, Christie B, and Matheson B. Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Canadian Journal of Microbiology, 1998, 44 (2): 162-167
    [127] Fisher P, Petrini O, and Scott H. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytologist, 1992, 122 (2): 299-305
    [128] Jacobs M, Bugbee W, and Gabrielson D. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Canadian Journal of Botany, 1985, 63 (7): 1262-1265
    [129] Elbeltagy A, Nishioka K, Suzuki H, et al. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Science and Plant Nutrition, 2000, 46 (3): 617-629
    [130]罗绍银,高继海,叶生亮等.一种提取富含油脂植物组织总RNA的改良SDS酸酚法.应用与环境生物学报, 2009, 15(2): 284-287
    [131] Strobel G. Harnessing endophytes for industrial microbiology. Current Opinion in Microbiology, 2006, 9 (3): 240-244
    [132] D?nmez G and Aksu Z. Bioaccumulation of copper (ii) and nickel (ii) by the non-adapted and adapted growing Candida sp. Water Research, 2001, 35 (6): 1425-1434
    [133] Choudhary S and Sar P. Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration. Bioresource Technology, 2009, 100 (9): 2482-2492
    [134] Magyarosy A, Laidlaw R, Kilaas R, et al. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology, 2002, 59 (2): 382-388
    [135] Srinath T, Verma T, Ramteke P, et al. Chromium (VI) biosorption andbioaccumulation by chromate resistant bacteria. Chemosphere, 2002, 48 (4): 427-435
    [136] Monteiro C, Marques A, Castro P, et al. Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation, 2009, 20 (5): 629-641
    [137] Zaidi S and Musarrat J. Characterization and nickel sorption kinetics of a new metal hyper-accumulator Bacillus sp. Journal of Environmental Science and Health, Part A, 2005, 39 (3): 681-691
    [138]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征.环境科学, 2005, 26(3): 167-171
    [139] Barzanti R, Ozino F, Bazzicalupo M, et al. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology, 2007, 53 (2): 306-316
    [140]孙剑秋,郭良栋,臧威等.药用植物内生真菌多样性及生态分布.中国科学: C辑, 2008, 38(5): 475-484
    [141] Cao L, Qiu Z, You J, et al. Isolation and characterization of endophytic streptomycete antagonists of fusarium wilt pathogen from surface‐sterilized banana roots. FEMS Microbiology Letters, 2005, 247 (2): 147-152
    [142] Kuklinsky-Sobral J, Araújo W, Mendes R, et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 2004, 6 (12): 1244-1251
    [143] Giller K, Witter E, and Mcgrath S. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 1998, 30 (10-11): 1389-1414
    [144] Lodewyckx C, Taghavi S, Mergeay M, et al. The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. International Journal of Phytoremediation, 2001, 3 (2): 173-187
    [145] Kamnev A, Tugarova A, Antonyuk L, et al. Effects of heavy metals on plant-associated rhizobacteria: comparison of endophytic and non-endophytic strains of Azospirillum brasilense. Journal of Trace Elements in Medicine and Biology, 2005, 19 (1): 91-95
    [146] Chen L, Luo S, Xiao X, et al. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Applied Soil Ecology, 2010, 46(3):383-389
    [147] Sheng X, Xia J, Jiang C, et al. Characterization of heavy metal-resistantendophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 2008, 156 (3): 1164-1170
    [148] Mastretta C, Taghavi S, Van Der Lelie D, et al. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 2009, 11 (3): 251-267
    [149] Compant S, Reiter B, Sessitsch A, et al. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 2005, 71 (4): 1685
    [150] Mastretta C, Barac T, Vangronsveld J, et al. Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnology and Genetic Engineering Reviews, 2006, 23 175
    [151]姜绍通,郑智,朱羽等.无载体固定化米根霉重复间歇发酵生产L-乳酸.生物工程学报, 2008, 24 (10): 1729-33
    [152] He L, Zhang Y, Ma H, et al. Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology, 2009,
    [153] Guo H, Luo S, Chen L, et al. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101 (22): 8599-8605
    [154] Yang J and Volesky B. Cadmium biosorption rate in protonated Sargassum biomass. Environmental Science & Technology, 1999, 33 (5): 751-757
    [155] Kuo C F, Luo S F, See L C, et al. Hyperuricaemia and accelerated reduction in renal function. Scandinavian Journal of Rheumatology, 2011, 40 (2): 116-121
    [156] Brooks R, Geobotany and hyperaccumulators, in Plants that Hyperaccumulate Heavy Metals., R. Brooks, Editor. 1998, CAB International: New York. p. 55-94.
    [157] Zhao F, Lombi E, and Breedon T. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell & Environment, 2000, 23 (5): 507-514
    [158] Lombi E, Zhao F, Dunham S, et al. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 2001, 30 (6): 1919
    [159] Xue, S G, Chen Y X, Reeves R D, et al. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae)Environmental Pollution, 2004, 131 (3): 393-399
    [160] Brown S, Chaney R, Angle J, et al. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil. Journal of Environmental Quality, 1994, 23 (6): 1151
    [161] Whiting S, de Souza M, and Terry N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science & Technology, 2001, 35 (15): 3144-3150
    [162] Chen G, Zeng G, Tang L, et al. Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresource Technology, 2008, 99 (15): 7034-7040
    [163] Matheickal J, Yu Q, and Woodburn G. Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine alga Durvillaea potatorum. Water Research, 1999, 33 (2): 335-342
    [164] Saeed A and Iqbal M. Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Research, 2003, 37 (14): 3472-3480
    [165] Kapoor A, Viraraghavan T, and Cullimore D. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology, 1999, 70 (1): 95-104
    [166] Herrero R, Lodeiro P, Rojo R, et al. The efficiency of the red alga Mastocarpus stellatus for remediation of cadmium pollution. Bioresource Technology, 2008, 99 (10): 4138-4146
    [167] Dang V, Doan H, Dang-Vu T, et al. Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresource Technology, 2009, 100 (1): 211-219
    [168] Bahadir T, Bakan G, Altas L, et al. The investigation of lead removal by biosorption: An application at storage battery industry wastewaters. Enzyme and Microbial Technology, 2007, 41 (1-2): 98-102
    [169] Pérez-Marín A, Ballester A, González F, et al. Study of cadmium, zinc and lead biosorption by orange wastes using the subsequent addition method. Bioresource Technology, 2008, 99 (17): 8101-8106
    [170] Reddad Z, Gérente C, Andrès Y, et al. admium and lead adsorption by a natural polysaccharide in MF membrane reactor: experimental analysis and modelling. Water Research, 2003, 37 (16): 3983-3991
    [171] Baysse C, De Vos D, Naudet Y, et al. Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. Microbiology, 2000, 146 (10): 2425
    [172] Yoshihara T, Hodoshima H, Miyano Y, et al. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Reports, 2006, 25 (4): 365-373
    [173] Dimkpa C, Svatos A, Dabrowska P, et al. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere, 2008, 74 (1): 19-25
    [174]付晓萍.重金属污染物对人体健康的影响.辽宁城乡环境科技, 2004, 24(6): 8-9
    [175] Tang L, Zeng G, Shen G, et al. Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environmental Science & Technology, 2008, 42 (4): 1207-1212
    [176] Sturz A, Christie B, and Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 2000, 19 (1): 1-30
    [177] Azevedo J, Maccheroni Jr W, Pereira J, et al. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology, 2000, 3 15-16
    [178] Hallmann J, Quadt-Hallmann A, Mahaffee W, et al. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 1997, 43 (10): 895-914
    [179] Kumar M and Upreti R. Impact of lead stress and adaptation in Escherichia coli. Ecotoxicology and Environmental Safety, 2000, 47 (3): 246-252
    [180] Leedjarv A, Ivask A, and Virta M. Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. Journal of Bacteriology, 2008, 190 (8): 2680
    [181] Li Z, Yuan H, and Hu X. Cadmium-resistance in growing Rhodotorula sp. Y11. Bioresource Technology, 2008, 99 (5): 1339-1344
    [182] Sprocati A, Alisi C, Segre L, et al. Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Science of the Total Environment, 2006, 366 (2-3): 649-658
    [183] Franke S, Grass G, Rensing C, et al. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of Bacteriology, 2003, 185 (13): 3804
    [184] Perron K, Caille O, Rossier C, et al. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa.Journal of Biological Chemistry, 2004, 279 (10): 8761
    [185] Timmis K and Pieper D. Bacteria designed for bioremediation. Trends in biotechnology, 1999, 17 (5): 200-204
    [186] Harish S, Kumar D, and Vaijapurkar S. A new chlorophycean nickel hyperaccumulator. Bioresource Technology, 2008, 99 (9): 3930-3934
    [187] Hassen A, Saidi N, Cherif M, et al. Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis. Bioresource Technology, 1998, 65 (1-2): 73-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700